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Abstract

We proof that the Bondi mass of an asymptotically flat, vacuum spacetime is non-negative in all
odd dimensions d > 5 assuming that a suitable spinor fulfilling the Witten equation exists. This
extends classical results by Witten and others on the positivity in four dimensions and recent
results by Hollands and Thorne in even higher dimensions. Our proof holds for manifolds which
admit Killing spinors near infinity, in particular, if infinity is the standard sphere. To enable our
proof we investigate the asymptotic expansion of Bondi coordinates and how imposing Einstein
equations restricts the allowed asymptotic decay of metric coefficients and spinor fields. We

also derive a coordinate expression for the Bondi mass in odd dimensions.



Acknowledgements

I thank Stefan Hollands for giving me the opportunity to write this master thesis with him and
for his explanations and guidance throughout the year. I have also benefited from discussions
with Akihiro Ishibashi (on the asymptotic expansion of Bondi coordinates and gravitational
waves), Robert Wald (on the asymptotic expansion of Bondi coordinates and spinors) and Jochen
Zahn (on the wave equation on curved spacetimes). I would also like to thank Jochen Zahn
for taking the time to read and assess this work. I want to thank my parents for their general
support and help with this thesis and my brothers for valuable advise on crucial questions of
graphic design. Finally, I must thank the tex.stackexchange community and the authors of

tikz-cd and other helpful packages without whom this work would look much worse.



Contents

(1_Introduction|

[2° Notation and Glossary|

[_Fundamentals|
3 p1NOY'S
[3.1 Principal G-bundle and Associated Bundle| . . . ... .. ... ... ... ...
[3.1.1  Example: Frame Bundle and Tangent Bundle] . . . . . ... ... ...
3.2 Motivationl . . . . .. ...
3.3 DINOTLS| . . v o v v o v e e e e e e e e e e e e e e
[3.3.1  Clifford Algebral. . . . . . .. ... .
[3.3.2  Spinor Groups|. . . . . . ...
[3.3.3  Spin Geometry| . . . . . ...
[3.4 Killing Spinor| . . . . . ...

[4  Conformal Infinity and Mass in Four Dimensions|

[4.1  Null Infinity and Bondi Coordinates in Even Dimensions| . . . . ... ... ..

[4.1.3  Example: Schwarzschild| . . . .. ... ... ... ... .00 L.

[4.2.1  Mass in Newtonian Theory| . . . .. ... ... .. ... ........

[4.2.2  Mass in General Relativity| . . . . . .. ... ... ... ... ......

[4.3  Positivity of Mass in General Relativityin4D|. . . . . . . ... ... ... ...

I Bondi Mass and Positivity|

[5 Assumptions, Setup and Notations|

[5.2  Assumptions and Results|

11

13

14
14
15
16
18
19
22
23
27

28
28
28
30
32
34
35
36
43

47



CONTENTS

[6  Einstein Equations and Bondi Mass| 54
[6.1  Asymptotic Expansion and Einstein Equations| . . . . . . ... ... ... ... 54
[6.1.1  Schwarzschild Higher Dimensions Einstein Equations| . . . . . . ... 54

[6.1.2  Recursion Relations from Einstein Equations| . . . ... ... ... .. 56

[6.1.3  Consistency of Asymptotic Expansion| . . . . . . ... ... ...... 60

[6.2 Bondi Mass in Odd Dimensions > 5| . . . . .. ... ............... 63

{7 Positivity of Bondi Mass| 71
[7.1 ~ Spin structure, Spinors, Tetrad and Gamma Matrices|. . . . . . ... ... ... 71
[71.1  SpinManifold| . . . . .. ... oL 71
Z12_Tetrad . . . ... ... 72

713 GammaMatrices . . . ... ... .. ... ... ... 73

[7.1.4  Projectors| . . . . . . ... 74

[7.1.5 Spinor Connection| . . . . . . . . . ... L 75

[7.1.6 ~ Witten Equation| . . . ... ... ... oo 76

2 _OutlineofProofl . . . ... ... ... ... ... . 77
[7.3  Positivity of Integralover Q| . . . . . ... ... oL 78
[7.4  Spinor Recursion Relation| . . . . ... ... ... ... .. 000000 80
[7.5 Proof Lemma |7.3}— Step 1: Witten Equation| . . . ... ... ... ... .... 81
(7.5.1  Equation (7.36b]|. . . . . . ... ... 81

[7.5.2  Rewriting the Witten Equation| . . . .. ... ... ... ... ..... 82

[7.6 ~ Proof Lemma [7.3|- Step 2: Auxiliary Calculations| . . . . ... ... ... ... 83
|7.6.1 Commutator [V, VA]l ........................... 84

[7.6.2 _ Derivative of Gamma Matrices| . . ... ... ... ........ ... 85

[7.7 Proof Lemma 7.3 Step 3: Witten Equation at Order ¥/% . . . ... ... .. 86
[7.8  Proof Lemma [7.3|- Step 4: Recursion Formula Spinor| . . . . . .. ... .. .. 93
[7.9  Existence of Integrall. . . . . .. ... ... ... ... L. 95
[8_Discussionl 99
[8.1 Discussion of Chapter|6|. . . . ... ... ... ... ... ... ......... 99
[8.2  Discussion of Chapter(7]. . . . ... ... ... ... ... 00000 100

[9  Summary and Outlook] 102
[IIT Appendix| 103
|A° Components of Riemann Tensor| 104




CONTENTS

B~ Physical and Unphysical Derivative of Spinoi]

[C Local Symmetries and Conserved Quantities|

|C.1  Hamiltonian Mechanics and Symplectic Manitolds|

|C.2  Covariant Phase Space|

|C.3  Symmetries at Infinity|

|C.4  Hamiltonian associated with Symmetry]|

|C.5 BMS symmetry and Bondi Mass in 4 dimensions|

|C.6  BMS symmetry and Bondi Mass in Higher Dimensions|

ID.1 Kahler, Calabi, Yau, Sasaki and Einstein|

[D.2 Holonomy Group|

[D.3  Manifolds Admitting Parallel or Killing Spinors|

121



CHAPTER 1

Introduction

It would probably be surprising to see that a theory of fundamental importance to the un-
derstanding of nature and the foundations of physics is largely ignored for half a century.
However, this was the case for general relativity which, after its conception around 1915, did
not receive much attention. It was only around the year of Einstein’s death in 1955 that general
relativity attracted more attention and entered the mainstream of theoretical physics. This shift
in attitude was due to several breakthroughs, and the period from the 1960s to the mid 1970s
has been coined the “golden age of general relativity” [[1]. Several of the concepts, which are
now paradigmatic for general relativity, were found during this time. R. Kerr found the Kerr
metric (uncharged, rotating black hole) in 1963 [2], the no-hair conjecture was stated and some
simple cases proven, e.g., Israel showed the uniqueness of the Schwarzschild metric in 1967 [3].
The first few of the famous singularity theorems were proven by R. Penrose and S. Hawking
between 1965 and 1970 [[4H6]]. The foundation of black hole thermodynamics was laid in 1973 by
J. Bekenstein [7] and J. Bardeen, B. Carter and S. Hawking [8] and in 1975 Hawking showed the
existence of Hawking radiation [9] just one year after the first indirect evidence of gravitational
waves was discovered by R. Hulse and ]J. Taylor in 1974. In the same period several other authors
worked on a problem of tantamount importance, but which has received much less publicity
due to its technical nature. It was only starting in 1960 that a rigorous definition of mass was
available [10}|11]. At the first glance, this problem seems to be either irrelevant or trivial. After
all, not much thought is spend on this in other theories and it is not obvious that one should do
anything differently in general relativity. So why was this considered a relevant/non-trivial
problem? The reason lies at the very foundation of general relativity and is, in fact, the argument
that lead Einstein 1907 to his theory of gravitation, namely, the equivalence principle. It states
that the trajectory of a point mass in a gravitational field is independent of its structure (in
vacuum, a rock and a feather fall in the same way) and that the outcome of an experiment is
independent of the velocity and position of the laboratory. Another way of saying this is that
in a closed laboratory (no interactions with the environment) it is not possible to distinguish
between a system which accelerates far away from any masses and a system which is in free

fall close to a mass. In Einsteins words:

“Wir betrachten zwei Bezugssysteme X1 und X,. 3; sei in Richtung der X-Achse
beschleunigt, und es sei y die (zeitlich konstante) Grofie dieser Beschleunigung. %,

sei ruhend; es befinde sich aber in einem homogenen Gravitationsfelde, das allen
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Gegenstianden die Beschleunigung —y in Richtung der X-Achse erteilt. Soweit wir
wissen, unterscheiden sich die physikalischen Gesetze in bezug auf ¥; nicht von
denjenigen in bezug auf 3; es liegt dies daran, daf} alle Kérper im Gravitationsfelde
gleich beschleunigt werden. Wir haben daher bei dem gegenwértigen Stande
unserer Erfahrung keinen Anlafl zu der Annahme, daf sich die Systeme ¥; und X,
in irgendeiner Beziehung voneinander unterscheiden, und wollen daher [...] die
vollige physikalische Gleichwertigkeit von Gravitationsfeld und entsprechender

Beschleunigung des Bezugssystems annehmen.” [p. 454 of |12]]

A consequence is that a local measurement in a system freely falling in some gravitational
field no gravitational field is measured. With this in mind it is possible to see why defining

mass is an issue. By the famous E = mc?

mass and energy are equivalent. It is a basic fact of
general relativity that the gravitational field has itself an energy or, equivalently, a mass. Thus,
the mass of a system consists of two components, the mass of the matter, which creates the
gravitational field, and the energy/mass “stored” in the gravitational field. To quantify the full
mass one would like to add the two parts. However, as just discussed, a laboratory freely falling
does not measure any gravitational field and this is the case for any local measurement at any
point of the gravitational field. Therefore, it is a direct consequence of the equivalence principle
that it is not possible to measure the mass of the gravitational field locally. But then half of the
components which make up the mass of a system are missing. It is due to this consequence of
the equivalence principle and the equivalence of mass and energy that a definition of mass is
highly non-trivial in general relativity. That the space(time) on which the systems “lives” is
altered by the system is what fundamentally distinguishes general relativity from other theories
and the reason why there are no problems with defining mass in other theories. At this point it
might seem that instead of asking why there is a problem with defining mass one now should
question whether the mass of a system can be defined at all. It turns out that this is indeed
possible and the precise way this is done was the breakthrough in the early 1960s alluded to
above. We will review the definition of mass (in four dimensions) in chapter (4 For now, note
that we always wrote that a local measurement cannot measure the gravitational field and
indeed the idea is to not do local but global measurements. By going far away from the system
and then performing the measurement it is possible to account for both components of the
mass in a suitable manner and the mass of a system can be defined.

After the question whether it is possible to define the mass of a system was answered in the
affirmative a new problem came up, namely, is the mass positive? As before, the question seems
strange at first and a justification of why this is a problem is in order. The ground state of a
spacetime in general relativity is set to be the flat space to which one assigns zero energy. Thus,

the point of zero energy is fixed by the situation that there is no matter and no gravitational



field. In Newtonian gravity a bound system has negative energy but in general relativity this
would be a problem since negative energy is equivalent to negative mass which would lead to a
repelling rather than attracting gravitational force. Additionally, there might be gravitational
radiation which reduces the mass of a system by carrying energy away. Together with the
indirect way of defining the mass described above this leads to the question whether mass is
positive and Minkowski space a stable ground state. If the mass were not positive this would
signify an inherent instability in the theory. It has turned out to be remarkably difficult to
establish this result and a proof for rather general conditions was found only in 1979 by R.
Schoen and S. Yau [13]] and, in 1981, E. Witten found a significantly simpler proof exploiting
spinor techniques [14]. These proofs settled the debate about whether mass is positive in four

dimensional general relativity. We will discuss this further in chapter [4

The goal of this thesis is to find an expression of the so-called Bondi mass (one of the masses
that can be defined), in higher odd dimensions d > 5 and to show that it is positive. The question
of whether aspects of four dimensional gravity carry over to higher dimensions is a delicate
issue and, a priori, very unclear. In some cases higher dimensions behave just like the usual four
dimensional theory, in other cases there are differences. Additionally, and perhaps surprisingly,
there are crucial differences between even and odd dimensions. For example, in four dimensions
there is a so-called memory effect basically saying that a system of test particles, which are
exposed to gravitational radiation, may be permanently displaced by the radiation such that
there remains a memory of the perturbation in the system. This effect has been known for
more than 40 years and is related to asymptotic symmetries. However, it turns out that the
memory effect does not exist in higher dimensions [[15|16]]. Another example is the definition
of conformal null infinity. Here, the definition from four dimensions can be adopted to even
higher dimensions but not to odd ones [[17,[18]]. These two examples illustrate that the role
of dimensions in general relativity is a non-trivial and interesting issue. It turns out that the
idea of the proof of positivity carries over to higher dimensions but the proof is considerably
more difficult. This is because the physically relevant terms are not of sub-leading order in
an asymptotic series expansion in distance r but fall off much slower as r — oco. In particular,
the deviation from Minkowski space due to radiation falls of slower than the deviation which
is present near spatial infinity while in four dimensions they fall-off is of the same order. An
expression for the Bondi mass and its positivity has been found in even dimensions [[17,[19]. In
chapter [6| we derive a coordinate expression for the Bondi mass in odd dimensions and chapter
contains the proof of the positivity of the Bondi mass in odd dimensions. These are the two

main results of this thesis.

A more detailed outline is as follows. In the first part we give background information

and introduce some rather well-known concepts. For the proof of positivity we need spinors
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on curved spacetime. They are motivated and introduced in chapter 3] In chapter [4 we look
primarily at gravity in four dimensions. In section[4.1)we introduce Bondi coordinates in the
conformal framework and it is discussed why we have to use Bondi coordinates in odd higher
dimensions. Section 4.2 contains a review of the classical results concerning Bondi and ADM
mass and we derive some of the expressions. The question of positivity is considered in more
detail in section [4.3| where we sketch the proof due to Witten. In the second part we first
look at gravitational waves as an example of general relativity in odd dimensions in section
and we then summarize our assumptions and specify the spacetime we will work on for
the remainder of the thesis in section[5.2] Afterwards, we start considering the Bondi mass
in higher dimensions. We then investigate how the vacuum Einstein equations can be
used to investigate the metric in Bondi coordinates and find some structure. The results of this
investigation are used in section[6.2]to derive a coordinate expression for the Bondi mass in odd
dimensions. This is the first main result of this thesis. Chapter|7| contains the proof of positivity
of the Bondi mass in odd dimensions, the most important result of this work. In section we
adapt the general definitions of spinors and gamma matrices to the manifold and coordinates we
chose. A outline of the proof is given in section[7.2] Then, the proof follows in the subsequent
sections In chapter [8| we discuss our results and compare them with results in four
dimensions and works of other authors in higher dimensions. We summarize the thesis and
give an outlook in chapter [9] The third part contains some appendices. In appendix [A| we write
down the components of the Ricci tensor in Bondi coordinates and appendix [B| contains an
auxiliary computation relating the spin derivative in the physical and unphysical spacetime. A
brief, non-rigorous summary of how to define conserved quantities in general relativity and
how to derive a geometric expression for the Bondi mass can be found in appendix |C| Finally,
appendix D] explains the idea of holonomy and it is outlined how this can be used to classify

manifolds which admit Killing spinors.

10



CHAPTER 2

Notation and Glossary

Some important notations and the chapter/section where they are introduced are listed in the
following. Some symbols are also used with a different definition in some places if the meaning
is clear from context. (M, g) always denotes a Riemannian or Lorentzian manifold. Throughout

the thesis we use geometric units G = ¢ = 1.

€a,a,... (With indices) Volume element

TX Tangent space of X

\% Levi-Civita derivative of g

* Hodge star operator

I Christoffel symbol

Rapeds Rap, R Riemann-, Ricci tensor, Ricci scalar

R(x), I(x) Real part, imaginary part of x

X[aYb) = %(xayb — Y4Xp) Antisymmetrization

X(aUb) = %(xayb + y4Xp) Symmetrization

Cl(V,q), Cl, s, CI ¢ Clifford algebras Section|3.3.1
dot “” Clifford Multiplication (for spinors) Section 3.3.1
(M) (Complex) spinor bundle Section [3.3.3} Section|7.1.1
€ (without indices) Killing spinor Section 3.4
(u,r,x4) Bondi coordinates Section [4.1.2
YAB “Round” metric Section |4.1.2
I+ Conformal null infinity Section 4.1
(M, §) Unphysical spacetime Section |4.1.1
Nyag News tensor Section4.2.2 Section
(A, 9) odd-d Lorentzian, spin manifold Section|5.2
x(m nth coefficient of series expansion in »  Section 5.2
x r-derivative of x Section 5.2
x’ u-derivative of x Section 5.2
(Z,s) (d — 2)-dimensional spin manifold Section 5
D, D Levi-Civita/spin derivative of sgp, yap  Section 5
\Y% Spin derivative of g Section|7.1.5
Hg Bondi mass density Section 6.2.
Cy, Ky Weyl, Schouten tensor of g Section 6.2

11
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ms Bondi mass of > Section a

0(X,Y) (Witten-Nester) 2-form: Section|[7.1.1
el el Tetrad Section|7.1.2
o? o Gamma matrices in curved spacetime  Section|7.1.3
P, Projectors Section|7.1.4
T4 (one index) Gamma matrix on subspace Section|[7.1.4
H Hypersurface Section|7.1.6

12
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CHAPTER 3

Spinors

This chapter starts with a very brief, non-rigorous discussion of the notion of principal G-bundle
and associated bundle in section[3.1] The main purpose is not to give a pedagogical introduction
but to fix notations. We also discuss, as an example, how the tangent bundle of a manifold can
be defined as an associated bundle. This simple example already shows all ingredients necessary
to define spinors such that it can be used as a well-known reference for the construction of spin
bundles. In section [3.2| we motivate why spinors are relevant and how they are related to group
theory by looking at the relation of SU(2) and SO(3). Thereafter, in section 3.3 we introduce
Clifford algebras which are then used to define spin groups and the relevant representations.
This section is rather algebraic and relatively unrelated to the previous sections. However, once
we have defined the spin group we can make the connection with geometry by going back to
the topic of section[3.1]and defining spin bundles and spinors as associated bundles and sections
thereof. Finally, we define the notion of Killing spinor fields in section [3.4] This concept will be

crucial in the proof of mass positivity.

3.1 Principal G-bundle and Associated Bundle

We recall the definition of the principal and associated bundle and fix some notations we will
need; we refer to the literature, e.g. [20-23], for an introduction. A principal G-bundle, where
G is a topological group, is a fiber bundle 7 : U — M together with a right action U X G —» U
such that

yeU,=>ygelU, VgeG (3.1)

and G acts transitively (thus the orbits of the G-action are the fibers) and freely on the fibers.
Thus, each fiber of the principal G-bundle is homeomorphic to G and locally the bundle is equal
to T X G where T is an open subset of M, see Figure The orbit space U/G is homeomorphic
to M.

Given a principal G-bundle U, there is an associated bundle, which is constructed as follows.
Let F be another space. An action of G on U X F is given by (u, f) — (ug,g ' f) where g € G,
u € U,and f € F. The associated bundle p : E — M is defined to be the quotient space (space
of orbits) E := U X F/G where (u, f) and (ug, g~ f) are identified. This defines an equivalence
class [u, f]1 = {(u, f) - g = (ug,g~' f) : g € G}. In the special case that F is a vector space V, let

14



3.1. PRINCIPAL G-BUNDLE AND ASSOCIATED BUNDLE

p be a representation of G on V. The associated bundle is written U X, V. The two points (u, v)
and (ug, p(g)'v) of U x V, v € V, are identified in U X, V.

UxF=GxMxF

(ug. g~ f)

G /
U (%, f)

T (x) [, f]

Figure 3.1: Principal Bundle

Figure 3.2: Associated Bundle

3.1.1 Example: Frame Bundle and Tangent Bundle

As an example we want to construct a principal G-bundle, which gives us bases of the tangent
space at each point (the frame bundle), and, as an associated bundle, the tangent bundle. We
start by looking for a principal bundle whose fiber above any point x € M consists of all ordered
bases for the tangent space T, M at x. As a group we thus choose the general linear group
Gl(n,R) which, with its natural action, is known to carry one basis into another. If there is
additional structure on M (e.g. a Riemannian metric) then certain bases are distinguished (e.g.
orthonormal bases) that reduce the structure group from GI(n, R) to some subgroup (e.g. SO(n)).
We will not assume any additional structure, but the following discussion can easily be modified
to accommodate this case. A frame at x € M is an ordered basis B = (by, ..., b,) for T, M such
that there is a natural isomorphism between the standard basis {e;} of R" and B given by ¢; - b;.
Then, we define Pg;(M), as the set of all frames at x and Pg;(M) = UxearPgi(M)y. There is
a surjective map 7 : Pg;(M) — M defined fiberwise by 7(B) = x. Together with the natural
action « : Pg;(M) X Gl(n,R) — Pgi(M), a(p,g) — p - g of Gl(n,R) on Pg;(M) we have the
principal Gl(n, R)-bundle over M,  : Pg;(M) — M, called frame bundle over M. A local cross
section s : U € M — Pg;(M) assigns to each x € U a frame s(x) = (by(x), ..., by(x)) defining
the frame field.

It is natural to look at the vector bundle (that is, the fiber is a vector space V) associated

with the frame bundle and given by the representations of Gl(n,R) on the vector space. We

15



CHAPTER 3. SPINORS

consider the natural (matrix) representation p : GI(n,R) — GI(R") of Gl(n,R) on the vector
space R". For g € Gl(n,R) and v € R” the representation is given by p(g)v = g - v = gv with
the usual matrix multiplication in the last term. We have now all parts needed to define an

associated vector bundle. Associated to the frame bundle Pg;(M) is a bundle
TM = Pg;(M) x, R", (3.2)

the tangent bundle of M. The fibers of this bundle are just the usual tangent spaces T,,M at
each point x € M. (Note, that other choices of the representation are possible and yield other
bundles, e.g. choosing p(g) = (g7)! yields the cotangent bundle.) A cross section of the tangent
bundle yields a vector field on M. In this context it is very easy to make sense of the abstract
definitions. The associated bundle consists of points obtained by defining the equivalence class
[B,v] = {(p,v) - g = (pg, g 'v) : g € Gl(n,R)}. We have the frame B = (by, ..., b,) and in these
coordinates the vector can be written as v = v'b;. Then, the part pg = (by, ..., by) simply is
the basis in new coordinates given by l;j = big} while the part g7'v = (34, ..., 0,) T, ¢/ = g?vi,
transforms the coordinates of the vector, seen as a n-tuple, such that in the end the vector does
not change,

by = gLokbigl = v'b;. (3.3)

Thus, the set {(pg, g~ 'v) : g € Gl(n,R)} simply contains all possible descriptions (in all bases
available) of a given tangent vector v at x and [B, v] is the vector independent of the basis
chosen. Hence, this construction of the tangent bundle as an associated bundle of the frame
bundle is just an elaborate way of saying that a vector is an object transforming “in the right
way” under a change of coordinates. While this “coordinate dependent” definition might seem
old-fashioned it turns out that spinors have to be defined very similar, i.e., as objects which
transform under a given group “in the right way”.

The remainder of this chapter aims specifying what group has to be taken to replace GI(n, R)
and what “in the right way” actually means for spinors. In section [3.2] we heuristically motivate
the rather abstract definitions to be discussed in subsequent sections by looking at the example
of SU(2) and SO(3). Then, in section [3.3] we define the Clifford algebra and use this to define
the spin group (which will replace Gl(n,R)) that is used to construct the associated bundle

whose cross sections will yield spinor fields.

