[Cover] [Contents] [Index] Previous page Next Section

Page 271
We define a partial recursive 0271-001.gif by the equation:
0271-002.gif
So if 0271-003.gif, then  h (i, j + 1) is the (j + 1)-st distinct grammar in the list g(i, 0), g(i, 1), g(i, 2), . . .; and if 0271-004.gif, then this list contains fewer than (j + 1) distinct
grammars. For each 0271-005.gif and 0271-006.gif, define
0271-007.gif
Since r is a recursive one-to-one correspondence between A and N, it follows that
0271-008.gif is well defined. It follows by clause (i) in the definition of  y  that  y  is acceptable. Recall that, for all i and s, 0271-009.gif.
12.17 Claim Suppose 0271-010.gif. Then:
(a) If j= 0, then 0271-011.gif
(b) If j > 0 and 0271-012.gif, then 0271-013.gif.
(c) If j > 0, 0271-014.gif, and 0271-015.gif, then 0271-016.gif
(d) If j > 0, 0271-017.gif, and 0271-018.gif, then 0271-019.gif
The above claim follows directly from the definition of  y . We also have:
12.18 Claim Suppose 0271-020.gif and (i, j) is the least element of A such that  h (i, j) = iL. Then:
(a) Wr(i, j) = L (hence, 0271-021.gif).
(b) j > 0.
(c) If L is infinite, then MinGram Y  = r(i, j).
Proof: Part (a). If j = 0, then  h (i, 0) = iL implies, by the definition of  h , that i = iL, and, by Claim 12.17(a), 0271-022.gif. If j > 0, then by the definitions of  y  and  h  and the fact that 0271-023.gif, we also have that 0271-024.gif.

 
[Cover] [Contents] [Index] Previous page Next Section