[Cover] [Contents] [Index] Previous page Next Section

Page 152
excursion into elementary real analysis to introduce some tools that help in formalizing these density notions.
§7.2 Some Background
Real Numbers, Supremums, and Infimums
Here we review the small amount of real analysis required for this chapter. For more details on the following, see almost any book on real analysis, for example, Dudley [56] or Rudin [162].
Recall from Chapter 2 that R denotes the set of real numbers. In this chapter, let a, b, and c range over R. Recall that:
0152-001.gif.
0152-002.gif.
0152-003.gif.
0152-004.gif.

Also recall that, for natural numbers x and z:
0152-005.gif.
0152-006.gif 
0152-007.gif.
0152-008.gif 

Let X be a nonempty set of real numbers. We define inf(X) as follows. If there is a w such that, for all 0152-009.gif, 0152-010.gif, then inf(X) is the largest such w; otherwise, 0152-011.gif. For example, 0152-012.gif, but note that 0152-013.gif. For another example, 0152-014.gif We define 0152-015.gif. Equivalently, if there is a y such that, for all 0152-016.gif, 0152-017.gif then sup(X) is the smallest such y; otherwise, 0152-018.gif. Suppose that a0, a1, . . . is a sequence of real numbers. Define:
0152-019.gif.
0152-020.gif.
For example, for each n, let 0152-021.gif and 0152-022.gif. Then 0152-023.gif is undefined, but lim 0152-024.gif and lim 0152-025.gif. We note that, for any sequence a0, al, . . . ,
0152-026.gif

 
[Cover] [Contents] [Index] Previous page Next Section