3.2 Motivation

The constructions and definitions in the next sections are rather abstract. This section will

provide a motivation and show the basic idea behind the constructions in the following sections

16
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by looking at a concrete example, namely the groups SU(2) and SO(3), and how these are
related to the definition of spinors as well as the general idea behind the construction of spinor
fields on curved spacetimes. For a more detailed and explicit discussion of this example see e.g.
[22] [24].

We start with some facts about the topology of SU(2) and SO(3). SU(2) is simply connected,
which can be seen visually by noting that SU(2) is isomorphic to a 3-sphere that is simply
connected. In contrast, SO(3) is connected, but not simply connected; the fundamental group
is 711 (SO(3)) = Z,. SO(3) is isomorphic to the projective space PR?, which is geometrically a
3-sphere with antipodal points identified. Due to the identification of antipodal points, not
all curves on the sphere are homotopic to the identity. We are now interested in SO(3) as the
group of rotations on R3, i.e., the matrix representation of SO(3) on R*. From this point of view
the fact that SO(3) is not simply connected has the following consequence. Consider the curve
in SO(3) which is a family of rotations about a fixed axis traversed once from 0 to 2. This
curve cannot be deformed continuously to the identity, since it is a loop in SO(3) and thus not
homotopic to the identity. However, the same curve traversed twice is homotopic to the identity.
To see the relevance of this a look at the relation between SO(3) and SU(2) is useful. There
exists a homomorphism, called Ad, from SU(2) onto SO(3) and the two groups are locally the
same (isomorphic Lie algebras, s1(2) = so(3)), i.e., when looking only at infinitesimal rotations

the action of both groups is indistinguishable. The map is defined as
Ad:SU(2) — SO(3), Ad(q)Y =gYg* (3.4)

where g € SU(2) and Y € su(2). Because s11(2) is as a vector space isomorphic to R?, Ad defines
an action of SU(2) on R?, which in fact is equal to the matrix representation of SO(3) on R3.
Ad is onto and thus every rotation in R? (that is, every element of SO(3)) has a corresponding
element in SU(2). However, the elements of both groups are not in a one-to-one correspondence.
Since the map Ad is 2 : 1 (ker(Ad) = Z,) there are two elements u € SU(2) for each R € SO(3);
Ad(£g) = R € S5O(3). This can be seen from where, due to the conjugation, the minus
signs cancel. Given an axis of rotation n and an angle 0, let o be the vector of the three Pauli

matrices (which are a basis of s1(2)) and let E be the vector of the basis of s0(3). Then,
Ad(u) = Adexp (25 - ne) — exp (E-nb) = R (3.5)
i

The factor of 1/2 in u is responsible for the 2 : 1-mapping, since, as one easily sees, rotations with
0 = 27 and 0 = 47 yield different values for u € SU(2), namely —1 and +1, while both give the
same value for R € SO(3). Therefore, one is lead to study the rotations/representations of SU(2)
instead of SO(3), since, using Ad, one can always return to SO(3) and SU(2) encompasses a

finer/more interesting structure. As we have seen, SU(2) acts on R? via the adjoint representation.

17
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but its fundamental representation is on C>. Now, let g € SU(2) induce a change of basis
R3 — R3 (via the adjoint representation). The same element g € SU(2) can act on C? (via the
fundamental representation) and thus there is a transformation of the element (1, ;) € C?
associated to the change of basis R* — R®. This element is called a spinor. Thus, SU(2) is also
called Spin(3) in this context. In higher dimensions, Spin(n) denotes the universal cover of
SO(n), although Spin(n) is not generally given by SU(n). A very similar construction relates
the identity component of the Lorentz group and its double cover SI(2, C). Thus, spinors are
defined as elements of a complex vector space that transform under the double cover of the

orthogonal group changing the basis of physical space.

In curved spacetimes this entails the following. Take two observers O; and O, at a point
p € M in (M, g), where each observer is represented by an orthonormal tetrad at p. There is a
Lorentz transformation (acting on T, M) rotating the tetrad of O, into that of O;. In the next
section, this will be done by defining an action of the orthogonal group on the tangent bundle.
Consequently, spinors are defined as elements of a complex vector space which “transform in
the right way”. For each Lorentz transformation there is an associated spinor transformation
¥ — Ay = ¢’ such that all measurements made by O, on ¢’ yield the same results as all
measurements of O; on . In the next section this is done by lifting the orthogonal group to
a spin group which then is used via a representation on some complex vector space to define

spinors as elements of this space.

3.3 Spinors

The aim of this section is to introduce the notion of a spinor field on a manifold. A crucial
ingredient is the Clifford algebra, a generalization of the well-known algebra generated by Pauli
and gamma matrices. This topic is very broad and only a few important notions/definitions and
properties are introduced in the following subsection. Afterwards, spinor groups are introduced
which define spinors via a representation on an appropriate vector space. Lastly, we will briefly
describe how these concepts can be used to define spinor fields and the Dirac operator on
(pseudo-)Riemannian manifolds in arbitrary dimensions. More complete treatments of Clifford
algebras and spinors can be found in a plethora of books and review articles, we follow mostly
(23} 25-28].
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Figure 3.3

3.3.1 Clifford Algebra

Let V be a finite-dimensional vector space over a field K (either R or C). Define a quadratic

form q on the field. Denote the tensor algebra over V as

o k
TWV) = @( v). (3.6)
k

=0

To proceed we need the following basic concept from ring theory. Let (R, +) the additive group
of aring (R, +,). If

i) (&, +) is a subgroup of (R, +,-), and
ii) Y xe L YreRx-r,r-xe g,

# is called an ideal. Now, let .7, (V) be the ideal in .7 (V') generated by all elements of the form
{v® v —q(v)1} where v € V. Loosely speaking, .7 (V) is the most general algebra containing
the vector space V (i.e. all other algebras that contain V are in .7 (V)) and by taking a quotient
with the ideal .#,(V) we can remove all elements of .7 (V) which do not fulfil the relation we
want to dictate in the Clifford algebra. Thus, the Clifford algebra CI(V, q) of the quadratic
space (V, q) is defined to be the quotient

CUV,q) = T(V)[.I4(V). (3.7)

For a given pair (V, q) the Clifford algebra is unique up to isomorphism [Corollary 5.1.3 in [23].
If the K-vector space (V, q) is n-dimensional the corresponding Clifford algebra has dimension
2" [Corollary 5.1.8 in23]]. The projection p : .7 (V) — CI(V, q) is an algebra homomorphism
and the restriction of p to V yields a linear mapping j = ply : V — CI(V,q). This map is
injective and fulfils

j()* =qv)1 YveV. (3.8)
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Defining the symmetric bilinear form
2n(u,v) =qu+v) —qu) —q@), uveV, (3.9)

we have
j@) - j(v) +j(@) - j(u) = 2n(u, v). (3.10)

Thus, any basis {ey, ...e,} of V generates, together with the identity 1, the algebra CI(V, q)
multiplicatively. That is, the basis elements fulfil the relations j(ex) - j(e;) + j(e;) - j(ex) =
21n(eg, e7), which defines the Clifford algebra, and the 2" elements

Lj(ey) .. jley), 1<ip<..ipx<n 1<k<n (3.11)

are a vector space basis of the Clifford algebraﬂ see Fig.
There isamap p € Aut(CI(V,q)), poj(v) = —j(v) called parity automorphism of CI(V, g).
It induces a Z,-grading of the Clifford algebra,

Cl(V,q) = CI°(V,q) ® CI'(V, q) (3.12)

where CI'(V, q) = {a e Cl(V,q) : p(a) = (—l)ia} . Additionally, there is map on .7 (V) given
by v;1 ® ... ® v, = v, ® ... ® vy preserving the ideal. Thus, there is an anti-automorphism
() :CUV,q) > CU(V,q), (a-b)" =b"-a’ called transpose. The two maps p and ( )’ commute.

Given a Clifford algebra over a real vector space, there is an associated Clifford algebra,
which is obtained by complexification. More precisely, let (V, q) be a real quadratic space and
let (Vc, qc) = (V ® C, g ® C) be its complexification. Then,

Cl(Ve, gc) = CU(V, q) @ C (3.13)

is an algebra isomorphism [Proposition 5.1.14 in [23]. The Clifford algebra CI(R"**, q) with

2

b where x = (x1, ..., x,+) is the standard basis of R"*S,

ot xi

q(x) = —x?— ... —x?+x
will be denoted Cl,, s and its complexification will be denoted CI ;. If one index is zero it is not
written, i.e. Cly , = Cl,. In the following, let r + s = n.

As is often the case in physics, the Clifford algebra enters via a representation on an
appropriate vector space. By representation of a Clifford algebra we mean the following. Let
(V,q) be a quadratic vector space over a commutative field k ¢ K. Then a K-representation

of the Clifford algebra CI(V, q) is a k-algebra homomorphism

p:Cl(V,q) — Autg(W). (3.14)

1 As vector spaces, CI(V, q) and the exterior algebra AV are isomorphic. [Corollary 5.1.10 in|23]. For ¢ = 0 they

are isomorphic as algebras.
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where W is a finite-dimensional vector space over K and called CI(V, q)-module. To simplify

notation we introduce the Clifford multiplication

@-w:=p(p)(w), (3.15)

where ¢ € CI(V,q) and w € W.
For CI¢ one finds [Proposition 5.1.19 in 23]]

Cle, = C(2F), cCIf,, =C@F) eC(2h). (3.16)
which have the (irreducible) representations
Yok : Cl5,. — End(Ay) (3.17)
and
Yok+1 ¢ Clyp,, — End(Agks1) ® End(Aggi1) (3.18)
The space
Ap=C¥, f= EJ (3.19)

is called the complex n-spinor module and the representation yj, is called the spin repre-
sentation of CIS. We will often write y instead of y,. On A, there exists a positive-definite
hermitian inner product (, ).

For example, the Clifford algebra appears in physics when introducing gamma matrices,
for example to write down the Dirac equation. To see this note that the Clifford algebra of
Minkowski space (M, n7) is Cl; 3. One can show [Table ITin|26] that CI{ = Cl; 3®xC = C(4) where
C(4) denotes the algebra of 4 X 4 complex matrices. Thus, the generators of the complexification

of the Clifford algebra of Minkowski space can be represented by such matrices. A standard

choice is
0
y:MCCIE —C4) CEnd(CY, y(e)=(. ™ (3.20)
o, 0
where e, is the standard basis of R4, o, are the Pauli matrice and 6y = oy while 6; = —o;. Let
Yu = y(ey). Then
Yo YvtYv Yu= 277;1\/1 (3.21)

by virtue of the commutation relations of the Pauli matrices. Therefore, y extends to an algebra

isomorphism CIy — End(A,).

2The Pauli matrices generate the Clifford algebra of R3.
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3.3.2 Spinor Groups

The Clifford algebra can be used to define Spin groups that are the double cover of the orthogonal
group of a given quadratic form. This will be done in this section.

Elements v € V with g(v) # 0 have an inverse v™! = v/q(v) and the subset CI(V, q)* of
CIl(V, q) containing all invertible elements is a Lie group of dimension 2". The Clifford group

of (V,q) is a Lie subgroup defined as
I'(V,q) = {a € CL(V,q)* :pla)va ' e VVv e V} (3.22)
and it has a natural representation
Ad:T(V,q) = Aut(V), Ad(a)v = p(a)va’ (3.23)

called the twisted adjoint representation. Let O(V, q) be the orthogonal group of (V, g), the
subgroup of Aut(V, q) leaving g invariant and let SO(V, g) be the subgroup of elements with
determinant 1. Define the norm mapping N : CI(V,q) — CI(V,q), N(a) := ap(a’). Note that
for v € V this reduces to N(v) = —q(v). The so-called pin group is defined as

Pin(V,q) ={a e T'(V,q) : N(a) = 1}, (3.24)
and the spin group as
Spin(V, g) := Pin(V,q) N (T(V.q) N CI'(V. q)"). (3.25)

Thus, for a € Spin(V, q), we have N(a) = ap(a’) = aa’ = 1. Note the similarity to the well-
known relation for the usual orthogonal groups. In fact, Spin(n, R) is the double covering of
SO(n,R) and for n > 2 it is the universal cover since Spin(n) is simply connected in this case.
We have p(a)w = awa’, w € W, as the representation on a vector space W and this gives an
explicit double covering of SO(n) by Spin(n) since p(a) = p(xa). The spin group and special
orthogonal group corresponding to Cl,, s are denoted by Spin, ; and SO, s, respectively. Both
are Lie groups. Spin,  is a double covering of the identity component SOY .. The covering is
universal if r > 2,5 = 0,1 or s > 2,r = 0, 1. We will always assume that this is the case in the
following. The relations between pin group and orthogonal group are similar.

Well-known examples that appear in physics are Spin(2) = U(1), Spin(3) = SU(2), and Spin,; ; =
SI(2,C). The last one, the double cover of the Lorentz group, is needed to define spinors in four
dimensional spacetime. Since Pin, s and Spin, , are in Clj; (with r + s = n) the representation of
Cly restricts to faithful representations of these groups. This representation is called spinor
representation, it is unitary with respect to the inner product defined above [Satz on p. 26

in 29]. The complex spin group Spin; ; is the subgroup of CIf ; = Cl, s ® C generated by

22
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Spin, ¢ € Cl; s and U(1) c C. Again, the discussion above is the same for the complexifications
with the obvious replacements. An explicit, less abstract discussion of all concepts introduced
so far can be found in [Chapter 19 of [22] in the context of the Dirac operator on Minkowski
space. A discussion of the following section in the case of four dimensions can also be found
there.

3.3.3 Spin Geometry

Now we can define spin structures and spinors for pseudo-Riemannian manifolds (M, g). It
turns out that Clifford algebras appear very naturally once a metric on the manifold is defined.
The reason is the following. Let 7 : E — M be a pseudo-Riemannian vector bundle. In each
fiber, 77! (p) = E,, there is a quadratic form (v, v) to be used for the construction of a Clifford
algebra CI(E,). Doing so at each point results is a bundle CI(E) = U,epCI(E,) — M of Clifford
algebras over M called Clifford bundle of E. Using an irreducible representation of the spin
group, one can then define spinor fields and the Dirac operator.

The first step is to define a spin structure on the tangent bundle of a manifold M. Let
7 : E — M be a real orientable n-dimensional pseudo-Riemannian vector bundle with n > 2.
Choose an orientation of E and let Psp(E) be the bundle of oriented orthonormal frames. Let A
be the covering homomorphism 4 : Spin, ; — SO, s which has kernel Z,. A spin structure on
E is a pair (Pspin(E), A), where Psp,in (E) is a principal Spin, s-bundle over M and the bundle map
A is a 2-sheeted covering A : Psyin(E) — Pso(E) such that A(pg) = A(p)A(g) for all p € Pspin(E)
and all g € Spin, ;. Thus, there is a diagram

Spin —2*—% SO

l l

Pspin(E) —2 5 Pso(E)

A spin manifold is an oriented pseudo-Riemannian manifold with spin structure on its
tangent bundle, E = TM. A Spin-manifold is defined with Spin® instead of Spin. It turns out that
a spin structure on the tangent bundle does not always exist and the existence is related to the
second Stiefel-Whitney class. To define this class some standard tools from algebraic geometry
need to be introduced. We do not want to do this here and refer to the literature on algebraic
geometry and obstruction theory, see e.g. [20-23] [25] and for the case of four dimensional
spacetime in general relativity additionally [30]. We now assume that a spin structure exists.
That is, given the bundle Pso(TM) = Pso(M) of oriented orthonormal frames of the vector
space TM we assume that we can lift the structure group SO,  of Pso(M) to Spin, such that
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we have a bundle of frames Pspin(M) consisting of all bases of TM that transform under the
action of Spin, ; on M. Locally, Psyin(M) = U X Spin, ¢ for an open set U C M.

This allows describing how spinors are related to this. As mentioned, the (irreducible) repre-
sentations of the Spin group are the crucial component. To see why, note that the fundamental
representation of SO, s on (R”, g) induces an action on the tensor algebra over R” which leaves

#4(R™) invariant. Thus, there is a representation p of SO, ; on the Clifford algebra given by
p 50, s = Aut(Cl, ;). (3.26)

As described in section a representation of a group can be used to construct a new bundle
associated to the principal bundle.
Let E be an oriented pseudo-Riemannian vector bundle of rank n and let Pso(E) be the

bundle of oriented orthonormal frames. The associated algebra bundle
Cl(E) = Pso(E) Xp Clr,s (3.27)

is the Clifford bundle of E. Given an oriented pseudo-Riemannian manifold (M, g), CI(TM) is
called Clifford bundle of M, denoted CI(M). This can again (c.f. the example in section [3.1) be
understood as saying that coordinate transformations by SO(n) on frames are “compensated”
by associated transformations of Cl,, such that we have, in the end, invariance under coordinate
transformation. CI(E) is a bundle of Clifford algebras over M, i.e., each fiber of the bundle is a
Clifford algebra. The fiberwise multiplication in CI(E) provides the space of sections of CI(E)
with an algebra structure. All operations defined for Clifford algebras carry over to the Clifford
bundles.

Recall that the vector space TM C CI(M) generates CI(M) fiberwise. The last step is
to define a vector bundle with fiber A, on which there is an irreducible representation of
Cl, s and the Spin group, respectively. The concrete definition is as follows. Let (M, g) be a

pseudo-Riemannian manifold with spin structure (Pspin(M), A). The vector bundle
S (M) = Pspin(M) X, N, (3.28)

where N is a left module for Cl, s and where y : Spin, ; — SO(N) is the spinor representation

0
r,s?

given by left multiplication of elements of Spin, ; C CI, , is called the (real) spinor bundle
of (M, g) over CI(M). A section of the spinor bundle is called a spinor field. A complex spinor
bundle is defined equivalently with the complexified Clifford algebra and a complex module
N = A,. The definition of spinor bundle and spinor fields is in complete analogy to the
definition of the tangent bundle and vector fields discussed in section[3.1] In the end, we simply
replaced the general linear group/orthogonal group in by the spin group and then chose

an appropriate vector space such that there again is an irreducible representation for the new
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group. The cross section is thereby changed from defining a vector field to defining a spinor
field. In general, A, has structure beyond that of a complex vector space, for example, one can
define a real and imaginary part of elements of A,. However, spinors inherit only the structure
that is preserved under the action of the spin group and, since the real and imaginary parts mix,
it is not possible to define the real part of a spinor. Furthermore, note that for X € T,M the
relation

y(X)? = g(X, X)1 (3.29)

holds.

The last part of this section introduces the Dirac operator. We begin with defining a
connection on the bundle Psp,;, (M). If M admits a (pseudo-)Riemannian metric, the distinguished
connection on the frame bundle Pso (M) is just the usual Levi-Civita connection. Since we now
want to work on Pspi (M), we need to lift the Levi-Civita connection on Pso (M) to a connection
on Psyin (M), which can be done as follows. Let (M, g) be an oriented pseudo-Riemannian spin
manifold. Let o be the Levi-Civita connection of g viewed as a principal connection on Pso(M).
Let dA : spin, ¢ — s0, s be an isomorphism of Lie algebras. The unique lift & = (d1) 'A*w is

the connection on Pspin (M ), called spin connection. Hence, the diagram

TPSpin(M) L> 5pinr,s

\L ! ld)t
TPSO(M) L) SDr,s

commutes. Just as the Levi-Civita covariant derivative derived from the Levi-Civita connection
acts on vectors (the sections of the tangent bundle) the spin connection can be used to define a
covariant derivative, which acts on spinors (the sections of the spinor bundle). (From a physics
point of view the spin connection can be seen as the gauge field of the local Lorentz group such
that the physics is not changed under a Lorentz transformation.) Let V be this spin derivative
(we use the same notation for the Levi-Civita derivative and the spin derivative since, when
acting on vectors, they are equal) associated with the metric g, i.e., the covariant derivative on
. (M). Then we have

VO = dod + Zwi,- ®ee;- O, D eT(S(M)), (3.30)
i<j
at p € M, where {e;} is an orthonormal basis of T,M, and w;; are the coefficients of the
spin connection form. The Dirac operator of . (M) is a first-order differential operator D :
I'((M)) - I'(<(M)). In coordinates,

n

DO = Z ¢j - Ve, . (3.31)
=1
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For Minkowski space, the Clifford bundle is trivial, we have Ve, — 0j, S (M) = R* x C*, and,

using the definition of the Clifford multiplication, the Dirac operator reads

4
Dytinkowski® = Z )/jajq) = )’jajq) = (E’CD . (3.32)
j=1

Considering y; = y(e;) and (3.29) (which in this case are just the commutation relations of the
gamma matrices) we have
DIZ\/[inkowski = }/iaiyjaj = ajaj’ (3.33)

the Laplacian. We summarize the results of this section in the following table comparing the

results for spinors (complex case) with the well-known analogous concepts for vectors.

Vector Spinor
Principal bundle Pso (M) Pspin(M)
Structure group SO, s Spin ¢
Representation space R" A, =C¥, f= l%J
Associated bundle TM = Pso(M) X, R" S (M) = Pspin(M) X, Ay
Cross section Vector field Spinor field
Connection Levi-Civita connection w Spin connection @&
Covariant Derivative | Levi-Civita derivative V Spin derivative V

The numerous maps we defined are summarized in the following diagram, exp is the usual

exponential map from a Lie algebra to the group.

/\
TPspin ——— spin Ay oy ¢ @ TPso
A \Lexp \Lexp A

. A
Pspin <——— Spin > SO > Pso
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3.4 Killing Spinor

The last important notion about spinors we will need is about Killing spinors on a Riemannian
manifold. The spinor field € defined on a spin manifold (2, s) is called a real Killing spinor, if
there is a constant A € R\{0}, such that ¢ fulfils

A
Vxe =i EX - € (3.34)

for all X € TX. A is called Killing number. If A = 0 then € is called parallel spinor.

If A is complex and non-zero then € is called complex Killing spinor. Note, however, that
real/complex refer only to A, the spinor field is a section of a complex spinor bundle in either
case. We will work only with real Killing spinors and refer to them simply as Killing spinor.
Additionally, we now assume that the spinor field is defined on a Riemannian manifold. Some
important facts about Killing spinors that are relevant to us are listed in the following, we refer
to [29,[31] for proofs and further discussion. The Killing spinor € is a eigenspinor of the Dirac
operator with eigenvalue —nA, where n = dim(2). A Killing spinor is a special case of a twistor

spinor. Associated to the Killing vector € there is a vector field
n
Ve = Z (ei-€.€)e (3.35)
i=1

which is a Killing vector field on the Riemannian manifold (X, s) with orthonormal basis {e;}.
This explains the name “Killing spinor”. If there exists a Killing spinor on (2, s) then (Z,s) is a

compact Einstein manifold of positive scalar curvature
R=4n(n-1)A*>0. (3.36)

This condition is rather restrictive and it is possible to classify all manifolds, which may carry
Killing spinors or parallel spinors, by their holonomy group. For parallel spinor this was done
by [32, [33] and for Killing spinors by [34]. See Appendix D|for a brief discussion and examples

of manifolds which admit Killing spinors.
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CHAPTER 4

Conformal Infinity and Mass in Four Dimensions

We begin our discussion of mass in general relativity and its positivity with a look at the four
dimensional case since this is well understood and can serve as an example/motivation for
the more complicated higher dimensional case. For this we first need to introduce the notion
of null infinity and asymptotic flatness. We will also discuss how to construct a coordinate
system, called Bondi coordinates, near null infinity. It turns out that four dimensions and even
dimensions d > 4 are rather similar and thus we will discuss the more general case. However,
the case of odd dimensions is different, for reasons to be explained in the first section, and thus
we will discuss it in more detail only in the next chapter. The second section of this chapter
consists of a review of the different definitions of mass in four-dimensional general relativity.

Thereafter, we briefly discuss the problem of positivity in four dimensions.

4.1 Null Infinity and Bondi Coordinates in Even Dimen-

sions

We start by recalling the definition of conformal null infinity in four dimensions and discuss
why the definition carries over to higher even (but not odd) dimensions. Then, we construct
Bondi coordinates in even dimensions following the arguments in [35-37]]. Using this, we define
asymptotic flatness by assuming that a suitable conformal embedding and Bondi coordinates

exist.

4.1.1 Conformal Transformation

We want to find a suitable coordinate system to study the problem of an isolated system (sitting
in some compact region of spacetime) which radiates gravitational waves. The challenge now is
to define asymptotic flatness and “going to infinity” in a meaningful way, which is a nontrivial
problem since there is no background spacetime that one could use as a reference. A possibility
to deal with this is to bring the points at infinity to a finite distance thereby circumventing
the problem. The procedure is similar to the compactification used to construct real/complex
projective spaces, a well-known example being the Riemann sphere. We briefly and very
informally describe the basic idea behind this technique which was introduced by R. Penrose in

[38]. An introduction can, for example, be found in [35}|39-41]]. Then, we use the introduced
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notions to define a suitable coordinate system near infinity. We first consider four dimensional
spacetimes. As mentioned we want to transform the spacetime in such a way that “points at
infinity” are brought to a finite distance. A natural requirement for a transformation of the
metric is that the causal structure is not changed, that is null/timelike/spacelike vectors are
mapped onto null/timelike/spacelike vectors. Otherwise, physical processes and the result of
measurements would be changed by the transformation rendering a study of physical processes
in the transformed spacetime worthless. Let (M, §) be a new spacetime, called unphysical
spacetime, where M is a manifold with boundary such that (M, g) can be mapped into (M, §)
via a conformal isometry. That is, let Q be a smooth, strictly positive function and let ¢y : M —
(M) c M such that

g=9%y. (4.1)

It can be shown, see e.g. [35], that the causal structure is persevered by this transformation.
The transformation of the metric naturally induces transformations of all quantities which
depend on the metric, e.g. the Levi-Civita derivative or the Riemann tensor. Now, making
a suitable choice for Q achieves the desired goal of bringing points infinitely far away in
(M, g) to a finite distance in (M, g). The concrete choice of Q depends on the situation at
hand. This construction essentially adds a boundary to M and this boundary represents infinity.
The boundary of the unphysical spacetime is equal to the union of null infinity (endpoints
of null geodesics) and spatial infinity. We denote future null infinity be .# . It is important
to note that this method effectively replaces the falloff conditions (in the physical spacetime)
by differentiability conditions (in the unphysical spacetimes) in the definition of asymptotic
flatness. Due to this the differential structure at infinity is crucial and there are some additional
technical conditions about the smoothness at infinity necessary, see [35,39-41]. If the mapping
into an unphysical spacetime in the manner above is possible and if the smoothness conditions
are fulfilled the spacetime is usually said to be asymptotically flat. However, we will need an
additional assumption, namely the existence of a suitable coordinate system, so the existence
of such a mapping is only the first assumption and does not yet define an asymptotically flat
spacetime. The advantage of the conformal method is that one obtains, with weak assumptions
on the differentiability of the fields, the desired definitions. The geometric methods applied
do not require the introduction of a coordinate system to define infinity while simultaneously
supplying a clear geometric picture of the situation at hand. Additionally, taking limits, which
can be subtle, is avoided. These are reasons why the definition via conformal mappings is the
preferred method in four dimensions and one would like to also use the technique in higher
dimensions. Looking at the above steps one could guess that there should be no problem with
the generalization to higher dimensions, since the geometric method does not seem to crucially

depend on the dimension. It turns out that this guess is indeed correct for even dimensions
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dim(M) =: d > 4, see [17]] for details, and the definitions are very similar to four dimensions.
However, as shown by [|18]], it is not possible to define conformal null infinity for odd dimensions
d > 5, as the unphysical metric is at most (d —3)/2 times differentiable and therefore not smooth.
As mentioned above the assumptions on the differentiability of fields at infinity are crucial for
the definition and hence, one is left only with the possibility of using so-called Bondi coordinates,
which indeed can be generalized to arbitrary higher dimensions. We will show how Bondi
coordinates are constructed in the unphysical spacetime (in even dimensions) in the next section

and come back to odd dimensions in the next chapter.

4.1.2 Bondi Coordinates

Since we are not particularly interested in the source, it suffices to study the effects at large
distances and the coordinates should be chosen in a way that is as simple as possible. Such
a coordinate system was introduced by [11} 42, |43] and the coordinates are called Bondi
coordinates. See also e.g. [44] for a review. The intuition behind the different coordinates is as
follows. Let there be a radiating source in some (compact) region of the spacetime (M, g) and
consider a family of null geodesics originating at the source at an instance of time. Similarly
to spherical coordinates, there is a coordinate r quantifying the distance from the source. It is
sometimes called luminosity distance and defined as the coordinate along the null geodesics.
We choose an orientation such that r increases when an observer moves away from the source.
Then a “point” in null infinity, the “point” to which a specific light ray travels in an infinite
amount of time, is at r — oo where the limit is taken by going along null geodesics of radiation.
The second coordinate u is called retarded time (see below for the reason) and used to distinguish
null geodesics corresponding to radiation that was emitted from the source at different times.
u increases as time moves forward, i.e. larger u correspond to later times, see Fig. The
remaining coordinates will be denoted by x4 = (x ., xd_z). These are local coordinates on
the (d — 2)-dimensional (r, u)-constant surfaces 3.

Following [35H37]] we now describe how such a coordinate system is constructed in even
dimensions. It is important to note that we do not proof that such a coordinate system exists at
null infinity but, in the end, impose the existence as a condition for asymptotic flatness at null
infinity. We begin by constructing a coordinate system (u, Q, x4), where A=1,....d—2,0ona

small open neighborhood O of an arbitrary point p € .#* such that the following holds. Define
n® = GV, Q (4.2)

which is null at .#" N O and Q is a scalar chosen to be Q = 0 on .#* N O. With a suitable gauge

choice (see [35]) n® satisfies the geodesic equation

nVan® =0 (4.3)
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Null Infinity

/

null surface :
null infinity

g+
ray : ()

u = const. spatial
infinity

u = const.

7 = const.

LA
Spatial x* = const.

Infinity
Rap #0

(a) (b)

Figure 4.1: Sketches of Bondi coordinates with focus on different aspects. In @} u is fixed and
the source of matter is indicated by Ry # 0. In (b), the definitions of null and spatial infinity
in Bondi coordinates are sketched. Each point in this two-dimensional sketch represents a

(d - 2)-dimensional surface parametrized by x* near infinity.

and the expansion, shear and twist of the null geodesic generators of .#* N O vanish. Thus,
n? generates a congruence of null geodesics which do not intersect. u is defined as the affine

parameter along the null geodesic generators of .#* N O such that
n*Vou=1 (4.4)

and thus n? = (0/du)?. There exists a (d — 2)-dimensional surface ¥ in .#* N O which intersects
each of the null geodesic generators of .#* N O at precisely one point. On ¥ local coordinates
A = (x1,...,x%?) can be introduced. Let mé = (0/0x™)%, then we have g~abn“mff1 =1 and we
can define a null vector field [% on . N O such that gabn“lb =1land jabm“lb =0, i.e., the null

geodesics generated by [ are orthogonal to ¥ and transverse to .#* N O. Let Q denote the

X

affine parameter on the null geodesics defined by [¢ with Q = 0 on .#* N O. The x* coordinates
are required to be constant along the orbits of n* and [* while u is required to be constant along
the curves defined by /. We have n,I* = 1 and [,m* = 0 everywhere on O, not just on .#* N O.

In a coordinate system which fulfils these conditions the unphysical metric takes the form
G = —2Q%du® + 2dudQ — 2rfadudx”® + yapdx“dx® (4.5)

on O where «, f8, yap are smooth functions on O and on .#* N O « is a real constant and 4 = 0
. Note that yAdeAde is a Riemannian (d — 2)-metric which does not, in general, coincide with
the metric s induced on X by g when Q # 0 # u.

It is not necessarily obvious that such a coordinate system exists on all of .#" and not just

on .Z* N O. If a global coordinate system exists on all of .#* then X(u,Q = 0) becomes a
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foliation of .# ™ and the coordinates .# " N O are carried to all of .# " by imposing that (Q, x*)
are constant along the orbits of n® generating .#* and u can be visualized as the coordinate
along .#*. However, in general, one might need more than one coordinate patch to cover
. If some null Killing vector exists at null infinity it induces a one-parameter group of
isometries and it follows that a global foliation of .#* exists. While we do not assume that
Killing vector fields exist there are asymptotic symmetries (diffeomorphisms preserving the
asymptotic structure at infinity), which are tangent to .#*, and play a role similar to a Killing
symmetry. This motivates why a global coordinate system in some neighborhood of .#* might
exist. We do not investigate this further and, in particular, do not give a proof for the existence
of such a global coordinate system. In the following we instead assume that such a coordinate
system exists and add it as a condition for asymptotic flatness at null infinity. Far away from
null infinity geodesics may overlap and it is not possible to carry the coordinates further and
thus there is no global coordinate system. Summarizing, we have the following definition. An
even-dimensional spacetime is called asymptotically flat near null infinity if there exists a
conformal transformation M — M in the sense described above, .# ™ is isomorphic to £ x R
where ¥ is a compact, (d — 2) dimensional manifold, and near null infinity the unphysical
metric takes the form (7.4). This definition of asymptotically flat is more general than the usual
definition where one demands that the metric becomes asymptotically Minkowski and thus
% =~ §9°2. We opt for a more general definition which will be justified in the following chapter.
Finally, denoting by r the physical distance (that is infinity is located at r = co) and setting

Q = 1/r the physical metric can be written as
r?§ = g = —2adu® — 2dudr — 2rfadudx® + r’yspdx?dx? . (4.6)

We can check consistency by looking at d-dimensional Minkowski space. In spherical

coordinates the metric takes the form
dsjzw = —dt® + dr® + risapdx?dx? (4.7

where sapdxAdx? is the metric of the (d — 2)-dimensional unit sphere. Defining the retarded

time as u = t — r (which justifies the name) yields
ds?, = —du® — 2dudr + r’sapdxdx® . (4.8)

This is equal to (4.6) in the limit r — co, when taking the above conditions into account and if
we take ¥ = S92,

4.1.3 Example: Schwarzschild

As an example we look at the Schwarzschild metric and how it transforms from the standard

coordinates to Bondi coordinates. We start in d = 4 dimensions, the generalization to higher
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dimensions is then straightforward. In spherical coordinates the Schwarzschild metric takes the
well-known form
Gad = —adt’ + a7 'dr? + r*dc? (4.9)

where a = (r — ¢)/r is a function for the radius, ¢ € R is a parameter and do? the line element

of the sphere. The retarded time is defined as
Uu=t-—ry, (4.10)

where r, is the tortoise coordinate defined by

Fx = fa_ldr =cln(r/c—1)+r. (4.11)
Thus, we have r, — —co asr — ¢ and
drs _1
—_— = . 4.12
dr ¢ (4.12)

The reason for defining the retarded time this way and not by, say, u = t — r, is that for a

geodesic tangent k¢ the equation for radial null geodesics is given by

(4.13)

and thus t = +r, + const. So far, these are the usual definitions encountered, for example,
in the procedure to analytically continue the coordinates to the whole spacetime (Eddington-
Finkelstein coordinates), where one also utilizes the equation for radial null geodesics to define
coordinates. For large r the difference between r and r, is of order In(r) and asymptotically
r ~ ry. Since the Bondi coordinates are only an asymptotic coordinate system, the definitions

provided here are coherent with the ones introduced above. We have

dry _1

dt =du+dry, and =a . (4.14)
dr

Hence, the metric takes the form

—a(du® + a”%dr? + 2a” 'dudr) + a”'dr* + r*do* = —adu® — 2dudr + r*dc”*

= —(1-c¢/r)du® — 2dudr + r’sppdx?dx?, (4.15)

94d

which is the Schwarzschild metric in Bondi coordinates in four-dimensional spacetime. To
find the metric in higher dimensions it is only necessary to modify the parameter a towards
a =1-c/r% 3 and do? corresponds now to the metric of an unit (d — 2)-sphere. For now,
this is simply a definition of a new metric. It is not immediately obvious that this is the right

generalization to higher dimensions. It was first found by Tangherlini in [45] and we will

33



CHAPTER 4. CONFORMAL INFINITY AND MASS IN FOUR DIMENSIONS

show below in section[6.1.1] by explicitly solving the Einstein equations, that this is indeed the

Schwarzschild solution in d spacetime dimensions. In the new coordinates this metric is
ga =—(1- er’ N du? — 2dudr + rPs pdx?dx? . (4.16)

Comparing with (4.6) one can see that f4 = 0 and & = —(1 — c¢r>~9). In the next section, when
discussing the definition of mass in general relativity in four dimensions, we will continue with

discussing this metric and relate the parameter c¢ to the mass of the Schwarzschild black hole.

4.2 Review of Mass in 4D

While ‘mass’ is a relatively straightforward concept in everyday live and classical mechanics
it becomes more difficult in special relativity, where it is famously equal to the energy of a
system. Still, the mass appears as a simple parameter in relativistic Lagrangians and there are
no conceptual problems. However, this changes when taking gravity into account by going
to general relativity. Here, it is a non-trivial problem to even define some concept of mass
as there is no way to define a satisfying stress-energy tensor of the gravitational field. In
most classical field theories the total energy of a system can be defined as a volume integral
over a positive energy density Tyo. Then the positivity of the total energy is a consequence of
the conservation of the stress-energy tensor with a positive timelike component. In general
relativity this is impossible. While locally there is a stress-energy tensor encoding the energy
density of matter fields, there is none for the gravitational field, since this would violate the
equivalence principle. Namely, a freely falling observer does not measure any gravitational
field and thus the gravitational energy density cannot be defined at spacetime points. However,
matter fields and the gravitational field contribute both to the total energy of a system and
hence it is not possible to carry over the definition of total energy of a system as an integral over
Too. We have to accept the nonexistence of a local notion of energy density in general relativity.
Since a notion of mass/energy would be desirable a different path has to be taken. That is,
instead of using local (point-like) definitions it is necessary to look for notions associated with
extended domains of spacetime. Then, it is indeed possible to define, e.g., the total energy of an
isolated system employing the asymptotic flatness of spacetime in a manner described below.
As required, this asymptotic mass/energy definition includes contributions from the matter
as well as from the gravitational field. Relating this total energy to the local energy density
of matter fields given by the stress-energy tensor is a non-trivial task [46]]. However, these
definitions exist only if some additional structure, e.g., symmetry, is assumed. We now review
how a notion of asymptotic/total energy is defined in four dimensional general relativity. To do

this we first look at Newtonian theory and afterwards try to find a fitting analogue in general
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Figure 4.2: To define the mass M in Newtonian physics one considers a sphere S that completely
encloses the mass. The projection of the gradient of the gravitational potential, V¢, onto the

outward pointing normal n of the sphere has to be integrated over S.

relativity. The general idea is that in flat spacetimes, symmetries give rise to conserved integrals
and one might hope that in asymptotically flat spacetimes the asymptotic symmetries give
rise to similar integrals. This turns out to be indeed the case. For example, asymptotic time
translations at null infinity give rise to the so-called Bondi mass. Additionally, one could try
to define an energy-momentum for finite regions of spacetime. This leads to many so-called
quasi-local mass definitions. We will not discuss this here as it is nicely reviewed for example
in [47][48].

4.2.1 Mass in Newtonian Theory

Consider an isolated system. In the vacuum region outside the system, the Poisson equation for

the Newtonian potential ¢ reduces to Laplace’s equation
Ap=0. (4.17)

Having our goal of defining mass in general relativity in mind, we now choose a slightly unusual

way to define the total mass M of the system, namely

1 N
MNewt = a ngi) -ndA. (418)
S

The surface integral is taken over a topological 2-sphere S completely enclosing the source(s) of
the gravitational field and n is the unit normal of S pointing outward, see Fig. Because (4.17)
holds the integral is independent of S, since the mass enclosed by the surface does not change.

To connect this to the standard definition of the mass, we consider the multipole expansion of

o(r) = —L ! dm(x), (4.19)

3 |r — x|
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with dm(x) as the differential mass. The result

b(r) = —MlN—lw +O(rY) (4.20)

is equal to the work needed to bring a unit mass from infinity to the distance r from a point
mass Myewt = fRS dm(x). Thus,

MNSWtf +0(r ). (4.21)

Vo(r) =

r

Plugging this into (4.18), choosing for S the 2-sphere, and working with spherical coordinates
yields

1 27 1 . R
Myewt = pp f f V¢ -7 rid(cos 0)de ~ Mewt , (4.22)
0 -1

and thus the two definitions are equivalent. The interpretation of is straightforward: V¢
is the force that must be exerted on a unit mass to “neutralize” the gravitational force and hold
it at one point. Hence, 47 M is the total force necessary to hold test matter, with unit surface
mass density distributed over S, in place. The definitions in general relativity are similar to the

Newtonian case.

4.2.2 Mass in General Relativity

The simplest case is an asymptotically flat spacetime which is static. We always assume
that the spacetime is vacuum near infinity and follow the discussion in [35]]. There exists a
timelike Killing vector ¢4, which is normalized such that the so-called redshift factor V := £4¢,
approaches 1 at infinity. In general it is impossible to have a meaningful notion of “staying in
place”, since there is no background manifold to be used as a reference point. However, for static
(and stationary) spacetimes it is possible by virtue of the timelike Killing vector field, namely,
an observer is staying in place if they are following an orbit of £%. Thus, the acceleration of the
orbit

1
b= Wsravagb (4.23)

is equal to the force needed to keep a unit test mass in place. This (local) force differs from the

a

force that must be applied by an observer at infinity by a factor of V. Hence, the total outward

force that must be exerted by an observer at infinity is

1
F=V- f api® dA = = | AP £9V,¢8, dA, (4.24)
s Vs

where S is again a topological 2-sphere with the unit outward pointing normal 7, which is

orthogonal to &4, see Fig. Let €44 be the volume element associated with the spacetime
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Time

=5

N
Radial Distance

Figure 4.3: If an (asymptotically) Killing vector field £ is present, the mass M present in
spacetime can be found by integrating over a sphere S at infinity (dashed line). Following
integral curves of a Killing vector field £ is the analogue of “staying in place” in Newtonian

physics.

metric. Using Killing’s equation we can rewrite (4.24) as

1 1
F:—-feabchgd:—-f*g. (4.25)
2 Js 2 Js

It is possible to show that this integral is independent of the choice of S, as was the case for the
integral (4.18) in the Newtonian case. Since both integrals, (4.18) and (4.25), are independent of

S and they have the same physical interpretation it is natural to define

1 F
Mxomar = _g f 6abcdvc'§d = E . (4-26)
S

The assumption that £¢ is a Killing vector is the only requirement to show that the integral is
independent of the choice of S and hence may also be used as a satisfactory notion of mass
for stationary, asymptotically flat spacetimes. This result was first derived in [49]] and thus
is called Komar mass. It is a satisfying definition of mass for all stationary, asymptotically flat
spacetimes which are vacuum near infinity. Due to the symmetry used in this definition, the
Komar mass is the most straightforward generalization of the definition of physical quantities
as conserved under symmetry (c.f. Noether theorem charges). A similar construction employing
spacelike instead of timelike Killing vectors leads to a definition of angular momentum.
Moving on to non-stationary, asymptotically flat spacetimes the difficulty arises that the
notion of “staying in place” used above is no longer available. Thus, it is not obvious how to
generalize the above scheme or if it is even possible. It seems that the only chance to define

the mass of an isolated system is for an observer to still measure from infinity while replacing
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the Killing vector with something new. Recall from section [4.1| that there are different kinds of
infinities, e.g., spatial infinity and null infinity (move away from the system along space-like
or null directions, respectively). It turns out that it is possible to replace the Killing vector
and there are, corresponding to the two kinds of infinity, two types of masses one can define.
These are the Bondi mass at null infinity and the ADM mass (Arnowitt, Deser, and Misner) at
spatial infinity. We will see below why such a distinction/difference was not necessary for the
Komar mass. First, we look at the Bondi mass (sometimes also called Trautman-Bondi mass or
Trautman-Bondi-Sachs mass). It was first introduced by [50] and [[11} {42} 43]], where to each null
cone a number, the so-called Bondi mass of this null cone, was associated. That is, to define this
mass one looks at a fixed retarded time u = t — r by going to null infinity on a asymptotic null
surface. For each fixed u there is then a number which quantifies the mass/energy in a system at
time u. This is the total mass on the chosen hypersurface. We now want to sketch how this mass
is defined explicitly. Note that there are two (equivalent) “languages” in which an expression
for the Bondi mass can be formulated. Owing to the similarity to the Komar mass we start with
the definition of Bondi mass using the so-called linkage formulation which was introduced by
[51-53] building on work of [38]. Let £ now be the generator of an asymptotic time translation
symmetr In particular, £ does not satisfy the Killing equation everywhere on the spacetime
but only at infinity. Hence, in general, an integral similar to (4.26) now depends on the choice
of S (this being the reason why the Komar mass cannot be used as a mass definition). But, since
&4 fulfils the Killing equation at infinity, £ acts more and more like a Killing vector the closer
it is to infinity. As a consequence, the dependence of the integral on S becomes smaller and
smaller as one goes to infinity. Exploiting this, we can slightly modify to adapt it to the

new situation. Thus, define the mass as

M@ = =5 [emeaviet = [ (427)

where S is an asymptotic two-sphere at given retarded time u. This expression is not inherently
gauge invariant and a gauge condition needs to be added. As shown by [58] a satisfactory choice
is V4&¢ = 0 which is in particular fulfilled if £¢ satisfies the Killing equation at infinity. With
this choice, while the integrand is not invariant under passage to an equivalent generator, the

integral is invariant. Note that there is also the symplectic, or Hamiltonian, approach where the

IAn asymptotic symmetry is a spacetime diffeomorphism that preserves the asymptotic structure of the
spacetime. Asymptotic symmetries form a group (Spi group at spatial infinity and BMS group at null infinity) which
includes the Poincaré group as a subgroup. See, e.g., 35,142, 54-56]] (BMS group) and [[39}/40}/57] (Spi group) and
references therein for an introduction and discussions of this topic in d = 4 and, for example [15}17] for higher

dimensions.
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mass is defined as the quantity conserved under infinitesimal asymptotic timelike translation
see, e.g., [56,[59H62] for an introduction. The relation between the linkage and the symplectic
approaches was examined by [63] essentially showing that, in physically relevant cases, the
approaches yield the same results.

The second “language” is the way it was originally defined by Bondi, Sachs and others in
[11}}42, 43]] using Bondi coordinates, that is, the metric takes the form . As a first step/as
motivation we will try to use similarities with Newtonian physics again. We look at a system
with mass M such that its gravitational potential is ¢ = —M/r, which defines the acceleration
by taking the gradient, a := —V¢. The Newtonian limit of general relativity is given by the
following conditions [35} 64} |65]:

« Particles move slowly in the sense that ‘il—xri < j—; where 7 is the proper time of a particle.
 The gravitational field is a perturbation h of Minkowski space 7, i.e., g =  + h.
+ The gravitational field is static, d;g = 0.

Using these three assumptions the geodesic equation of slow particles simplifies considerably,

d2xH dt\*  d*xr 1 dt\?
H—] = — =3,k [— | =0. 4.28
ez 0o (dz') ez 2" 00 (dz') (4.28)

Due to the assumption that the gravitational field is static, the 0-component of this equation

namely

yields dt/dr = const. The i-component is equal to

d’x' 1 (dt)’

—==-|—] 0ih 4.29

iR ( dT) thoo (429)
which is reminiscent of Newtons second law and thus we identify hgg = —2¢ or gop = —(1+2¢) =

2M/r — 1. Hence, we see that for consistency there should in general be a relation between the
time-component of the metric and the mass of the system. However, in general relativity the
mass of a system can change by radiating gravitational waves and, in general, an expression for
the mass of a system must depend on time. Since there are no gravitational waves in Newtonian
gravity it is clear that we cannot find a satisfactory notion of mass by considering only the
Newtonian limit. Thus, in Bondi coordinates, we can use g,, = —2« to define the mass of a
system at a fixed u = u, but a time-dependent component is still missing. That is, let u, be fixed

and let (6, ) be the usual spherical coordinates on the unit sphere at infinity. Then integrating

m(up) = rh_)rglo rz(;—f (4.30)
Uu=uop

2This approach will be relevant later in the context of higher dimensional Bondi mass.
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over a sphere S at infinity, f s m(uo) sin(6)dfde, defines the mass of a system at time uo. Taking
ug as the starting point of the observation this mass can be viewed as the “starting mass” previous
to any radiation being emitted. Therefore, we are now looking for a function of m(u) telling us
how the mass evolves over time with m(u) as an initial value. As shown by [42}|43] a so-called
news function can be defined which completely determines the change of mass. Following
them we define the news tensor as

10 ..
Nap = 58_ lim r(yAB _SAB) . (4.31)

U Lr-e

This quantity describes how the deviation of the spherical part of the general metric from the
unit sphere changes over time near infinity, that is, it encodes the energy flux of gravitational
waves, since gravitational radiation appears as a perturbation of the AB-part of the metric.
Knowledge of this tensor is sufficient to know how the mass changes over time since, using the

Einstein equations, one can show [44]] that
Zaum = .Z)ADBNAB - NABNAB ’ (4.32)

where 9D, is the covariant derivative of s4p. Assuming Nup is known for uy < u < u; we
can integrate this equation with initial value m(u) yielding a time-dependent function m(u).
Finally, integrating m(u) over a sphere at infinity, defines the Bondi mass. Thus, we have the
following result. Let S be the 2-dimensional unit sphere at infinity which is parametrized by

(6, ¢). The time-dependent scalar function

1
M(u) = —fm(u, 0, ¢) sin 0d0dy (4.33)
s

4
is called the Bondi mass. Integrating (4.32) one finds the Bondi mass loss formula

d M(u) = —1

— f NABN, g sin 0dOde . (4.34)
du 4 S

Since the right-hand side of is non-positive, the Bondi mass can only decrease or stay
constant, the latter is the case only if there is no news. It was shown by [52, 53] that the two
ways of writing the Bondi mass in the different “languages” described, i.e., via the linkage
formalism or metric coefficients, are indeed equivalent. In fact, the definition is unique in some

sense, see [66].

Example: Schwarzschild

As a simple example we look at the Schwarzschild metric. As we have seen, we can define the

mass either through an integral or through a power series of some metric component. Since the
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Schwarzschild metric is static, the Komar mass and the Bondi mass (as well as the ADM mass
discussed next) are equal. Thus, we start with computing (4.26)/(4.27) for the Schwarzschild

metric, which reads, in spherical coordinates,

2_ [y _C\ 4,2 N o o 202
ds® = — (1 dt? + (1 dr* +r* (d6° + sin® 0dg*) . (4.35)
r r

The timelike Killing vector is given by

&y = (E - 1,0, 0,0) (4.36)
r
and thus we have
1
a= e“beabcdv%d =——r sin(@)i = —c. (4.37)
sin 0 r?
Plugging this into (4.26) yields
1 1 2 V4 c
Miomar = —— f Qegy = —— f csin(0)dodg = - (4.38)
81 Js 81 Jo 0 2

for the mass of a Schwarzschild black hole. To test the second way the Bondi mass was defined
we need the Schwarzschild metric in Bondi coordinates, i.e., , where we immediately see
that the uu-component is equal to —2a = ¢/r — 1 and thus, using (4.30), we find M = ¢/2 again.
Since the metric is static, the news tensor N4p is equal to zero. Hence, the Schwarzschild metric
can be rewritten in the form

ds? = — (1 - @) dr* + (1 - @)_1 dr? + 1 (d6? + sin® 0dg?) (4.39)
which is usually found by taking the Newtonian limit to relate ¢ and M since, as we have seen,
this is equal to the definition of the Bondi mass for the static Schwarzschild metric. The case of
the Kerr metric is very similar.

The second case, the ADM mass, is defined at a fixed physical time ¢ at spatial infinity. It
was introduced and investigated by R. Arnowitt, S. Deser and C. W. Misner in a series of papers
(1067, [68]], see [69] for a contemporary review of these and related papers by the same authors.
The original approach was in the Hamiltonian framework ([[70,|71]]) a reformulation similar to
the linkage formalism described above exists as well, see, e.g., [39-41} 48, [55||72] and references
therein. We will only discuss this topic heuristically and not go into details. The original result
by ADM can be summarized as follows. Consider 3-slices F; where the family {F,} is a foliation
of the spacetime such that on every slice the time ¢ is constant. To each slice F; we can associate
a number, the ADM mass. Let t# be the evolution vector, a time-like vector which is normal to

F;, which is chosen such that it generates asymptotic time translations. The ADM energy is
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Bondi

Radiation
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Figure 4.4: Sketch of matter in a compact region of spacetime which emits gravitational radiation.

The ADM mass is defined on a spacelike surface F and thus all radiation crosses this surface
eventually. However, the Bondi mass is defined on an asymptotically null surface N, at time u
and thus there might be radiation, which was emitted before time u, that never crosses N,, and

therefore does not contribute to the Bondi mass on this slice.

defined as the surface integral over the asymptotic behavior of the gravitational field and it can
be shown that an expression in asymptotically cartesian coordinates is given by [35} 47]

1 k i

— | (0%hi - 6;h) dA (4.40)

t=const. 167T S

E=- lim

r—oo

where dS' is the normal surface element to a sphere of constant r, h;jx = gix —1;x and h = 17”‘ hik.
The integral is taken over a bounding surface in the asymptotically flat region of F;. It can be
shown that for any foliation {F;} where t# coincides with k* at infinity the Komar mass is equal
to the ADM mass.

The above definitions give rise to a natural interpretation of the two masses, see also the
sketch in Fig. Since the ADM represents the net energy crossing an asymptotically flat
spacelike surface F, this surface eventually intersects all emitted radiation, because no signal
can travel faster than light, and therefore it is not possible for any physical process to change the
asymptotic behavior at spatial infinity. Hence, the ADM mass is time independent and represents
the total energy of the system. On the other hand, the Bondi mass represents the energy crossing
an asymptotically null surface N, and N, does not intersect all emitted radiation, which results
in a time-dependence of the Bondi mass and the quantity is interpreted as the mass remaining
in the system at time u. Thus, while the ADM mass is a scalar constant over time the Bondi
mass is a scalar function of u which can change due to gravitational radiation. As shown in
[73]], this intuition is right and for physically interesting systems the difference between the
Bondi mass and the ADM mass is the energy flux carried away by the radiation between infinite

past and given retarded time. Another question that arises is whether the masses defined above
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have to be positive for nonsingular spacetimes. In the following section we will explain why

this is an issue and sketch the proof(s) of the so-called positive energy theorem.

4.3 Positivity of Mass in General Relativity in 4D

Again, we start by looking at Newtonian gravity. Here, systems with negative energy are
ubiquitous since any bound system has negative total energy. Since the gravitational potential
is unbounded from below, it is possible to construct systems with negative total energy even if
the rest mass of the matter involved is taken into account. However, problems occur if we go to
general relativity. First, note that Minkowski space fixes the ground state with zero energy so we
are not free to choose any arbitrary zero point for the energy. Assume now that a system with
negative total energy constructed in Newtonian physics also exists in general relativity. In this
case, since energy is equal to mass, this would mean that the system has negative gravitational
mass which would result in a repelling rather than attracting gravitational force. Additionally,
one can imagine a radiating system. Since the radiation will carry away positive energy the total
energy in the system will decrease. Since the total energy was negative in the beginning and
if the energy were in fact unbounded from below it would be possible to extract an unlimited
amount of energy which is clearly unphysical. Thus, if systems with negative total mass were
allowed in GR this would indicate a fundamental problem with the theory in the sense that there
might not be any stable solutions. The idea from a physics point of view why this situation (that
is, total negative energy) cannot occur is that if we were to create a bound system with large
negative total energy we would inevitably end up with a black hole formingﬂ which has positive
total energy and this “saves” the theory. Thus, it is possible only in Newtonian gravity to create
a system with arbitrarily negative energy, but there we do not have mass-energy equality or
gravitational radiation and hence no problem.

While the intuitive solution is relatively straightforward, it has proven remarkably difficult
to actually establish a proof of mass positivity in general relativity. The reason that there are
issues for general relativity, but not for most other theories is due to the nonexistence of a
stress-energy tensor for the gravitational field, as discussed in the beginning of section Itis
usually a trivial consequence of the conserved stress-energy tensor T, with positive timelike
component, which ensures that a physical system cannot radiate away more energy than it
initially had and that the ground state is stable. Since, as discussed above, the definition of the

total mass of a system is (more or less) independent of the stress-energy tensor, the standard

3There are in fact some connections between the proofs of the famous singularity theorems and proofs of the

positive energy theorem, see e.g. [74]].
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arguments to show positivity of mass are no longer applicable. Thus, the stability of Minkowski
space as a ground state and a proof of the positive energy theorem are far from obvious and
highly non-trivial. This is the reason why the first proof was published only in 1979 by R. Schoen
and S.-T. Yau who showed in [[13]] that the ADM mass is positive, a more general case with less
strict assumptions was shown by the some authors shortly afterwards [[75}76]]. Already earlier,
in 1977, S. Deser and C. Teitelboim showed that the energy in supergravity is positive [77]] using
the Hamiltonian formalism of supergravity [78]. Following a suggestion of M. T. Grisaru ([|79]))
E. Witten considered the 72 — 0 limit of the proof in supergravity (in this limit the fermionic
parts present in supergravity drop out and classical general relativity is recovered) and found
a significantly simpler proof of the positivity of ADM mass [14]. The new idea (the crucial
inspiration drawn from supergravity) was to use spinors also in classical general relativity to
facilitate the proof. To understand how spinors come into play it is advantageous to briefly look
at the definition of charge in classical electromagnetism. We have the current 1-form J and the
electromagnetic field tensor 2-form F. They are related by the Maxwell equation d x F = xJ.

Let V be a volume containing some charge distribution. The total charge in V is given by

1
q=— f *J (4.41a)
81 %4
which, using the Maxwell equation d x F = %J, can also be written as
1 1
q:—fd*F:— *F (4.41Db)
81 74 81 oV

where Stokes theorem was used in the last step. Now, note the similarity between and
the mass definition (4.27), but keep in mind that we are considering the ADM mass at the
moment. In the definition of the mass, the 1-form is obtained from the asymptotic timelike
Killing vector by lowering the index. The question is whether there is also an analogue of
(4.41D), i.e., whether there is a 2-form which, integrated over infinity, yields the mass. Let us
take the analogue with electromagnetism and the similarity of and as motivation
to look for an appropriate 2-from E. It seems that there is not much freedom in defining E. A
dimensional analysis shows that there must be one derivative involved and we integrate over
infinity where the only distinguished vectors are the asymptotic symmetries. Thus, one might

guess that there are only two possibilities, namely [80]
El, = Viap) (4.42a)

and
E2, = €qpeaVE?. (4.42b)

However, both choices are unsatisfactory. If we look at the integral f 55 *E over a two-sphere

the “mass” resulting from E:l , depends on the order 1/r part of £ and thus the result is not
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related to the mass in the spacetime, cf. the Newtonian limit (4.29) and the discussion of the
Schwarzschild metric in section The integral over Ei , vanishes due to Stokes theorem [_80].
Thus, the 2-forms which can be formed from £¢ do not yield a satisfactory definition of mass and
it seems that there is no analogue of (4.41b)). However, now the motivation from supergravity

comes into play. If one allows spinors to be used, there are two additional possibilities. They

are constructed such that their imaginary part is equal to (4.42a) and (4.42b), respectively, but

the real part differs and thus is the interesting part. Take a spinor ¥ and define

E’, = Viu(¥yp¥) (4.42c)
EY, = 2€4pea (\ifycvdllf - Vd\ifyc‘{f) . (4.42d)

The integral over ‘R(Ezb) has the same issue as the one over Eib. However, E‘;b leads to an
expression depending only on the asymptotic value of ¥ and in fact let ¥ = ¥, + O(r™!), where
¥, is Killing. The vector ¥oy*¥, is equal to the Killing vector £ (c.f. (3.35)). Setting E = E* we
have
1

). *E (4.43)
which is real (since the contribution of E? vanishes under the integral) and this expression is the
analogue of (4.41Db). This 2-form is called Witten-Nester 2-form, since it was not introduced
in Witten’s original proof in [[14] but only introduced by J. A. Nester in [81], where a small error
in Witten’s line of argument was corrected. It was shown by [14}/81] that is asymptotically
equal to the definition of the ADM and thus the expression is an equivalent expression
for the ADM mass. Therefore, to show positivity of mass it suffices to show that is
positive. Using Stokes theorem, one thus wants to show that V¢E,; > 0. Assuming only that
the dominant energy condition (a local condition) is fulfilled and restricting the freedom of ¥ by
allowing only spinors, which fulfil the Witten equation y’V;¥ = 0, where the index i runs only
over spatial coordinates, positivity can been shown, using some standard identities for gamma
matrices and spin derivatives, rather easily, see |14}, 81]. (We will come back to this below in
our proof of the positivity in higher odd dimensions.) Having shown that the ADM mass is
positive, the natural next step was to consider the Bondi mass. Schoen and Yau were able to
adopt their strategy to the Bondi mass [[82]] while W. Israel and J. M. Nester [83]], M. Ludvigsen
and J. A. G. Vickers [84}|85], as well as G. T. Horowitz and M. J. Perry [86] used Witten’s style of
argument, with only small modifications, to proof the positivity of Bondi mass in 1981, see also
[80]. Witten’s argument in particular has afterwards been used to include more general cases,
for example spacetimes with black holes [87, 88]], electromagnetic charges 89} 90] (see also
[91]), and spacetimes which are asymptotically AdS [87]]. There are also further investigation of
the relation between the proof in classical general relativity and supersymmetry (e.g. [92]) and

attempts to make the results more mathematically rigorous by, e.g., [93-95].
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The goal of this thesis is to show that the positivity of Bondi mass also holds for arbitrary
odd dimensions d > 5. We do this with with an argument similar to the one in Witten’s original
work but new complications occur in higher dimensions requiring additional steps. In particular,
the spinor we use is not of the simple leading-order type as in four dimensions. Furthermore,
while the ADM mass is readily generalized to higher dimensions [70] it turns out that defining
the Bondi mass in higher dimensions is considerably more difficult and, in particular, the linkage
formalism does not carry over to higher dimensions. We will discuss this in the next two

chapters and come back to the positivity afterwards.
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Bondi Mass and Positivity
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CHAPTER D

Assumptions, Setup and Notations

The second part of this thesis is concerned with odd dimensional spacetimes and the goal is to
find a coordinate expression for the Bondi mass and show that it is positive. In this chapter we
state the assumptions and conditions we impose on the spacetime we are working with as well
as fix some notations for the rest of the thesis. It was already mentioned at several points that
there are some differences between even and odd dimensions concerning the definition of null
infinity. In the first section of this chapter we look at gravitational waves in odd dimensions
to illustrate the issue and motivate our assumptions in the second section. These assumptions
are in particular concerned with defining asymptotic flatness (since in our case no smooth
conformal null infinity is present) by imposing Bondi coordinates. Finally, the most important

results of the subsequent chapters are summarized.

5.1 A First Glance at Odd Dimensions: Gravitational Waves

At first glance it is not at all obvious why there should be a difference between even and odd
dimensional spacetimes in general. While one might expect a difference between d = 3 and
d = 4 dimensional spacetimes it is not clear why there should be a difference between, say
d = 8 and d = 9. However, it has been shown (already around 1900 by Hadamard for the scalar
wave equation in flat space [96,|97]) that there are crucial differences between the two cases.
One of the simplest and most instructive examples where the difference becomes apparent
are gravitational wave. (In fact, it would already suffice to look at the scalar wave equation in
Minkowski spacetime to see the difference.) To see this it suffices to look at the Green’s functions.
In essence, Huygen’s principle is violated already at leading order in r in odd dimensions and
the waves have a “tail”, i.e., support inside the lightcone. Before comparing both cases we
quickly recapitulate the standard setup for the treatment of gravitational waves in linearized
gravity. An introduction to this topic can be found in any standard book on general relativity,
see e.g. [35}64}65].

We want to derive a metric in the presence of gravitational waves in linearized gravity.
Assume that there is some matter with stress-tensor T on a Minkowski background (R¢, ). The

trace-reversed metric perturbation is defined as

- 1
hap = hap — Eﬂabh’ (5.1)
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where h = %’ h,;,. Working in the gauge d%h,, = 0 the linearized Einstein equation reads
1°40.04hap = 16T ap. (5.2)

The solution of this equation is given by

’

}_lab = léﬂfdsle(x,x/)be,Ta/b/(x/) (53)

/ab

where G(x, x =n%nb 5 'G(x,x’) and G(x, x’) is the scalar Green’s function of the inhomoge-

neous wave equatlon for a field on d-dimensional Minkowski spacetime (R%, 1), i.e.,
0%0,G(x,x") = &(x,x") (5.4)

The Green’s function is found to be [[98-100]

1 9 d/2_2(5(t—t’—|§'|))
Ge(x,x’ =—2n 0 -ty [-— -2 —~ 57 5.5
) = 0001010 - g 9
in even dimensions while in odd dimensions it is
1 0\7T o@-vr
Go(x,x’):(27r)l_zd(— /_/) (¢ -t~ 151) (5.6)
t—t' ot (t—t’)2—|§|2

where & = x — x'.

We now look more closely at the linearized perturbation h,; in an odd-dimensional Minkowski
background. To illustrate what happens at lowest order in r, we look at 5-dimensional spacetime.
The treatment for highe odd dimensions is similar. We consider, similar to calculations in [[16}
101]), a perturbation generated by particle scattering of massive particles, where the ingoing and
outgoing particles interact only at a single point that is taken to be the origin. The stress-energy

tensor of the outgoing particles in coordinates (¢, x) is

drt
dt

T (x) = va 0l 8(x -y (1)) == 0(t) (5.7)

where m' is the rest mass, y' the spatial trajectory and v, the four velocity of the ith outgoing
particle, 7' is its proper time. The expression for the ingoing particles T‘(;;l ) has the same form

with t+ — —t and the total stress-energy tensor is

Top = TV + TOW. (5.8)

IThere is no gravitational radiation in d = 3 dimensions.
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In the following, we consider the case of a single particle (i = 1) of unit mass (m! = 1) which
is “created” at the origin and rests there, i.e. y! = 0. This is done to keep the expressions
shorter and focus on the aspects we are interested in; the general case can easily be recovered

by repeating the following calculation with the full stress-energy tensor (5.8), see also [[16} 101

Plugging into yields

(5.9)

. 1 1 9\ o0(t—-t'—
hap = 167 f dsxlTab(x’) - — ( 1) .
@r)2\ t—vot') \[t—1)2 =€
Now, substituting (for the single particle described above and v} = v,, m! = m), we have
At [ g SO0 9 016
T t—t' ot (t — tl)2 _ |§|2
_ 4mugvp f‘”dt, 1 i Ot -t —|x]|)
n 0 t=t 0t \[(t—t)2 - |x|Z
Defining r = |x| and u = t — r and using the latter to replace ¢,

P _4muguy f‘x’ gt 1 i O(u—1t')
T 0 utr—t' ot \fu+r—1)2—r?

ab =
_ 4Amu,vp f‘x’ gt 0 ( 1 ) O(u—t')
oo 0 o' \u+r—-t Vu+r—t)2 =2

4mu,vp 1 O(u—-1t)

T u+r—t'\/(u+r—t’)2—r2

(5.10)

t'=0

We are interested in the limit r — co as u = const. (null infinity). The first term in (5.10)

decays as r~>/? while the non-vanishing boundary term in the second term decays as r~>/2 and
therefore this is the relevant leading-order term. The result is
. dmu,vp O(u
hap = m0avs 00) 512 g (r"). (5.11)
Ver  u
Doing the trace reverse yields
4m 1 0(u)
h :—(vv + — )—r_3/2+0 r=?) | 5.12
ab = o \VaVs ¥ e | (r"%) (5.12)

By the same procedure the result can be found for all odd dimensions d > 5 and the leading

term in the metric perturbation is of order
hap ~ 17540 (r?) (5.13)

Therefore, the relevant term is of half-integer order in 1/r. This is in contrast to even dimensions

where the perturbation is of integer order, as can be seen when repeating the above computations
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with instead of [101}/102]. Note that Huygens’ principle (the wave function has support
only on the light cone and all modes travel with speed of light) holds for all even dimensions
d > 4 but does not hold for odd dimensions d > 5, see also [[103]]. Instead, the wave has a
so-called tail meaning that there is support inside the lightcone and some modes travel slower
than speed of light, already in the leading order term. This means that a local event has effects
at all times. This is due to the function 6(u) in (5.12), which appears in odd dimensions while
in even dimensions it is replaced by a delta distribution. Thus, one sees already at this stage
that there are crucial differences between even and odd dimensions. The differences will be
important in the next section when an asymptotic expansion of the metric coefficients in Bondi

coordinates is introduced.

5.2 Assumptions and Results

We state all assumptions and the general setup in this section and give an overview over the main
results we will derive in the subsequent chapters. (.#, g) is a smooth Lorentzian spin manifold
of odd dimension d > 5. g has signature (—, +, ..., +). We saw in chapter |4 how to construct
Bondi coordinates in even dimensions and how they are used to define asymptotic flatness. Now,
we are interested in spacetimes with odd dimensions. As mentioned above it is not possible to
define a smooth conformal null infinity since the unphysical metric is at most (d — 3)/2 times
differentiable. But it is still possible to define asymptotic flatness by requiring that suitable Bondi
coordinates exist [[104},105]]. The idea behind the coordinates remains the same, that is, we want
to define a coordinate system far away from the source of gravitational force. Here, “far away”
can be visualized as saying that the gravitational force is so weak that massless dust travelling
on null geodesics is not influenced significantly by the gravitational force on the time scale at
which we are looking at the problem. Then, in this region the geodesics do not intersect, as
required in chapter The physical interpretation of the coordinates (u, r, x) remains the same
as above and so does their “character” (null/timelike/spacelike) and “transportation properties”.
For example, the surfaces u = const. are null, (9,u)(dpu)g?® = 0, and the d — 2 scalar functions
x4 and r are defined such that they are constant along the integral lines of (9/0u). Similarly,
(u, x) are constant along a given geodesic with affine parameter r, see chapter Choosing
a fixed retarded time u and going to r — oo along the geodesic determined by u we arrive at
a “point” and the set of all such points (choosing different u) is called future null infinity. We
require the existence of such a coordinate system as a condition for asymptotic flatness such
that in the range where the unphysical metric is differentiable the definition agrees with the
one given for even dimensions. Additionally, we need the following condition. Assume that
A
)

there are functions «, f4, and yp of (u,r,x”*) which are smooth and can be expanded in the
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power series

) (u, x*)
a'™ (u, x
a(u,r,x?) ~ Z oz (5.14a)
n=0
B (u, x*)
Balu,r,xb) ~ Z oz (5.14b)
n>0
Vip (, x%)
yap(u,r,x%) ~ sap + Z Ain—/z’ (5.14c)
nx1

where n € N and a® is a real, positive constant. As we saw in the last section, there is a
dimension-dependent difference in the power of the leading order term for gravitational waves,
namely in even dimensions it is an integer power of r while in odd dimensions it is a half-integer
power. We do not want to exclude gravitational waves and thus an asymptotic expansion has to
be chosen which is consistent with the metric in the presence of gravitational radiation, namely
an expansion in half-integer powers of r. This motivates our choice of the power of r in (5.14).
A similar ansatz, but with more assumptions, was proposed by [[105]] and also used in [[104}|106|
107]. The power series are assumed to exist and to be well defined such that they are, e.g.,
differentiable, and o™, ™, yx; are smooth functions of u and x* but are independent of r.
The spacetime (., g) is assumed to be vacuum near infinity, that is, the vacuum Einstein
equations hold there. Furthermore, we take it to be asymptotically ﬂa i.e., we require that
Bondi coordinates (u, r, x*) with the properties described above exist and that near infinity the

metric has the form
gabdx“dxb = —2adu® - 2dudr — ZrﬁAdudxA + rzyAdeAde , (5.15)

where the coefficients «, f4 and y4p are smooth and can be expanded as above. We denote
the r-derivative of some quantity x by x = d,x and the u-derivative by x” = d,x. The compact
(d — 2)-dimensional manifold X (u, r) is defined near infinity as the surface of constant u and r

and we require that a spin structure can be defined on it. Thus, the coordinates on ¥ are xA.

S92 and x* are the usual angular

In d-dimensional Minkowski spacetime X is spherical, X =
coordinates. The metric on ¥ induced by g is the Riemannian metric s4p, which is equal to
vap at u = 0 at infinity. The spin derivative and Levi-Civita derivative on (%, s) are denoted
D, the ones on (#,g) by V and the Levi-Civita derivative of y45 by D. We require that (Z, s)

admits a real Killing spinor € with constant A. Thus, X is an Einstein space. Further, we require

2Recall that our definition of asymptotic flatness is used in a slightly different sense than usual. It refers not

only to the case that the metric approaches the Minkowski metric at infinity but is slightly more general.
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that the metric is related to the Killing spinor b a® = A?/2. We can define the conformal
transformation § = Q%g with Q = 1/r such that the boundary of M contains future null infinity
J* = R X X, but it is not smooth [18]. Spacetime indices are raised/lowered by sap unless

otherwise noted.

f—l—

Figure 5.1: A sketch of the Bondi coordinates, a hypersurface and ¥ in a conformal diagram. %

is represented by a point near/at null infinity.

The main results of each chapter are as follows. In chapter [| we use the Einstein equations
to show that coeflicients corresponding to low orders of r vanish. The results are summarized
in We then use these results to derive an explicit expression for the Bondi mass in odd
dimensions in Bondi coordinates from results of [[17]. In chapter 7] following [19], we establish
the main result of this thesis. With some additional assumptions (not yet stated here) we show

that the Bondi mass is non-negative, see Theorem[7.2]

3We can have Minkowski spacetime at infinity only if & ~ 1/2 and if A # 1 we have a non-flat metric at infinity.
We refer to the spacetime as asymptotically flat in either case which is the more general usage of the term mentioned

above.
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Einstein Equations and Bondi Mass

In this chapter, we want to derive/define an explicit expression for the Bondi mass in odd
dimensions d > 5 in Bondi coordinates and interpret the result in physical terms, i.e., we want
generalizations of and (4.34). Therefore, we first need to investigate Bondi coordinates in
odd dimensions. In the first section, we plug the asymptotic expansions of the Bondi coordinates
into the Einstein equations. It turns out that this method simplifies the equations significantly
and they can be solved iteratively at each order of r, which reveals some structure in the
asymptotic expansion. Then, in the second section, a geometric expression for the Bondi mass
derived by [17]] in the Hamiltonian framework is utilized to find an explicit expression for the

Bondi mass.

6.1 Asymptotic Expansion and Einstein Equations

We assumed that the vacuum Einstein equations hold outside some compact region and using
them we want to find some additional structure in the metric (5.15). It turns out that assuming
that the power series (5.14) exist is very helpful in the following, where we want to discuss the

vacuum Einstein equations near infinity. The explicit form of the vacuum Einstein equations
Rap =0, (6.1)

where Ry, is the Ricci tensor, is given in appendix[A]in Bondi coordinates. Before considering
the general case, we first derive the Schwarzschild metric to illustrate the general idea and steps

which will reappear thereafter in the general discussion.

6.1.1 Schwarzschild Higher Dimensions Einstein Equations

To derive the Schwarzschild metric in higher dimensions we use the symmetry and make the
ansatz that yap = fsag = sap + O(r~"/?) with f as a scalar function. Plugging this into the
rr-component we find f = 1 and therefore y4p = sap whence yap = d,yap = 0 and
Yip = Ouyap = 0. As aresult, all derivatives of y4p in the other components of the Ricci tensor
vanish and the Einstein equations simplify significantly. We start with the R, 4-component
(A.1), which takes the simple form

d-2 d-2
y Pam =3

r’fa - %FS/;A =0. (6.2)
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Now, plug in the asymptotic expansion (5.14) for 4. At order r* one finds X{) =0ifk #2d -4

and hence only one term remains such that
Pa = prirs2, (6.3)

This can be used to investigate the asymptotic expansions of a. For this, we look at the ru-

Component A.4) that now reads

4D DA (264 + 1D~ (@~ 20a) +r (i~ 10,(5*6))

(6.4)
Again, plug in the asymptotic expansion for f4 (now simply (6.3)) and « and consider the

equation at each order r*. For k # 2d — 4, 4d — 8 the terms with 84 do not contribute and one
finds (2d — 6 — k)a'®) = 0 and therefore

a® =0 ifk#2d—4, 2d-6,4d-38. (6.5)

The two terms in « that are related to 4 are

a4 o P, pACAY) (6.6)
and
o(4d=8) o ﬁA(zd—4) fd—‘*)’ (6.7)

where the prefactors are irrelevant for the discussion and we omit them. From the Ry, -
component we find, at order r4¢*1%, that

pACGE R _ (6.8)
This can be used in the AB-component (A.3), which reduces to
ﬁ(zd 4)ﬁ(2d 4) ,B(CZd_4)ﬁC(2d_4) ’ (6.9)
to find ,B(Zd = =o. Consequently, all coefficients ﬁxl) vanish and we have
Ba=0. (6.10)

Thus, a takes the form
a = q?40,=(d=3) (6.11)

Since D = 0 (from Ry 4) and d,a = 0 (from R,,;,) it follows that a24-6) ig constant. Summa-

rizing, we have
o (2d-6) ,~(d~3)

Ba=0 (6.12)

YAB = SAB
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and the metric reads
gabdx“dxb = —2a%49qy? — 2dudr + r’s gdx2dxP? . (6.13)

If we define M = ¢/2 := —a®@~% we arrive at the metric (4.16). That « is constant with respect
to x* and u reflects that the spacetime is static. (6.10) can be viewed a consequence of the

rotation symmetry of the ansatz for y4p.

6.1.2 Recursion Relations from Einstein Equations

In this subsection we will treat the general vacuum Einstein equations in a way very similar to
the Schwarzschild case just considered. That is, we plug in the asymptotic expansions
into R,p = 0. The resulting equations are very lengthy but it turns out that it is possible to solve
the equations at low orders of r recursively, by looking at each order of r, which yields some
restrictions for the coefficients o™, B, and ng. We denote by R4p the Ricci tensor of y45.

The results are summarized in the following lemma.

Lemma 6.1. We assume

(0) —
YAB|u:0 - SAB ’
RAB = /12(61 - 3)SAB . and
2
NONE
2

where A € R is a constant. Then we have ﬁf) =0andforl<n<d-3,

a™ =0, (6.14)
) =0, (6.15)
y=o0. (6.16)
In addition, we have for1 <n < 2d -5
(n) _ n B, (6.17)

A T om+2)2d—n—4) Y4B
and for1 <n<2d-7

s d”__nz_ 52" o (6.18)
Furthermore, ifd > 4 then for 1 < n < 2d — 5 we have
y™ =548y =0, (6.19)
Lastly,
(2d-4) _ _2;”(0;_—_130) (d—2)ABy$3—2) . (6.20)
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Our assumptions in this lemma are essentially necessary only to ensure that the spacetime
is asymptotically flat and that a Killing spinor exists on X, see chapter[5| Thus, the assumptions
are not very restrictive. Note that the results in Lemma|6.1|(and also the results found in the

rest of this chapter) do not change if 1 € C.

Proof of Lemma

The relations in Lemma |6.1| are obtained by plugging the asymptotic expansions into
the vacuum Einstein equations R, = 0. The complexity of the equations reduces significantly
when one looks at the equations at each order of r. Using at each step the results found from
lower orders the relations are found.

The first non-trivial equation is found at order r3/? where the R,, component gives

y® =o. (6.21)
At orderr, R, yields
ABY ) = 70 = ¢ (6.22)
while the R4p component gives
D =o. (6.23)

We assumed that yf(\o}; ueo = SAB but this shows that ygg = sap for all u, not just for u = 0. Using

this assumption one finds from R, 4 = 0 that

d-2
— 0 = o. (6.24)

where D%s 5 = 0 was used which holds since Dy, is the Levi-Civita derivative of sqp. The

relation
3
848y ) = EY(I)ABY/(‘% (6.25)

follows from R,.,.

At the next order, r'/?, using the results from higher orders, leads in R4p = 0 to

y& =o. (6.26)
Going back to this yields

y@ =o. (6.27)
From the R,, component we find

y® =o. (6.28)
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Results from Rap=0 (3)
Rur =0 higher order =0 =0

\LRrrZO

Figure 6.1: A sketch of the structure of the argument at order r°. The argument for other orders

of r is similar.

Additionally, we have ,31(41) = 0 since R, 4 = 0 at the current order reads

2d -7

(1)
8 P+

41_1 (Day® - DBy }) =o. (6.29)

If d = 4 this is all we can say. Thus, from now on we assume d > 4.

At order r° we get the following equations. From R, 4 we find
Daa® = o. (6.30)

Assuming that s4p is the metric of a 2)-dimensional Einstein space we know that Rap =

(d -
A2(d — 3)s4p and we assume a(®) = A— which is in accordance with (6.30). With theses two

assumptions we find from R4p that
d-4)y2 =o. (6.31)

To conclude from this that )/(2) = 0 the assumption d > 4 is necessary. If d = 4 we cannot
conclude y AB = 0 and it is not possible to say more about the coefficients than done so far.
Such a breakdown of the recursion relations will in fact appear for all dimensions and is in fact
crucial since it ensures that the series is not trivial and that physically relevant coefficients do

not vanish identically. In the R, 4 component, ylgzg = 0 leads to

1
(d-3)pP + 5 (Day® - 08y D) = @-3)pY =0 (6.32)

and R,, = 0 yields the equations
y@ = SY(I)ABYE; =0=y0, (6.33)

Continuing at order r~1/2, we have to assume d > 5 to find new relations. From R,,, we find

58



6.1. ASYMPTOTIC EXPANSION AND EINSTEIN EQUATIONS

that &'¥) = 0 which leads in Rap to )/1(43; = 0 since we know that qull)g = 0 (by assumption).
Furthermore, the components R,, and R, 4 yield y©® = y? = 0 and ,31(43) = 0, respectively.
Additionally, one finds, using R, at order r~! and r3/2 1(42) = ,[31(43) = 0 implies a® = q® =0,

To summarize, thus far we have found (if d > 5):

0 _ A
2
2 = @ — 40

©) _ g _ p@) _ 50G) _

al

A T PaA TPa TPa

0) _
Yap = SAB

(1) (2 (3)
YAB =Yap=0

:)/ :}/(2):“.:}/(7):0

Rg’; = 22(d - 3)sap

1 _
R = o

We can now continue inductively. At each new orderr~%/2 we have to assume that the dimension

is d > k + 4. If this is not the case the induction breaks down because we cannot conclude from

(k+2) _

the Rap component that y, " = 0. Explicitly, the induction is done as follows. Assume that

for some integer k > 2 we have:

2
NONS
2
al =a@® = =q® =9
/3(0) - /3(1) - = ﬂ(k+2) =0
o
YAB = SAB
1) ©) — ,(k+2) _
=VYaB = g =0
y(l) -0 = Y(2k+5) ~0
We also know that R(l =R, 1)3 R;kl; = 0. At order r'**1)/2 the Einstein equations yield

the following relations (assummg d > k + 4). The R,, component gives a**)) = 0 and at the
next orders a**? = ¢(*+3) = 0. Thus from Rz we have (d — k — )Y ap (k+3) = 0 since R(kH) =0
and d > k + 4. With this R, 4 and R,, yield B**3) = 0 and y*++0) = y(2k+7) = 0, respectively.
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Therefore, we now have:

2
NON
2

al =q® = =ak) =
ﬁ(O) - /5(1) = = ﬁ(k+3) =0
0) _
YAB = SAB

o _ @) _ _ o (k+3) _
AB=Vap = =VYap =0
YO =@ o ok g

where k < d — 4 which completes the inductive step. Thus, we have the equations (6.14), (6.15),
and (6.16). If d does not fulfil this inequality we still find some relations between the coefficients

from the Einstein equations. Namely, one has at order r~"/?

a(n) n (Zd —-—n- 6)
4
as long as n < 2d — 7, this is (6.18). For greater n there are many more terms which do not

from component R,

L Apn) M Ann)
+§D ,BA —ZD ﬂA =0

vanish and the equations become very lengthy. R, 4 = 0 simplifies at order r /2 to

n(n+4)2d-n—-6) n+2
pa 8 Ty

if n < 2d — 5, proofing (6.17) holds. Again, for greater n there are additional terms and no such

simple equations are found. It is, of course, still possible to write down the equations but they

(DAy(n+2) _ Z)B}//(-XUB"'Z)) =0

will not be needed. Furthermore, there is an equation from component R, for n = d — 4,

4n® +12n 48 (5n,4 . —-3n> - 8n—4 (ns2AB (152) _
8 16 AB
This is equal to (6.20) after substituting n = d — 4 and hence we have shown all relations in the

lemma. ]

0.

We have thus found that many components of the asymptotic expansion vanish or are
proportional to a total derivative for low orders of r (where “low” is determined by the dimension
d). For this, we only needed the assumptions in Lemma [6.1| (2 is an Einstein manifold and
asymptotic flatness), and that the vacuum Einstein equations hold near infinity. The results of
Lemma 6.1 will be used in the rest of the thesis to derive a coordinate expression for the Bondi
mass and to show its positivity. In particular, they are crucial to show that potentially diverging

integrals in fact exist and are well-defined.

6.1.3 Consistency of Asymptotic Expansion

Before we continue with the main thread of this chapter and use the relations just derived to find

an expression for the Bondi mass we present an additional argument to justify the asymptotic
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expansion we assumed. We already saw that our choice is consistent with the metric in
presence of gravitational radiation. Here, we present briefly a more general argument that can,
in principle, be used for every differential equation, where a power series ansatz is used, to
check if there are consistency issues. We note that the following argument does not proof that
a chosen series is the right ansatz but can only excludes some possibilities. The general idea is

as follows. For some function f assume some differential equation, for concreteness take, e.g.,
Af = r?0%f, (6.34)
where A is some operator independent of r, and assume an expansion

f~ (6.35)
nez

where A is related to n in some way such that A > 0 if n > 0. Now, plug this series into the

differential equation. In our example this yields
rrAFM = 24— 1) FVA (6.36)

Consider the equation for a given order of r, as was done in the proof of Lemma6.1]above, in
the present example

AfW = A(A—1)fn=D (6.37)

For some choices of A a problem arises as follows. For the sake of argument, take A = n/2.
Consequently, if we look at , since the prefactor n(n/2 — 1)/2 does not vanish we see that
£© is determined by £V (order r'/2), f-1) is then related to f? (order r!) and so forth. For
the series to be non-trivial these coefficients have to be non-zero. However, these parts of the
series corresponding to positive powers of r increase with increasing r and thus f does not
become small for large r. This is unphysical since we expect that the effect of some source at
the origin becomes small for large r. Thus, A cannot be related to n like A = n/2. This way one
can check the consistency of a chosen expansion for a given differential equation. We will now
use this argument to justify our choice of A = n/2 in (5.14). Since the equations, which appear
when considering the full Einstein equations, are very lengthy we will restrict ourself in the
following to the linearized vacuum Einstein equations, which suffice for our purpose, see also
[107]. Additionally, we consider only the case f4 = 0 and @ = 1/2. These assumptions are not
necessary for the argument, but are used only to keep the expressions shorter. We will look at
the R4p-component , which, with our assumptions, reads

2d 6—d 6—d
0= ((95 — Zauc?r) YAB — ﬁyAB — T@,yAB + T(’)u}/AB + SAB - (6.38)
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Now, assume yap ~ X, ygg r~* with the same conditions on A as above. Substituting this series
yields
DA+ ) +2d]y g = Y [d -4 - 22y r T + sap (6.39)

n n

-2

and at order r~* we write this as

AA+1) +2dly 0 = [d—4—2A]y2 +sas.. (6.40)

By the same reasoning as in the general argument presented above we want the most general
A such that terms which increase with growing distance r (i.e. coefficients corresponding to
positive powers of r) are not necessary for a non-trivial series. Let us look at the prefactor on
the right-hand side. We see that it vanishes if A = d/2 — 2 and, since d is an integer, this means
that A is an integer (half-integer) for even (odd) dimensions. That the prefactor vanishes is
needed to avoid the inconsistencies. To see this, take for example at d = 8 and A = n an integer.

For different values of n we have

(-2) 7(-1)

n=-1 Yag X Vap
1
n=0: Yf(xB)OCYAB)
n=1: YA;OCYA(B)-FSAB
n=2 yA(é)—O
/(3
n=3: yAI;OC Vi3
—4- "(4)
n=a: YABOC ~YaB

where we omitted the unimportant prefactors. For greater/smaller n the list continues in the
obvious way without another component vanishing. Notice that due to the vanishing prefactor
for n = 2 we have yAB = sap in the n = 1 equation and thus yA D = 0forn = 0and all
components corresponding to positive powers of r vanish . Hence, all components which would
not decay as r — oo are zero by virtue of the prefactor vanishing for n = 2. Thus, a different
choice for A, where this does not happen, would have the unwanted coefficients in the series.
This shows that the choice of an integer (half-integer) power for r in the asymptotic expansion
is justified and does not lead to inconsistencies. We now return to the main thread of this

chapter and give a definition of the Bondi mass.
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6.2 Bondi Mass in Odd Dimensions > 5

We want to find a coordinate expression for the Bondi mass for odd dimensions d > 5. We start
with some geometric definitions (that is without reference to any coordinate system) and show
subsequently that the expressions defined exist and have a meaningful form in Bondi coordinates.
Let Q = 1/r. For a sufficiently large distance from the source, and thus for sufficiently small Q,

we define the Bondi mass density as

— 1 —d+4 1 ~ -1 0 0
/Jg~ = mg |:§ <I<g~ -9, Hessg~u>é -Q Cg~ (a—Q, grade, a—Q, grade (641)
where
K, = LRiC - ; Scal (6.42)
9T g2 T d-nd-2)7 "% '

is the Schouten tensor. This expression was derived for even-dimensional spacetimes in [[17]
using the Hamiltonian formalism [56]). See also Appendix[C|for a summary of the derivation.
Near null infinity the (d — 2)—dimensional surface of constant r and u is denoted by % (u, r). For
a given asymptotically null surface one can now define the Bondi mass as an surface integral

over the Bondi mass density at null infinity, i.e., the Bondi mass of X(0, o) is defined as

my, = lim HgdSg (6.43)
r—o00 2(0’ r)
where dS; is the induced integration element on >(u, r). To facilitate the interpretation of the
explicit Bondi mass formula, which we derive below, the following definition [[17, (19} [36] is
advantageous. The Bondi news tensor is defined as

N = lim [r¥*7% (K; - g)] - (6.44)

r—o00

The Bondi news will turn out to be related to the mass changing over time which is due to
gravitational radiation. It is not obvious at all that the two expressions and are well
defined and that the limits exist. To see that this is the case we try to find an expression of these
quantities in Bondi coordinates just like in d = 4. The relations in Lemma [6.1] can be used to
show that the definitions and are meaningful and, furthermore, a relatively simple

expression in terms of Bondi coordinates can be found. This central result of this chapter is

Theorem 6.2. Assume that Lemmal6.1 holds. Then, the limit in (6.43) exists and in coordinates
the Bondi mass of X is given by
(d-2)

1 _
_ (d-2)AB, 7(d-2) _ (2d-6) 492 6.45
ey fz(s(d—s)y Yap =4 Ved T (6.45)
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The limit in (6.44) exists, too, and in coordinates the only non-trivial component of the Bondi news

is

Nag = -y 472, (6.46)
We have the mass-loss formula
d | L f{N NY;dSs <0 (6.47)
—m u=0 = — N - g > . .
dy  w0w=0 327 Js 9=

Eq. shows that the change of the Bondi mass with time is determined by the Bondi
News tensor which is related to gravitational waves. Thus, one may view this as saying that the
mass of a system changes by emission of gravitational radiation, as might be expected. Therefore,
the first term in corresponds to gravitational waves. The second term (containing ??-9))
can be shown to be equal to the parameter M in the usual Schwarzschild (see section[6.1.1) or
Myers-Perry [108} [109]] metrics. To see this one has to look at the uu-component of the metric
in Bondi coordinates. In the Newtonian limit, this is also the term which corresponds to the

mass in the Newtonian potential.

Proof of Theorem (6.2

The theorem, and the proof, consist of three parts. First, we proof that the limit in exists
and that the Bondi News in coordinates is . Thereafter, the same is shown for the Bondi
mass (6.43). Finally, the mass-loss formula is derived. Note that we drop the factor of
1/8x appearing in in the following proof.

Part 1. We write K; ; and K;; for the Schouten tensor corresponding to the unphysical and
physical metric, respectively. We have that the conformal transformation of the Schouten tensor
is

1~ 1 1
EKU = EKij — V,‘(Q_lan) + Q_l(aiQ)Q_l(an) - EgijQ_l(ékQ)Q_lakQ

1 _ _ 1
SKij+Q 2(0:9)0;,Q - Vi(Q7'9;Q) - ﬁgijgm

_ _ 1
Q7%(0:9)(8,Q) - Vi(Q'9;Q) - ﬁgijgm-

In the last equality it was used that the vacuum Einstein equations R,; = 0 imply that K;; = 0.
For the AB-component of the Bondi news tensor we need only the AB-component of the

Schouten tensor,

1-~ _ 1 _
EKAB = -Va(Q'95Q) - ﬁgABQQQ =T5EQ70c0 - gapg™?

202
1
=T5Q7" - EQABQQQ : (6.48)
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With Q = 1/r we know that
rZ rr r2 2 —4 C 1 C
29489 = ryapr (2a+ f7fc) = Syap2a + B~ fc).

The relevant Christoffel symbol is found to be

1. 2 1 o1 1 Yas
Thg=—-= + = - —p¢ + —f¢ - =9 -2
AB = T3 @VAB T —@YAB 2r2ﬂ Bcyas rﬂ Pcyas - PB) )

Plugging this into yields

1. 1

. r, 1 . 1
§KAB ——ayap - daPs) — 2VaB ~ ;ﬁCﬂCYAB +yaB(BcfC + 2a) - EYAB(M + BCBc)

ro, 1 1 .
~0aPp) = SVhs + ZYaB(BPe + 20) = —an(2a + Pcfc)

ro, 1 1.
—0Pp) — Vg + 3 ()’AB - ;YAB) (B pc +2a) .

Hence, we have for the AB-component of the news tensor

_ , 1.
Nyg = lim [rd/z 2 {—Zé(AﬁB) —ryagt+ (}/AB - ;}’AB) (ﬁcﬁc + 20{) - YAB}] .

r—o00

Substituting the asymptotic expansions and using the results from Lemma 6.1 we find

. — - d— —
Nap = ,h_>nolo pdl2=2 [SAB —r d/2+2Y,:1(B 2) _ sap + O(r d/2+1)]
d-2
=~y (6.49)

In particular, one sees that all terms which are divergent in the limit » — co are equal to zero or
cancel and thus the limit exists. All other components of N, are found to be zero and (6.46)
holds.

Part 2. We start the treatment of the Bondi mass density by rewriting the definition

1 1 - - 1 -
Hy = QI S (K = §7)VaVpu =5 C (Vau) (V1 Q) (V) VaQ (6.50)

N3 (I1)

in coordinates which is done analogously to the treatment of Bondi news tensor above. That
is, explicit expressions of the Schouten and Weyl tensor in our coordinate system have to be
found. Then, the asymptotic expansion and the results from Lemma [6.1| are used to simply
the expressions and to show that the limit exists. The two terms in (6.50), (I) and (II), will be

treated separately to simplify the expressions appearing in the following calculation. As will
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be argued below, they also correspond to two distinct physical processes, so the split is rather

natural. We know that
YR e U 1 ~
VaoVyu = 0,0pu — T, 0cu =T = Eaggab
and then we can rewrite (I) as

M) = — ([Kas — Gasldad"® + [Kuq - §ualdag"® + [Kaa — jaaldag™)

([KAB — YaBlday™? + KQAanQA) . (6.51)

R S

The term K45 — vaB appeared already in the treatment of the Bondi news above and the other

relevant component of the Schouten tensor is found to be

X ) 1
Koa = 2[5,Q7" = —dafia - ohar QBPdayas -

Now, the asymptotic expansion (5.14) and the relations from Lemmal6.1] are used and after a

short calculation one finds

d—2 ,_; xa- _ _
(D) = ——r iy P 1 00, (6.52)

We proceed similarly with term (II). We first need to compute the relevant components of
the Weyl tensor,
Cuoue = gaughe geuguol ey = 434§ Capoa
= gouguege [gggéQuQQ +§“?Cauau + QNAQéQuQA]

+g~ng~AQg~Qu [éQQéQAQQ +quCNQAQu +§BQCNQAQB]

= Cauqu + 292 Cauan + QBB Canas (6.53)

where the symmetry éabcd = C.4qp Was used. Two of these three components of the Weyl
tensor have to be computed. The last term will not contribute in the end due to the factor 445
which is of such an order in r that it will vanish in the limit r — oo and we therefore omit this
term in the following. From the definition of the Weyl tensor we have

Ro,

N - 1 ~ ~ 1
Cauou = Rouou + ——=(2Rouguo — Roaguu) — m

d-2

= RQuQu + KQuéuQ - d— zﬁQquu

~ ~ 1 ~
= Rouou + Kou — ERQquu
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The unphysical Riemann tensor can be found from the usual definition in terms of Christoffel

symbols

I'NzQuQu = gQaﬁZQu = gQuRZQu RZQM
= 0oL}, — 0,T4, + T4, TS, —TATE,

Qe uu

= 0T, — 0,4, + TaoTay, + T8 T8, — T TS, — T T,

= 0o[2Qa + Q*dqa] + —(ﬁAﬁA + Q2yB(905) (00 fa) + 2QB2004)

= 2a + 4Qdga + Q* 3o + ,BA/? + Q2y4B(90 ) (00 fa) + 2QB200p4)
where the Christoffel symbols

[Y, =2Qa + Q%9 T4, =0 T4, =0

Iy, = —%(ﬂA +Qy*Pogps)  TE,=0 T4 = %(ﬂA + Q0o fa)
were used. Together with

Kau = —2Qdga — Q200 — 2a

and

Rag ———)/ aZYAB+ }/ AyPP(8ayag)(dayep)
we finally arrive at
“ouou = 252 4 4 Lgag & a Q.
Cauqu = 2Q0qa + Q°0ga + ﬁ Pa+ R (0aPB)(0afa) Zﬁ 0afa
za
t T, ( ABO5ya ~ _YCAYDB(aQYAB)(aQYCD)) -

Substituting the asymptotic expansions, with Q = 1/r, yields

(n) — (n) (n)
_ n o n\ « n n+2 «a (d-2)
Cruru = E Z'E'rn/2+2(?)'rn/2+5 2 r/ +O0(r° )

- Z L (- ”Z) +O(r@-2) (6.54)

rn/2

For Couaa the relevant components of the Riemann and Ricci tensor have to be computed.
Since the calculation is very similar to the one for Couoy We skip the details and just state the

result:

1

(239,5A + Q0; ﬁA) + - (3QYAB) (Q}’Bcagﬁc p ) - (QﬁARQQ + RQA) .

CN‘QuQA = d

DN | =
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Therefore, the term ZrﬁAéru, A appearing in (6.53) is of order O(r_(d_z)) and will not contribute
in the end. We are thus left with only one term in (IT) which will be relevant. We summarize

what we have found so far:

d-2 Hd—
(I) — Y'4_d}/ (d 2))/AB(UI—Z) + O(r3_d)

8 AB
a® (n  n? o—d
=) —nlz+5)ror .

n

Plugging both terms into leads to

- 7 5 (6.55)

1 440ld=2 4, 4 sa-2 _ a™ (n n? _
'ug:d 3rd4[ " dYA(B )yAB(d z)_rZ _+Z +O(r3 d)

n

With this expression at hand we can now go back to and investigate whether taking the
limit leads to a meaningful expression for the Bondi mass. It is easy to see that the part from (I)
is well defined in the limit. To see that the same holds for (II) a closer inspection is necessary.
One sees that all terms with n > 2d — 6 are irrelevant since they vanish due to the limit. All
terms n < 2d — 6 diverge when taking the limit, but using the relation (6.18), i.e. «™ o« D4 [31(4"),
it is possible to write all of these terms as total divergencies which vanish under the integral. To
see this recall that, in general, for a Levi-Civita derivative V of some diagonal metric h we have
Vavp = 040 — l"acbvc and d x v = V,0%V|h|d"x. For the metric s4g with covariant derivative
D4 this leads to
D*fa = 0" Ba - 5" T phe

1
= 0B — BesSEIsap + 5 Bes*BaCsap
and for the metric yp, with covariant derivative D4,

D*Ba=0"fa~y"PTiphc
1
= 0"Ba— Py Eotyar + EﬁcYABac)/AB

Since, by Lemma

we have DAﬁXC) = Z)Aﬁgk) for 0 < k < 2d — 5. Therefore, the terms

k -
.Z)A (% )\/)7dd 2x,
%(r,0)
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with dS; = \/Ydd_zx plugged in, vanish. Hence, the only term which does not vanish is the one
where n = 2d - 6.

Thus, we finally arrive at the expression for the Bondi mass

1 "d— _ _ -
ms = -2 [ [su_sz;’ Dy ABID) _ 2-0) | gt (656)

where the measure is found by using that y = 0 for 1 < n < 2d — 5 and hence, after taking

the limit r — oo,
= \yd¥ %% ~ Vsd¥2x

In particular, this shows that the limit in the definition of my exists.

Part 3. To proof the mass-loss formula, we look at the uu- and rr-components of the
Einstein equations. Together, they yield an expression which connects the integrand in the
Bondi mass to the Bondi news tensor. This yields the desired expression for the mass loss.

We start by taking the derivative of my;:

d

a (d-2)AB /(d=2) | (d-2)AB /"(d=2)\ _  r(2d-6) d-2
dumz— (d-2) f[ - 3)()/ Yap tY YaB ) a ]\/gd x. (6.57)

To bring this into the claimed form we use the Einstein equations. At order r~N, where N = d—2,

we have

1 ” ” , , _
Ruy = =3 (485 + y A8 J0) - 2y 0By 0 4 (3 - 20N 4 Do =0 (658)

where w4 = r2D4q — r~1’A. From (6.20) we have

yeN) MY(N)ABYXZ)

8(d - 3)
and thus 10— 3d
"(2N - (N (N
Oy =5y = s Yy ) (6:59)

Substituting into yields

3d — 10 ., , , .,

@3 ( (N)ABYAéN) +y (N)ABYA(éV)) _ Y(N)ABYASBN) -y N)ABY (N) | 2(d — 2)a’ N2

3d —10-4(d =3) (nyap_m(N) | 3d —10—-2(d = 3) ,n)aB.«(N) -
= + ' +2(d-2)a’®N" =0
ad—3 ¢ as 4(d—3) Vap *2(d=2)a

We drop the total differential Dw,, which will vanish under the integral, in the following

computation for simplicity. We arrive at

(d_4)y/(N)AB /(N) (d 2)}/ N)AB ”(N S(d 3)(d 2)0{ 1(2N— 2)
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Adding (d - Z)y’(N)ABy;‘(g) on both sides and dividing by 8(d — 3) yields

(d=3) ,na_ ) _ ([d=2) nyag vy . (d=2) ,nyaB si(N) (2N-2)
Mo A s Aaini's —(d-2 .
4(d - 3) AB 8(d-3) 4B T 8d-3)" Vap —(d=2)a

We can plug this into and find

d 1 , 1
d_mz _ f_y/(N)AByA(llgV)\/gdd—zx __- fNABNAB\/Edd—Zx <o0.
u 5 4 4 5

In the last step we raised the indices of Nyp = _Y;x(g ~2) finding
NAB — SACSBDNCD — _SACSBD}/é(g_Z) — )//(d—Z)AB (660)
where the general fact

Oay™B = 8, (YACYBDYCD) = d, (YAC) vBPyep + yAcaa (}/BD) vep + YACYBDaa (vep)
=20, (YAC) vBPyen +rACyBPa, (yep) = 204 (YAB) +yAyBDy, (vep)
[

8¢

= 0ay*? = —y*“y"Pdaycp

was used. This shows that the change in mass is always negative so the mass can only decrease
or stay constant. This change is characterized by N4p and, in particular, dmy/du = 0 iff
Nag =0. O

This concludes the proof of the main results of this chapter. In this chapter, we investigated
the asymptotic expansion of the metric coefficients using the vacuum Einstein equations. The
main results are listed in Lemma [6.1] Using these results we found a generalization of the four
dimensional “Bondi formulas”, discussed in section in odd dimensions, namely a coordinate
expression for the Bondi mass, (6.2), and an expression for the change of mass over time (6.47).
We will discuss these results further in section where we also compare them to previous
results found by others. We now return to the issue of positivity and discuss in the next chapter

how a proof of ms > 0 can be established.
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Positivity of Bondi Mass

In this chapter we proof that the Bondi mass is non-negative, that is the Bondi mass is zero
for Minkowski spacetime and positive otherwise. This shows that there is a stable ground
state and that systems in higher dimensional general relativity are not inherently unstable. We
follow the idea of [[14]], who proofed positivity in d = 4, and [[19}|110]], who proofed positivity
in higher even dimensions. This method of proof requires that spinors exist on the manifold.
Thus, we start by stating the assumptions necessary to define spinors. Then, we derive explicit
expressions for gamma matrices. This is then used to show that the Bondi mass is non-negative.
More precisely, we want to proof the following statement.

Assume that there is a Witten spinor on the hypersurface H = {u = %} near infinity, that

there is a Killing spinor on (2, s) and that the results from Lemmal6.1 hold. Then, ms, > 0.

7.1 Spin structure, Spinors, Tetrad and Gamma Matrices

In this section we adapt the general definitions from chapter [3|to our coordinate system to
facilitate and enable calculations in the subsequent sections. First, we state our assumptions
about the spin structure on .#. Then, we choose an explicit tetrad system and define gamma
matrices in this system. Thirdly, an explicit formula for the spin connection is derived and,

lastly, the Witten equation is stated.

7.1.1 Spin Manifold

Let .# be a manifold with fixed spin structure. Consider the Clifford algebra Cl;_; 1(¢q,R")
where ¢ = —x§ + x} + ... + x%_,. There is an associated Clifford bundle CI(T.#) and locally,
at point p € .#, CI(T,.#) is generated by the identity and elements {e,, ..., } subject to the
relations
ey e, +e, e, =2g(ese)l, (7.1)
where e, p = 0,...,d — 1, is a basis of T,.# and I is the identity. The complexification of
CU(T.#) has its fundamental representation on a complex vector space and associated to this is
a complex vector bundle . (.#). Spinors are smooth sections of . (.#). Recall that on the
complexified Clifford algebra there is a positive definite hermitian inner product ¢, ) for spinors,
see section [3.3] such that
(¥, d) = ¥, (7.2)
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where ® € T'(.¥) and ¥ : .¥ — C. With this we can define the 2-form
Q(X,Y) =R [JY - Vxi) — yX - Vyy] (7.3)

on .#,where X,Y € T.#, R is the real part and V the spin connection.

7.1.2 Tetrad
Note that the unphysical Bondi metric is
Gapdx®dx® = —2Q%adu® - 2dudQ — 2Q sdudx? + yapdx?dx® . (7.4)

We want to define a tetrad with respect to g. That is we have a orthonormal basis of smooth
vector fields {e/;} where lower case latin indices are spacetime indices taking values {r, u, x4}

and lower case greek indices are tetrad indices taking values {+, —, I }ﬂ The tetrad is defined by

Gapeh e’ = & = M (7.5)
or, equivalently,
Gab = Auvéye, (7.6)
where
01 O
Aw)=[1 0 o0 [. (7.7)
0 0 &y

Therefore, we have the following conditions for {é’} which follow directly from (7.5):

ge,e)=1
G(e*, ) =g ,e7) =g, e =g .,é") =0 (7.8)
G(é', ey =65

As can easily be checked a choice consistent with these conditions is

& =98
&9 = Q%adl + g (7.9)
et = QBallAaE + 11494

This unusual choice of indices will be explained in subsection (7.1.4).
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where !4 is defined by 6;;//41/B := yAB. Lowering the spacetime indices with g, yields

el =du,
€, =dQ, — aQldu, — PaQdx? (7.10)
&l = I dxA

This choice for the tetrad {¢,} defines the “orthonormal” (see (7.8)) basis at each point of the

spacetime we will use. The advantage of using a tetrad system is that locally, at each point, we

can work in the tetrad system as if we were in flat space.

7.1.3 Gamma Matrices

Using this tetrad system the gamma matrices ¢ in the curved spacetime can be easily defined
as the Minkowski gamma matrices at each point in the tetrad system. It is not possible to define
them in a coordinate independent ways but a choice of coordinates, in this case of the tetrad,
has to be made. Let {&}} be a tetrad. At each point in spacetime the gamma matrices are defined

in the tetrad corresponding to the point, i.e.,

59 = 5,6M . (7.11)

where 0, are the gamma matrices in flat spacetime. Using (7.9), an explicit expression is easily
be found to be

5= 0,8+ 0.6 + 018" = (0, + Q’ao_ + QPac™) 33 + 008 + 5405, (7.12)
where 64 := [!40;. Lowering the index with (7.4) yields
Ga = 0-dra + (04 — Q%0 ) dug + (~PaQo_ + 64) dx;. . (7.13)

These are the expressions for the gamma matrices we will work with in the following to discuss
the Witten equation which will be used, similarly to the Einstein equations above, to find some

structure in the spinors we will be discussing. For this it is helpful to look at the different terms

in (7.12), that is

oy = 69 — Q%acY — QPac?, (7.14)
o_=d&" and (7.15)
54 = Mg . (7.16)

In accordance with (7.1), we know that the gamma matrices in curved spacetime, o, satisfy

{0a, 0b} = 29ap!, (7.17)
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which can also easily be seen from the corresponding well-known relation for gamma matrices

in flat spacetime

{op, 00} = 2/“';!1/1 (7.18)

using {04, 0p} = {0y, 0 Jeh e‘b’ and (7.6). This can be used to show that the commutation relations

[04,0:] = 2040%, (7.19a)
and

[0a,08] = —2040B + 2sapl. (7.19b)

hold. Furthermore, it is easy to check that

o, =d. (7.20)

7.1.4 Projectors

We now define projectors on .7’ (.#') and a matrix representation for these and for the gamma

matrices. The reason for introducing this will be explained in section[7.4] The elements

1
P+ = Eai cOF (721)

of CI(T.#) are projectors since P? = P, and P?> = P_ while P,P_ = P_P, = 0. The properties
of P, follow directly from the definition and the properties of the gamma matrices.
The projectors decompose .7 (.4 into two invariant subspaces .7.. Thus, we can apply the

projectors to the spinor and define
Yy = Puy. (7.22)

For the subsequent calculations it is advantageous to choose a representation of the gamma

matrices and the projectors. As can be checked, a choice consistent with the above definitions is

c7+i\/§(0 I), a_i\/a(o O) and aAi(FA 0) (7.23)
0 0 1

0 0 -Ta

for the gamma matrices, where {I'4, I} = 2s4pl#,, and thus

P+ﬁ(I 0) and P_i(o 0) (7.24)
0 0 0 I

[Ty =d-2. (7.25)

for the projectors. We have
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For the spinor we can write ¥ = (1, 1_). We conclude this subsection by collecting some

relations we will need later, which can easily be verified using the representation chosen:

Poyy=0 Py =12 (;) (7.26a)

Pioay = ( 0 ) (7.26b)
Tays

Py =0,Pyy=V2 (i_) (7.26¢)

P.o, =0=P,0_ (7.26d)

Note that applying P_ to ¢ yields y_ while applying it to o_¢ gives /.

7.1.5 Spinor Connection

We adapt the spinor connection defined in Def. to the present tetrad, where we follow
[111]], and derive the conformal transformation formula. For a vector field v* the covariant
derivative is

Vol = 8,0° + b 0° . (7.27)

Writing the vector in some tetrad, v* (x) = e} (x)v*(x), and applying the covariant derivative
yields

Vot = 00" + b, 0¥ (7.28)

where wgay, = %ezvaev p is a new connection similar to the Christoffel symbols in the Levi-Civita

derivative. These two expressions for the covariant derivative have to be equal, i.e.,
Vot = etV 0, (7.29)

which will be the case if the spin connection is defined such that the covariant derivative of the
tetrad is zero,
Vaeg = 8aeg - I“;bef + wgveg =0. (7.30)

In this case, V, and e#® commute and we obviously have (7.29). There is enough information
in to uniquely determine the Christoffel symbols (leading to the usual formula) and the
spin connection w}"’. Note that we still have V,gp. = 0. The spinor field /(x) is in the spinor
representation of the Lorentz group so let S, := [0, 0,] be the generator of the Lorentz group
in the spinor representation. Let / be a spinor and w, = @} S,,,. The covariant derivative of
the spinor is

Vo = 0 + walf . (7.31)
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Figure 7.1: Sketch of the hypersurface H defined in (7.35). The (d — 2)-dimensional surface
of constant (u, r) is represented by a point in this sketch. Here, H is sketched on the whole

spacetime but we will consider it only close to infinity.

With this definition we find that under a change of the tetrad by A(x) the covariant derivative
transforms as V,i/(x) — A(x)V,¢¥(x) if we require that (x) — A(x)y(x). Therefore, the
physics does not change under Lorentz transformations as desired. The commutator of spin

derivatives is [|81]] .
[Va, Vb]‘ﬁ = _ERabcdSCd¢~ (7.32)

We now turn to the conformal transformation of the spin derivative. The spin structure on
(A, §) is defined analogously to the one on (.#, g) and on M the unphysical spinor ¥/ is a
section in .. The physical and unphysical quantities are related by

Yy =QY% and &, = Qo,. (7.33)
Therefore, as shown in appendix [B] the physical and unphysical derivative are related by

Y~ 1 ~
Vo = r 12V, - 5-0a0"Y . (7.34)
r

7.1.6 Witten Equation

Let ¢ be a spinor. Consider the hypersurface defined by

1
H = {u - _} (7.35)
2r
near future null infinity, see Fig. We assume that i fulfils the pair of equations
d-1
0= Z e Ve (7.36a)
i=1
0=Ve. (7.36b)
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on H. Here, e is the unit future timelike normal at H and {e, .., e4_1} is a positively oriented
orthonormal basis of TH at each point. is called Witten equation. Note the similarity
to the Dirac equation (3.31). Essentially, we split up into a spacelike part, (7.363), and a
timelike part, (7.36b). The latter describes how ¢ is extended off H (due to ey being the normal
on H) while the Witten equation restricts the spinor on H. A spinor ¢ which is a solution to
the equations will be called Witten spinor.

7.2  Outline of Proof

We have now all tools at hand we need to proof the positivity. More precisely, we will now

proof

Theorem 7.1. Assume that there is a Witten spinor on the hypersurface H = {u = %} near
infinity, that there is a Killing spinor on (2, s) and that the results from Lemmal6.1) hold. Then,

my > 0.

The calculations to establish the proof are rather lengthy and will take up the remainder
of this chapter. However, the idea of the proof is relatively straightforward and similar the
the one in four dimensions, see section We start by showing that an integral at infinity
over Q, defined in (7.3), is positive. The argument establishing this result is essentially the
same as in four dimensions and we will only sketch the proof. It then remains to show that the
integral over Q is equal to the Bondi mass. Finding this relation turns out to be significantly
more difficult in higher dimensions than in four dimensions and the necessary calculations
are the main part of the proof. The reason for this is again that the relevant terms of in the
spinor expansion not of leading order (as in four dimensions) but “hidden” inside the asymptotic
expansion. The remaining steps of the proof are as follows. First, the relation of Q and ¢ at
a given order of r is investigated by assuming an asymptotic expansion of both. The result
is that, to relate Q to my, we need to find out more about the coefficients in the asymptotic
expansion of 1. This is a situation similar to the one in section [6.1| where we investigated the
coefficients in the expansion of the metric coefficients. We also proceed similarly. Instead of the
Einstein equations we now use the Witten equation to derive recursion relations. The results
are summarized in Lemma|7.3|in section This can be seen as an analogue of Lemma 6.1]in
section|[6.1] We proof Lemmal(7.3]in the sections[7.5H7.8] The last step of the proof is the to use
the results in Lemma [6.1]to show that the integral over Q is asymptotically equal to the Bondi

mass. This is done in section|7.9|and shows that the Bondi mass is non-negative.
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7.3 Positivity of Integral over Q

From the definition of Q we find

Quv = 2R {lpd[vvﬂ]lﬁ} . (7.37)

In the end, we want to show that an integral of Q over the boundary of H, written dH, is
positive. However, H is non-compact which complicates the discussion, so we first look at the
compact subset C C H and afterwards consider how the extension to all of H works. Q is a

2-form and dim H = dim C = d — 1 and thus dim 0C = d — 2, so we can integrate

f dxQ= | %0, (7.38)
c ac
where Stokes theorem was used. Thus, we want to show

Theorem 7.2. (7.38) is positive if the dominant energy condition holds and if the spinor { used in
the definition of Q fulfils the Witten equation.

Sketch of Proof The proof of this statement is due to [14,/81] and we only sketch the idea
here. For this, note that

Ouv = 2R {lﬁO'[vV‘u]lﬁ} = Vpwy (7.39)
holds, where
wh = gty (7.40)

is a non-spacelike vector as can be seen by computing w"w,. We take ¢ to be a spinor fulfilling
the Witten equation which means in particular that w" is divergence free, V, w” = 0. Thus, we

find for the divergence of Q the equation
VEQuy = VIV W, + 2 [VV,Vy] wh (7.41)

Using the commutator relation (7.32), the second term can be seen to give a contribution
~ G,,w” in the integral , where G, is the Einstein tensor. Since w* is non-spacelike, this
term provides a non-negative contribution if the Einstein equation holds and the dominant
energy condition is fulfilled. Using some basic spinor identities it can be shown that the first

term yields a positive contribution in the integral as well, one finds

osfd*Q. (7.42)
C

See, e.g., [|81}[83][112] for details of the arguments we sketched. O
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It remains to be shown that the non-negativity holds not only for the compact hypersurface
C but also for the hypersurface H we are actually interested in. For this, we follow the argument
of [19]. The problem with replacing C by the non-compact H in is that the integral might
become divergent. To see that this is not the case we choose a ry such that r < ry < co and

consider a subset H (ry) € H defined by H (ry) = 2(rp) = Z(%rg, ro), where X(u, r) is defined

as in chapter[5] Hence, we know

0< f *Q (7.43)
2(ro)

and we only need to show that taking the limit » — co does not lead to a divergent integral,

that is we want to show

lim r¢2 f Q (¢%,67) dS; (7.44)
3(r)

r—oo

exists. Here, we evaluated xQ and chose the tetrad (7.9). dS; is the induced integration element
on X. If there are future apparent horizons with boundaries .77 in the spacetime they are also

part of the boundary dH (ry) = X(ry) U (U;.74;). Imposing on each 7] the boundary condition

(e1 Aeo) ¥ =2y, (7.45)

where e; € TH is the normal of 7% pointing outward, the contribution of each future apparent
horizon to the integral over Q vanishes and we do not have to take it into account in the
following [[19, [87]. Therefore, we are at a point similar to theorem[6.2] where we had an integral
which, upon taking the limit r — oo, is potentially divergent. The solution to the problem will

also be similar. We will assume that there is an asymptotic expansion

Q~ ) Qrs2 (7.46)

neN

and then show that all terms of order < d — 2 are total derivatives which vanish under the
integral while terms of order > d — 2 are falling off fast enough and will not contribute in the
limit anyway. The crucial point is that the term Q¢4 is the only that does not vanish and, in
fact, yields the Bondi mass which will then proof that the Bondi mass is non-negative. Hence,
to conclude the proof it remains to be shown that the terms Q™ have indeed this form. For
this, we first take a closer look at the spinor ¢ and, in particular, the additional structure we
can find due to it being a solution of the Witten equation. This is done in the next section and
is, by far, the longest part of the proof. The result can be used to find an explicit expression for
the coefficients Q'™ thereby showing that the structure just described indeed exists and that
the integral converges with the limit being the Bondi mass.
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7.4 Spinor Recursion Relation

In this section we assume that the spinor ¢, which is a solution to the Witten equation, has an
asymptotic expansion. Then, recursively, we show that a lot of coefficients in the series vanish,
similar to the results in Lemma Recall that there is the relation gﬁ = r1/2y between the

physical and unphysical spinor. The ansatz we make for the asymptotic expansion on H is

P~ YU xt) i, (7.47)

neN

where we assume that each /(™ is smooth and satisfies
Voy™ =0 (7.48)

near null infinity. We will discuss this assumptions/condition at the end of section The

lemma we want to proof is

Lemma 7.3. Let{y be a smooth Witten spinor with asymptotic expansion (7.47). Assume that
(0 = ¢ is a Killing spinor on ¥ and that¢ =0. Then, forl <n<2d-3andn # d:

) \/_ {FAD g0 4 zy';s—Z)rBz)A Q +n;64d (-2 ()

A +
-2
+- I‘A [Z)ByAB — Z)Ay("_z)] J(ro) + n—< y("_z)lﬂz)} (7.49)
V2
(m _ —1 [10-n—-2d @ _6=d—n () (n4)  p(n-0)pA, () _ pA(n-4) (0)
— + r - V2D
+ \/Ef’l { 16 ﬂ ¢ \/5 a + ﬂA ¢— ﬁ A¢+
_ 1 1 _ 1
" FADAlﬁEn 2) _ $‘BA(n—4)DA¢J(r0) + Ercyglc 4)@31/42) 4= [ Y,(Ar; 4) Z)A}/(n_4)] FA¢£2)
1 1 n—4
/(n-2) 1 (0) (0) (n—4)_/(0) n—4)-ArB )
+ —y v, + —=a" ——y V4 —D ﬁ TAT
2V2 TooV2 n-2 " 2\f i
d
+ (1 - 5) \/§a<”‘4)¢i°)} . (7.50)

For n = d only the second equation holds while the first equation does not hold and the expression

in the bracket has to vanish. For n = 2d — 2, both equations still hold but there are additional terms;

the terms
n—2 _ 1 )(n/o—
4 ; yAB(n/Z—l)’Bl(gn/Z 1)‘/§DA¢JEO)—ZSDCYA(E/2 l)y(n/Z 1)FAFB\/-¢(0) 4 ,5 (d 2)¢_o) 7
(7.51)
have to be added in the bracket on the right-hand side of and the terms
1 AC(d—2) 1B ) 30d - 23d° (49 B n=2 (n/2-1) (n/2-1)AB.;(2)
+ I’O — At
YBC Y ¢ 64(61-2) ﬁ BC 16\/_ YaB }/ ¢
(7.52)
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have to be added in the bracket on the right-hand side of (7.50).

The proof of the lemma is rather lengthy and we split it up into several sections. First, in
section[7.5 we find an explicit expression of the Witten equation using the tetrad (7.9). Second,
some auxiliary calculations are collected in section|[7.6|for future reference. Third, we write
down the Witten equation at a given order »~"*/? in section [7.7| This is then, in the fourth and
last step in section[7.8] used to derive the equations stated in Lemma7.3]

7.5 Proof Lemma [7.3— Step 1: Witten Equation

To find an explicit form of (7.36a)), it is advantageous to first look at (7.36b) and use this equation
to find an expression for V, in terms of V, and V 4. In this and the following section indices are

raised/lowered by yap.

7.5.1 Equation (7.36b)

Define .
f=-u+— (7.53)
2r

such that the hypersurface is defined by the condition f = 0. The normal n, to this

surface can be found with the standard formula n, := d, f. Raising the index we find

Q4
n = ¢*%ng + ¢%¥n, = - (Za + ﬂAﬁA) - Q?

2
nt = g“%ng, = % (7.54)
Q3
A = gA%n = ?ﬁA

Now take the ey appearing in (7.36b) to be this n¢. Then after performing the conformal
transformation of V,, (c.f. (7.34)) the equation (7.36b)) reads
- P oae e - g .
V,=n%V,=n%V, - En“aaabvbr L= pav, - En“aacrg (7.55)

where 1/ was dropped for the moment. This equation of differential operators holds once it acts

on i from the left. Using the expressions for the gamma matrices in the chosen tetrad we found

in (7.12) and (7.13) we have the relations

ot 1
n606¢ = [? (20( + ﬁAﬂA) - Qz] [0'_0'+ + —ﬁAO'_&A] , (7.56a)
r
QZ
n“6,6% = - [Qzamo_ + QﬂA0+5A —aQ%_ o, - aQ3,BA0’_6A] , (7.56b)
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and
Q3
n6,46% = 7# [-QBac_o. = Q*aPso 6 + Gac, + Q*abac_ + QPs6ac®] . (7.56¢)

Adding the equations together yields

ar ~Q _ PO SN R Al s
n%c, 0" = o_o, |[-Q° + ZaQ + 5 A0L0_ + 00 5 afa—Q°fa
° Q3 Q3 Q4
+ 70{ﬁA5'AO'_ + ?ﬁAO'+5A + 7ﬁAC~)'A0+ + 7ﬁAﬁ35’A5'B . (757)

Using the (anti)commutation relations, see and (7.19), this simplifies to
Q4
n%,6% = Q*a — Q*c_o, — Q*fac 6 + 7/3A/3A. (7.58)
This can be plugged into (7.55) and, after some small manipulations, we find
S S - 1 -
oVl = (2 - 20% — Q2 BafN) Vol — QF o Vaj + (Qza + EQZﬁAﬁA) o, (759
Hence, we have an expression which will be used to replace all V,, occurring in the Witten

equation we will turn to now.

7.5.2 Rewriting the Witten Equation

An explicit expression of the Witten equation (7.36a) is derived now by using the tetrad system
and corresponding gamma matrices introduced above. Using the relation 6, = Qo, relating

physical and unphysical gamma matrices and the conformal transformation of Vi, see (7.34),

we have .

0=cbVyy = r 6PV, = r 1268 |V - PULL (Ver™) y)] (7.60)
and therefore the Witten equation takes the form

~bo T d ~r7
0=0"Vpy + 20 /28 (7.61)
r
Substituting (7.12) yields
.. - . d -
0= (o, + Q’ao_ + QBaG") Vay + o Vi) + 64V ,4y + 2—5% (7.62)
r

and now we can use to replace vV, ie.,
0= (0'+ + Q%ao_ + QﬁAé'A) ﬁglﬁ + [2 - 2Q%q — QzﬁA/)’A] 0'_691} - QﬁA(f_@Al}

. . d .
+ Qzaa_xp + &AVAxp + > (0'+ + Q%ao_ + Q,BA&A) V. (7.63)
r
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Hence, an explicit form of the Witten equation is

0= Qo Vol + (2 - Q%a - Q*Bap*) 0-QVay — Q*a5*Vay — Q*BAo_ Vi) + Q54V Y

- ‘EIW/J + %ay} - gQﬂA&Axﬁ. (7.64)

This is the equation we will work with for the remainder of the proof. Our goal is to treat this
equation similarly to the Einstein equations in the previous chapter. That is, we substitute the
asymptotic expansion of ¢/, i.e. (7.47), into and try to solve the equation recursively at
each order of r. However, we see that a problem/difference to the case of the Einstein equations
occurs. Namely, the coefficients 1(¥) (r, u, x4) in the asymptotic expansion of the spinor still
depend on r and are not independent of it as was the case for the asymptotic expansion of the
metric coefficients in (5.14). In particular, the series is not unique. We can only assume that
Vaoy® = 0 which contains information about the parallel transport of the coefficients /(¥) in
r-direction near null infinity. This has the following consequence. We cannot simply plug in
the asymptotic expansion into the Witten equation and read off the equation corresponding
to a given order of r since there will always be factors of r hidden inside ). What will be
done instead is applying the covariant derivative n-times to (7.64). In particular, the derivatives
will act on (%) and then we can use such that these terms vanish. This ensures that
powers of r hidden inside 1/¥) are taken into account appropriately. Unfortunately, the gamma
matrices also depend on r (since the tetrad does) and thus the derivatives also acts non-trivially
on them and, additionally, Vg and V4 do not commute. This means that after applying the
covariant derivative to (7.64), we cannot directly apply but we first have to consider the
action of the derivative on the gamma matrices (which are always to the left of the spinor in
(7.64)) and the commutator of V¢, and V 4. This complicates the computation considerably since
the expressions arising are rather lengthy. Thus, we will do all auxiliary calculations in the
following section and collect all expressions (derivative of gamma matrices, commutator, ...)
that are needed later there. Afterwards we return to the Witten equation and, using the results

of the next section, apply the covariant derivative.

7.6 Proof Lemma |7.3— Step 2: Auxiliary Calculations

To find the Witten equation at a give order we need the nth derivative of the gamma matrices

as well as the commutator of @g and V4, we begin with the latter.
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7.6.1 Commutator Wrglz’ @A]

The general formula for the commutator of the derivative is
1
b = VuVy = VoV = Ruvaplo”, o’]. (7.65)

This is the only commutator we need to compute since, by induction, one can easily show that

the commutator of the nth derivative with respect to Q is

VAV AY = V00 ¢+Z( ) (Ve ) (VE " gaa) - (7.66)

The proof is simply by induction. Thus, we want to compute
8¢paa = ﬁméﬁaﬁwa, &’
= 2901 (R0, [6%, 6] + Ryo5[67, 651 + Ry, 5[4, 6°1) + gaaRly o [67,6€1. (7.67)
The commutators of the gamma matrices we need are
[62,6%] = [04 + Q2a0_ + QPacA, 0-] = [04, 0_] + QBA[64, 0_],

[6%,68] = [0+, 68] + Q%a[o_, 58] + QBa[64,55], and (7.68)

Additionally, we have to compute

.‘JNQAR/EAQu = 9~QuRuAQu = Ry,
.‘JNQAR/;QB = ﬁlme ’
QNQAR/LMB =RY,p. and
9~Q/1§/}ABC = ﬁlfwc’
so four components of the Riemann tensor are needed. From the Christoffel symbols one finds

by explicit calculation

~ 1 1

Ry = =7 00(QB)y " doyac + S95(Q4). (7.69a)
~ 1 1

Riirs = =506(van) + v dalyac)dalysp) (7.69b)

~ 1 1 1 1
Ryup = _Eaan(YAB) - EaAaQ(QﬂB) - 559(9205)59}’,43 + Zag(Qﬁc)'
1 1
(ZFEB - QﬁcaQYAB) — 192(Q64)0a(Qfp) + L da(ysp)-

(Y uyac — QB 0a(QB4)) . (7.69¢)
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and
- 1
RYgc = 0BOa|ycla + EaQ(Qﬁ[C)aIQIYB]A + aQ(YD[B)Fg]A , (7.69d)

where I“I?C = %yAD(aByCD + dcysp — Opysc) was used to keep the expressions shorter.
Now, we have all terms needed to calculate (7.67). Simply substituting the results for the

coefficients of the Riemann tensor and the commutators of the gamma matrices yields

1

8¢aa 30 (QPB)y"dayac + 02 (QﬁA)} : {[Cf+,0'—] + QB 0—]}

+

+

-1

{(9 YaB) + )’ 5Q(YAC)(99()’BD)} {[0+, P1+ Q*afo-, 6% + QBal6™, B]}
{ 8400 (yaB) — 0400 (QPB) — 00 (Q*a)dayap + aQ(Q,BC (ZFEB—Q,B aQYAB)
1
5

—200(QB)90(F5) + 50a(rsn) (1™ 0urvac ~ 0 0a(0) [0, %]
{5 BOjo|ycla + aQ(Qﬂ[c)amms A+ 0a(yp(B) C]A} - [65,6¢].

7.6.2 Derivative of Gamma Matrices

Now, the final ingredient needed is the action of 65 on the gamma matrices. The first derivatives

with respect to Q are as follows. For the r-component we find
V059 = Vo (57d05) = 6° (90d0y, - T5,d0,) = ~5°T2, = ~6908, - 512, - 6472,
= [200(9%0) + 0F"30(0B)| 6 +  [Ba + Q0apa - Pdaraw)] 5* (7700
while the u-component vanishes since
Voé" = -G"T%, = 0. (7.70D)
The derivative of the A-component is again non-trivial,
Vo = ~5"4, = 2y ""00(@Br)3" ~ 2y dayscs” (7.700)

Using this we can find the derivative of o, which is the component that actually appears in the

Witten equation. We have
690'_'_ = 69 (5’Q Q 0(0' - QﬁAO' ) = 696’9 - 69(920()5'“ - @g(QﬁA(}A)
1
= =590 (Qfa) . (7.70d)

The derivative of ¢_ is trivial since o_ = ¢*. This concludes this section collecting the results
of auxiliary calculations we will need when investigating the Witten equation which we will do

now.
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7.7 Proof Lemma [7.3— Step 3: Witten Equation at Order
r—n/Z

Now, we can go back to the Witten equation (7.64) which, neglecting the irrelevant term with
BapA, reads

0= QO’.{.%QI} + (ZQ - 930() U_ﬁQlﬁ + QzﬁAC}Aﬁgl} - QzﬁAO'_%AI/; + QCNTA%AI}

d - 2-d)Qa . d -

L4, g Bmda g dog sad (7.71)
2 2 2

We assumed that the physical spinor has asymptotic expansion (7.47) and thus the unphysical

spinor 1} = r'/2y has asymptotic expansion

g~ Dy (7.72)

neN
This can be plugged into the Witten equation. Then we look at the equation at each order of r
by applying Vz, where E = VQ, n times where we assume that 0 < n < 2d — 2. Additionally,
we will now use the results in Lemma 6.1] Since the calculations are rather lengthy we will look

at each term individually. The first term is

=) (Z)eg (0) 72 (QFaf) |

k=0

We have .
Xi=QVaf =y —éQ"/%p(") + Q29,0 (7.73)
ieN
where we substituted the asymptotic expansion for tﬁ Thus, using Vzo, = 2EVq0, and the

relevant expression derived above, that is

- 1
Vao, = —509 (QB4) »

we find
I=0, VX + Z (Z)eg (o) V2kx
k=1
=0, VIX + Z (Z)%g—l [-Eda (Qpa) 64| VEFX
k=1
=0, VIX - (Z)ﬁg—l [E00(Qp4)] 54VE*X + O(higher order terms), (7.74)
k=1
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where "higher order terms" refers to terms including factors of BA00(QB4) or fBaq YaB. Now,
we only need to substitute the asymptotic expansion (5.14) of the metric coefficients, take r — oo
(by which the higher order terms vanish) and use @ggb(") = 0. Doing this leads to

n
n n—k
Ilyosee = 1! o™ —nigt Y — 52y k) (7.75)
k=1
The next term is

=Y (Z)a’g(z — Qa)o VT H QT o) = 297 (QT o) -
k=0

n
(1)t o5t @i,
k=0
where we again used that all derivatives of 6_ vanish. Substituting the asymptotic expansions

of the spinor and a, taking the limit » — oo this is

n—4

oo = nnlo ™ —nlo_ >
k=1

aARy k) (7.76)

N | A

Continuing with
n

. Mgk ~ A\ vn-k 2% ./

eSS (k)VE (Bac?) VA (Q*Vqay)
k=0

we need to use (7.70c) for the derivatives acting on 54 but all terms which enter this way will

vanish in the end since their order is too high, as can easily been seen, so keeping only relevant

terms yields
n

m= > (k)a" (Ba) 64VEH(Q*Vqy) .

k=0

The same steps as before lead to

n-3
n=m=2 (m).A, (n-m-2)
~ ! - - = m
I, . = n! E:O 5 By oy . (7.77)

The fourth term is .
IV = - (n)ﬁé (Q*40 ) VEKV 4y .

k=0 k
and we find
n—4
IV, 0 2 =nl )" pAM g D yym) (7.78)
m=0

with an additional term +”T_zn!yAB("/Z_l)/fl(sn/Z_l)O'_Z)Al//(o) if n = 2d — 2 The fifth term reads

V= VE(Q54VaY) .

87



CHAPTER 7. POSITIVITY OF BONDI MASS

n n—k
= (Z)&é (Q&A) 6/‘6%_’(& + . (Z) (n : ]C)ﬁ]é (Q(}A) (6g—k—i¢) 61‘5—1¢5A

V.a V.b

we need to use derivatives of the commutator ¢q 4, that is, we need the relevant terms of (7.66)

to evaluate V.b. The relevant terms of V.a are found by analyzing @é (Q&A). We have

65 (Q&A) = Z(k Ii Z)Vk 3 ( O'_aQ(Q,BB) —=s CagyBco ) (7.79)

which, after a short calculation, yields

1 n—4
Val, e = 062D,y — En!sABa_ Z /31(3'")1)141//("_4_’")

1
+ En'sAB &€ Z Y Dy =2 (7.80)
and if n = 2d — 2 there is additionally the term
+- n'ygé 2 yAC [@-2589),y© (7.81)

The term V.b is more complicated. Using 2E¢q4 = ¢=4 we have

Vb—zzn:Z(”)(” ) £ (Q54) (V241 V51 (Edaa) . (7.82)

k=0 i=1

and define the abbreviation

n n-k
C(X) = 2 (”)(”_k)ﬁg( A) (V21y) V51 EX). (7.83)

k=0 i=1 k !
We now look at the terms appearing in ¢o 4 and the relevant contributions are as follows. We

have )
VL (Z05(QB4)) = j;‘)%a +2) +O0(E) (7.84a)
and plugging this in we find

n—2

i+2 o
~ n‘Z > 1(41) A[O'+,O'_]¢(n 2—1i)

i=1

d
+ gn!ﬂc(d D258 6, 0 1y (7.84b)

C (94(Qpa)[or.0-])

r—o00
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where the second term is only for n = 2d — 2. Next, there is the term

VLY (2,00 aB) = 0 uyAB +0( ) (7.85a)

which yields

C( 250,00y ap) 520 |_} ~2n,z},(z) 54685 ¢(n 2-i) _ 2 y;‘(g/z 1)/1(3;;3/2 VsAsB, ¢(o)‘

(7.85b)
with the second term again appearing only if n = 2d — 2. The term
VEYEd0(Q%a)dayas) = a Oy 2> =2 o0E) (7.86a)
gives only
n-2 i—9 . )
C (2800(Q’@)dayaps®o )| | =nt Y 4a®—=y V54550 y2D - (7.36b)
—00 i
i=1
Using
6;‘1(56A69(Qﬂ3)) (')A[)’(l 2 +O0(28) (7.87a)
one finds
C (220400(QBp)5%0-)| _  =n! Z 2D, U 54580y (=20 (7.87b)
The contribution from
VL (Ed80ajyc1a) = 5[BYC]A 5t O(E) (7.88a)
is
n-2 ) '
C (Edsdiayca)[5®,6°1)] = n! Z; 2Dy, 646 Gy (7.88b)
i=
The second-to-last term reads
. i—1
Vs 1(569)’BF}’FC5uYAc) = Z TSFCYI(;F auYAc( D'+ 0(E) (7.89a)
leN
and contributes
C (—EaQYBFYFcau)/AC&BOL) e & - CD)/;‘(g/Z l)yB'gz V5A5Ba_ l//(o). (7.89b)
if n = 2d — 2 and its contribution vanishes otherwise. Finally, we have the term
S i+2 _
9L @) = vz i 0@ (7.90a)
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with corresponding contribution

n-2
C(ZE&éyAB&Bm)L_m ~ n!22(1+2)y(l+2) 468 o, 2 > Z CD]yX():yBDa &Boy®
i=1 i+j+k=n

(7.90b)
with %n!a_c}B o B (d_z)yf(‘i_z)l//(o) as a third term if n = 2d — 2. All the other terms appearing
in ¢oa give only vanishing contributions in the end and we do not write their explicit form

here. Taking the prefactor % appearing in ¢q4 into account we can sum all the contributions up

thereby obtaining

i+ 2 (i) ~ 2 i i—
6'AZ[IT X)[O'+,O'_]+2)/A(B)O'BO'_+4OCO)I yABZ) Bo_ 420D [3 D5Bg_

-
+ 21)[3)/8) € +2(i + 2)y IEZ)JBG ]tﬁ("_Z_l) - ;l— Z sPj Y%Y}(;BG &Boy®

i+j+k=n
0 _
AC BD _¢ AC

_zn!O'_&BO' ﬂA(d 2) d 2) 1//(0 }

+ {—%H!SDC)/,(”/Z_D (n/2- 1 /(n/2-1) (n/2 1)O_A (0)

d .
+—n1pCd2y D585 o Ty O +

64 if n=2d-2
(7.91)
where the terms in the curly bracket are there only if n = 2d — 2. Using the identities
A B_1 A, 1 B A _ 1l A _B AB
YABo 0 = _}/ABO' o2 +§)/BAO' o = EYAB {O' , O }ZYABS . and
D(BYc] 4086BsC = [Z)B)/AB - Z)Ay] o
we can rewrite this to
AR 42 0 /(i) ~ B 0l=2 (i-2); (i-2) ~ B
Vb, e = gO’ Z {Tﬁ [o,0-]+2y,50 0 + 4af ) ——VYaB —+2Dappg _
i=1
. . . —o_py ! k i
49 [DBYX; _ DA}’(l)] +2(i+ Z)YX;Z) BO'+} lp(n 2-i) _ % sCD;j Y%Y};D)UAUBU lﬁ( )
i+j+k=n
! ’n/o— 1) 4 - d
" {_%SDCYA(S/Z l)yl(;b/z 1)O_AGBO__¢(0) 4 an!ﬂc(d 2) YBdc 2) ~ B[O_+’O__]¢(O)
+d_2 \~ ~B A(d-2) ., (d=2) ; (0)
nlo_6-o.f yAB 1 . (7.92)
2 if n=2d-2

where for the terms in the curly bracket holds the same as above. Now, adding and
yields the full expression for V. The sixth term of the Witten equation is

__d C Mok _ gn-k 7
VI = —EZ(k)VEm,VE ¥
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and, after taking the limit, we find
VI, e = —ﬂn!(w(") + L DB PaAynm) (7.93)
2 47 L47A

with an additional term —%n!%ﬂc(d_z)yf(‘dc_z)&‘éxl//(o) if n = 2d — 2. The second-to-last term is

_[(,_4 O (1) ek on—k (2.7
VII = (1 2) 2, (k)VE (ao-) Vg Q%)) .

It can be rewritten as

d\ < - -
VII = (1 - —) (") (0ka) o_VE*(Q%)
2 k) VS .
k=0
and thus
d n—4
VII|, o = (1 - 5) nlo_ Y qMyn=t-m (7.94)
m=0

Finally, the eighth and last term is

VI := —g > (Z)vg (2B16%) V2K

k=0

which is equal to

n k
VI = —g > (Z) > (I;)é‘é (QBa) (VE75*) Viky.

k=0 Jj=0

Therefore, the result for the last term is

d
VI, > —onl 3 fe g (7.95)
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and if n = 2d — 2 one has to add the term —%n!ﬁB(d_Z)yi%_z)éAlﬁ(o). Now we have found all

contributing terms. Adding the eight terms together and dividing by n! yields

n Yk
- (n) _ 54 (k 2) 1 (n—k) _ £ g (n=4=k) (k)
0= 5 oy E Pl +no_yy\™ - o_ E 5@ v

k=1
n_m_z ) (n-m-2) _ A(n—4—m) (m)
+ Z . Ay Z B o-Day
-2
+6_ADA¢(H—2) - ZﬁBm)D l//(n —4-m) + AB Z m)Z) ])b(n 2—m)
m=1

1 + 2 | — 2
gNAZ{l ﬁA [cr+,cr_]+2yAB(7 By +4q 0% l yXBz)aBo_+21) ﬁ(l 25Bs
i=1

o 1 k
2D D] 2 e L3 Dyt
i+j+k=n
d n-2
——0'+1ﬁ")+ ZﬁAmZ nm)_'_(1__)0._20(m)¢(n4m_5 ﬁm~A¢(n_z_m)
=0
(7.96)

for 1 < n < 2d—2andif n = 2d — 2 there are the following terms added to the right-hand side.

n-—2 _ - d d-
YAB(n/Z 1)ﬁ(n/2 I)O'_DA‘//(O L= }’(c YACd -2)5B ¢ ¢(o)+ ﬁ Yé;c 2) ~ B[0+,0'—]¢(0)

4 B B 64
1 n(n/2-1 2-1 d d ~2) (d-2) ~ d d-2
4 DC}/A(g/ ))/BnD/ ) ~ A B _¢(0 zﬁC(d Z)YIE;C )O'A¢(O) _ Zﬁ B(d- yﬁ«B ) ~ Alp( )
d-2 -
+ Ta_5Ba+ﬁA<d—2>yA”j3 2y (7.97)
This is the explicit expression of the Witten equation at order "/ we wanted to find.
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7.8 Proof Lemma [7.3— Step 4: Recursion Formula Spinor

We know apply the projectors P, to the Witten equation to find recursion relations for the
components ¥, and _. Applying P, = 3o, - o— to (7.96) yields for 1 < n < 2d — 2

-m-2 —m—
¢(n FAZ k 2)¢+n k) Z n—-m ﬁfqm)rA j-n m—2)

m=0 2

e A L
+TAD (n-2) sABrC (m)Z) (n-2-m) _ % (m)pA,, (n-2-m)
¢ mzﬂ YBe A‘//+ 2 mZ:OﬂA l//+

t\.‘}

n—

1 i+2 n—2— n-2—i 2 n—2—i
2T { By 42 [Z)ByAB Day D] "2 4 2(i + 2)y (TP V2y! ’}
i=1
1 2 -
- $CDjyU) I PAPByR® _ Ly Z (m=2)pAy (n=m) (7.98)
i+j+k=n

where the relations in (7.26) were used. This can be solved for ¢£n) such that

V2
¢(n) { Z (k 2)¢+n k) 4 Z (m)rA (n m-2)

n—-2
+TAD ¢(n 2) 2 ABrC Z },gg)z)A%(rn—Z—m)

m=1

2
rAZ{” (l)¢+n21+2[Z)ByXI)3 Dayl ]¢<"2’>+2(i+zygg2r3x/'¢"2 }

1 €D 0) (K PATB () mzA<nm> m)An2m)
BT Z yAcyBDF r \/_1,0 ZﬁA r Z r .

i+j+k=n
(7.99)
Assuming that lﬁJ(rO) =€ and I,DEO) = 0 we immediately see that
yM =0 (7.100)
and v
l//£2 m D l// (7.101)
For n = 2d — 2 are additionally the terms
‘/5 1 (d-2) ac(d-21B d C(d-2),d-D B, 0
d—n\a'Bc ¥ “IrPD 64ﬁ roc T
d d (d-2 0 4 ,B(d-2). (d-2 0
e ﬂc(d Z)YAC A () 4ﬁB(d 2))’/(43 A J(r) (7.102)
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which have to be added on the right—hand side.
Applying instead P_ to (7.96) gives

IB(" 4)rAl//(2) + n\/§¢<n) _ \/En ; 40((0)¢ n—4) +,B(n 4)1—*A¢ ﬁA(n 4)\/_1) ¢(0)

+FADA¢£71—2) \/_ﬁA(n 4)1) IP(O) + = FC n—4) DB¢ (2)

1 - , _
+ gl‘A {——n ——Ba Py @ 4 gy o2 FB\/_r,b(O) + 40 y/({’; Ir8V2y® 1 20,0 TNy ")
42 I:DBYX;S 4) - D y(n 4)] w( } ﬁ(n 4)FA¢(2)
d
+ (1 - 5) V2a "y 4 ( )\/_ )y n=4) ﬂ(” ray® (7.103)
where again there are additional terms, namely
-2 1 , d-2
; }/AB (n/2— 1),5("/2 1\/‘9 ‘P DC}’A(g/Z 1)/("/2 1)I~ArB\/’ (0)+ ; rBﬁ (d 2)¢_0)’
(7.104)
if n = 2d — 2. We thus find for lﬂn) the expression
m _ V2 [rag - 2 1 n-apBpa,0 M4 sne2)pa ©
/a “d-n {F Dayy ZYAB I"D%, 16 .BA 1
A [ B, (n-2) (n-2)].,©0 . "= 2 (n-2) (2
+Zr [D Yap  —Dar” ]% + W}’n /A } : (7.105)
for 1 < n < 2d — 2 while for n = 2d — 2 there are also the terms
(d-2)_ AC(d—2)1-B 30d = 23d* [ c(4-2) (d-2)1B © - n—2 (n/2-1)_ (n/2-1)AB.;(2)
+ T Da _— r .
(7.106)

For lﬁJ(rn) we find for 1 <n < 2d -2
m _ —1 {10—n 2d
+ \/En

+ FADAI//(H_Z)

6—d— . -
16 ﬁ n— 4 FA¢(2 \/E na(o) _f_n 4) +ﬁ1(4n 4)1—\A¢£2) _ﬂA(n—4)—\/§Z)A¢_$—O)

\j_ﬂA(n 4)1) l//(o + FC (n 4)Z)B¢(2) + 1 [DBYXIB 4) DA}/(H_4)] I‘Awiz)
2

;L -2y Law)ﬂym—@ﬂ

22 V2 n-2 2\/-
+ (1 - g) \/Ea‘”“‘)xpio)} (7.107)

and for n = 2d — 2 the terms

n— 4 FAFB (0)

—D,p!

n—2 AB(n/2-1) g(n/2-1) o _ 1 f(n/2 1) AB(n/2 1,0 4 B pA(d- z) d -2)  (0)
+— B Day. Y o p Y-
2\/5 )/ B + \/_ AB
(7.108)
are added. This yields the expressions stated in[7.3] m]
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7.9 Existence of Integral

We can now go back to the integral (7.46) and show that the limit exists by deriving an expression
for the coefficients Q™ of the asymptotic expansion of Q. We have

Q(*.e7) =R (J& - Veryy — J&* - Vo) = R (V6,676 Vay — ;6”6 Vo))
=R (¢5509e+ﬂvg¢ + e 5 TV QY + E,54E VoY — YELHE T VY — YELGHETHV ¢)
Substituting the components of the tetrad we chose, i.e., (7.9) and (7.10), yields
Q(E*, &) = R (J6°Vay - 20Q°a6"“Vay — Qa6 Vay - y5“Vuy) . (7.109)

Replacing 6 and 6* with the corresponding components in (7.12) and using the physical
version of to replace V,,, found by repeating the calculation leading to for V,, gives

Q(*.e7) = R ( [ov + Q'ao + QPas?| Vay — 2§aQ’c_Vay - Qe Vay
—Jo_ [(—ZQza +2-Q*B*Ba) Vo - ZQ,BAVA] ¥)
=R (g&mVQl// + o [(Qza -2+ QZﬁAﬂA) Vo + ZQﬁAVA] Y- QﬁAlﬁ&AVQw)
= R (Jou.Vay + Jo_ (Q%a —2) Vay) .

Looking at the nth order we find

0, ) = VB ({4017 - 02 (40,02 =2 (40,4112

(7.110)
To bring this into a more suitable form we use the Killing-spinor equation
iA iA
Dxe = %X e o XDye = %X“I’ae. (7.111)
Thus, we have
iA
D€ = %(d ~2)e
and multiplying this by T2 Djp yields
iA d—2)2)?
TBDETADye = %(d — 2B Dge = —% (d 2)2q 0y
and hence
1
T8 D,Dpe = 5~ 2)2q 0y (7.112)
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This can be used to rewrite the last term in (7.110), where € = ¢£0) by assumption, as

a(0)< J(ro)’ in—2)>=<a(o) J(ro)’ in—2)> < - Z)ZFAFBZ)AZ)BE %n 2>

2

=~ (rr® D, 0pe.y" ") . (7.113)

Therefore,
o (e, &) = V2 9&( (O ) = (n + 2) (y O,y - (; oy (TT"DaDye, i 2>))
(7.114)

With ¢® = i/(V2)e this is

oM (et é7) = V2R ( l/}/n_< l//(n > (n+2) <e, J(r"+2)> (;_ 27 <FAFBZ)AD €, W(n 2)>)
(7.115)

In the last term, we can move one derivative to the second factor which produces a total

derivative,

Q(n) = V2R M_n <6, ;//E")> -(n+2) <6, J(rn+2

N "2 paps (Dpe. DAY ) + Do |,

)- (d— 2)?
I

! 1II

(7.116)

4 is some function. It turns out that, in the end, w* vanishes independently of its

where o
precise form so we do not explicitly write it here to keep the expressions shorter. It is only
important that D4w? is a total derivative. Note that in the following calculations many total
derivatives will appear and we will always add them to D4 without explicitly mentioning it
every time and hence the exact form of w” might change from line to line.

Let (e,€) = |€|* € R, 1 < n < 2d — 4, and recall that gbio) =€ and l//£2) = iA/(V2)e. We will
now use the recursion relations in Lemma [7.3|to show that can be brought in a form
such that the integral exists and is equal to the Bondi mass. Since the expressions are
again rather lengthy we consider the three terms I-III of independently. For the term I

we need

d— n n— n— n n—

— " (e, g = {FA<6 Dagld) 4 " ﬁ( DpA g2 4 L (DBYLBm Dy DA 2
+- Y,ExB T8 <e D4y >}

Since only the real part of term I will enter we only have one relevant term that potentially

could be of importance,

iAn m\ | iln 4 (n-2)
9&{zwl—n) (es” >}‘%{z<d-n)r (e Davt >}- (7.117)
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7.9. EXISTENCE OF INTEGRAL

A similar argument can be used to significantly reduce the length of the third term. For this

note that, since € is a Killing spinor, we have

iA(d—2)

I Dge =
A€ 2

(7.118)
and thus all terms of the form <e, FAZ)A6> are purely imaginary, thus not contributing to Q,

while terms
-2,
—|e

<FADAE, FB@BE> = - 4

(7.119)

are real and matter. Thus we have,

~(n - 2)R {141 (Dge, Z)Al//i"—”)} -

1 -

@rAFBFC?% <DBe, DaDy" 4)> -

d-2)%% ,,_ d—2)%2%(n-6 e d-2)32 ,_

_ ( 16) }/( 4) |€|2— ( 8()n_(4) )a(O)y( 6)|€|2+ ( 8) a( 6)|6|2

B (d—2)%22
16

8—d— )
T”aw)rArB% (Dpe, DY)

FAFBZ)A/?;"_@ le|? + O(total derivatives) .

We now consider term II which includes the scalar product

e R (1Y) = TR (e D) -

1 2—-d
/(n) 2
+ = E—
1}/ le 5 o

4—-d-— _ 1 _
— "a“’)%(e, DY 4 Z@Bﬁy APArB |¢f?

(n-2) |2 4 M8~ \/Ena(o)}/(n—Z) el? .
2n

We can now add all three terms together. Using the results of Lemmal6.1]and including all total

)

derivatives in Z)Awfqn , we see that, for 1 < n < 2d — 4, we have

oM = D4 (7.120)

Thus, for this range of n, Q(”) is equal to a total derivative and will therefore vanish in the
integral. Now consider n = 2d — 4. The above results for the terms I-III can be copied except

(d-2)AB,,7(d-2)

that there is now an additional term, the radiation term y Yap »in the component lﬁi").

Additionally, some terms which vanished before due to Lemma 6.1 are now non-zero. Taking

these small modifications into account we find

171 1 d-
QRd=H — |2 r2d=8) _ (g 9)4(2d=6) 4 5),(61—2)/413)(A<d el + DAoa . (7.121)

Vil 2 »
Substituting (6.20), i.e.,

y2d=) _ 3d - 10 AB(d-2), (d-2)
8(d —3) AB 2
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CHAPTER 7. POSITIVITY OF BONDI MASS

, this is equal to

Qd-9 _

(d-2)_ /(d-2)AB _ (d - 2)0((2d_6)] |6|2 )

f[ @

Choosing the normalization |e|? = V2/87 we therefore have

_ 1 d-2 d-2) s(d— _
Q(zd 4) _ g [g(d — 3))9(&3 Z)y (d-2)AB _ (d - Z)a(Zd 6):| ] (7.122)

Now, with (7.120) and (7.122)) at hand, we can use this result to evaluate the integral (7.46). We

immediately see that the integral does indeed exist since

lim [rd 2fQ(~+ 67)dS; ] fQZd Hfsd?2x (7.123)

r—00

Here it was crucial that terms Q™ with n < 2d — 4 are total derivatives since this are the terms
which would be divergent in the limit r — oco. But, by being total derivatives they, luckily,
vanish under the integral and (7.123) exists. Recall that we already showed in section[7.3|that

lim [rd_z fz 0", é‘)ng] >0. (7.124)
If we compare the expression for the Bondi mass my, of ¥ in and we see that
f 0425825 = my | (7.125)
)
Therefore, we find
ms >0, (7.126)

the Bondi mass cannot become negative in odd dimensions d > 5. This concludes the proof and

establishes the main result of this thesis. m]

In this chapter, we proofed that, if there exists a Witten spinor near infinity, the Bondi mass

is positive in odd dimensions. We discuss the result in the following chapter.
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CHAPTER 8

Discussion

This chapter contains a discussion of our main results and we compare them to the results of
other authors. Since the results in the chapters[6|and[7)are relatively independent we discuss

them separately.

8.1 Discussion of Chapter@

The asymptotic expansion of the metric components (5.14) we chose are similar to the ones
used by Tanabe et al. [[105]]. However, more assumptions were made in [[105]]. For example, it
was assumed by them that (in our notation)

yW=0 1<n<d-3, (8.1)

whereas we did not assume this but derived it in Lemmal6.1|from the vacuum Einstein equations.
The assumptions we made were basically all necessary for a Killing spinor to exist near infinity
which is crucial for our positivity proof and we do not think that they are very restrictive. In
particular, they include a spacetime which is asymptotically Minkowski as a special case. Our
computations and results are analogues to the ones by Hollands and Thorne [19} [110] who
considered the case of even dimensions. In particular, the Bondi mass takes the form
in both cases. Our expression for the Bondi mass and the mass-loss formula is also found by
[105], albeit by a different method with more assumptions and less explicit, see also [[106]]. This
and the reasonable physical interpretation indicate that, although was derived assuming
even dimensions, it is possible to use the result in odd dimensions, too. Since the same final
result, (6.45), was found in even dimensions in [19] it can be taken as a satisfying expression
for the Bondi mass in all dimensions d > 4. Setting Nsp = 0 one arrives at the ADM mass.
Looking at the results the reason for the difficulties which appear in higher dimension but not
in four dimensions becomes apparent. The physically relevant components of the asymptotic

2 at order r1-4/2,

expansion were found to be the Coulomb term a®*?=9), at order r*~¢, and yxll;
which appears in the radiational term. However, for d = 4 both terms are of the same order and
they are terms of sub-leading order in the asymptotic expansion. Thus, the terms which were
problematic by contributing potentially divergent terms to the integral defining the Bondi mass
are non-existent in four dimensions. Additionally, the results in Lemma (6.1) are largely trivial

in this case. In contrast, in higher dimensions there are potentially divergent terms which, as
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we showed in chapter[6] vanish, but this result is non-trivial since the physically relevant terms
are a priori “hidden” deep inside the asymptotic expansion and only the results of Lemma [6.]]
show that terms of higher order are vanishing or “irrelevant” (under the integral). However, in
the end, the final results may be viewed as saying that the physics is the same in all dimensions
meaning that a Coulomb term and a radiation term contribute to the Bondi mass and these terms
are the “relevant sub-leading order terms” (under the integral) in the respective asymptotic

expansion.

8.2 Discussion of Chapter

To show positivity of the Bondi mass we made two crucial assumptions. First, that there exists
a (d — 2)-dimensional, i.e., odd dimensional, spin manifold ¥ admitting a (real) Killing spinor €.
Second, that near infinity a Witten spinor exists. As mentioned, assuming that there exists a
Killing spinor on ¥ implies some restrictions on the possible geometries of . The reason and
theory behind this statement is briefly discussed in appendix (D). The result is that, if € is not
a parallel spinor, = can only be the standard sphere if d # 4m + 1,4m + 3, where m > 1 is an
integer [[113]]. In this case the manifold is Minkowski near infinity. If d = 4m + 1,4m + 3 there
are many more possibilities for the geometry of X. We only give a few examples, see appendix
(D) and the references mentioned there for more examples and further discussion. If d = 7, =
can be $? X S, For d = 9, it can, for example, be SO(5)/SO(3), Sp(2)/Sp(1) or the Aloff-Wallach
manifolds Ny ; = SU(3)/S, (k,1) # (1, 1) integers, where the inclusion S* — SU(3) is given by

Zk 0 0
ze o Z 0
0 o0 z Ik

[113]. Examples of possible geometries if 3 admits a parallel Killing spinor are given in [[114],
see also appendix (D).

A Witten spinor exists near infinity if there exists a solution of there. Note that we
did not proof that a solution of this elliptic differential equation exits. Thus, our proof of the
positivity rests on the assumption that such a spinor exists but a proof of the existence remains
to be found.

The difficulties of the positivity proof in higher dimensions are the same we discussed in
the previous section. Namely, there are coefficients in the asymptotic expansion of the Witten
spinor which are potentially divergent. As discussed in section showing the positivity of
the Witten-Nester 2-form is rather straightforward in four dimensions and not substantially

altered in higher dimensions. The difference between the dimensions only occurs in the step
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showing that the integral over Q is asymptotically equal to the Bondi mass. Thus, the main
part of chapter[7| was to establish Lemma (7.3), which was then used to show that the a priori
divergent terms in Q all vanish in the limit r — oo. In four dimensions these difficulties do
not occur and establishing that the Witten-Nester 2-form is asymptotically equal to the Bondi
mass is a result obtained relatively easily, but in higher dimensions this result is obtained only
after lengthy calculations. The modifications of the Witten’s proof [14] in four dimensions, see
section[4.3] necessary in higher dimensions due to the complications mentioned above were first
made by Hollands and Thorne [19] who proofed that the Bondi mass is positive in higher even
dimensions. Since they used the framework of conformal null infinity the result did not hold
for odd dimensions [[18]]. We adopted their arguments to odd dimensions essentially showing
that the results are not different in even and odd dimensions which is a non-trivial result since
it is not clear at all that this is always the case as can, for example, be seen from the existence
of smooth null infinity in all even dimensions but not in odd dimensions [[18]], or the discussion
of black holes in higher dimensions [[108]]. However, in the present case the results are very
similar in both cases. A crucial difference might be establishing the existence of a Witten spinor

since the proof in [19] does not carry over to odd dimensions.
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CHAPTER 9

Summary and Outlook

In chapter [3| we motivated and introduced the concept of Clifford algebras and some related
notions, most importantly how to construct a spinor field on an arbitrary spin manifold, in
particular on curved spacetimes, and the definition of a Killing spinor. In section Bondi
coordinates were introduced and used to define asymptotically flat spacetimes. It was discussed
why using the conformal framework is not desirable in odd dimensions. Section[4.2] contains a
discussion of why defining mass in general relativity is an issue and reviews the most important
definitions of mass in four dimensions, with the focus being on the Bondi mass. A brief discus-
sion of the numerous paper which established that the Bondi mass is positive in four dimensions
in section[4.3|concluded the first part. In the second part we derived a coordinate expression for
the Bondi mass and established its positivity in odd dimensions d > 5. Our assumptions and
general setup is summarized in chapter|[5] Section|[5.1|contains a brief discussion of gravitational
waves in odd dimensions and shows that the leading order component of the linear perturbation
is of half-integer order in r. This is as a motivation for our ansatz for the asymptotic expansion
of the metric coefficients in Bondi coordinates. This ansatz was used in section[6.1]to investigate
closer Bondi coordinates in odd dimensions in spacetimes where the vacuum Einstein equations
hold. With this, a coordinate expression of the Bondi mass was found in section Finally, in
chapter[7]we showed that the Bondi mass is positive in odd dimensions under some rather loose

assumptions. This establishes the most important result of this thesis which was discussed in

chapter

The most crucial open issue concerns the Witten spinor. We think that a rigoros proof of
the existence of such a spinor ought to be possible but it was not investigated in this work. This
result is necessary to complete the proof of positivity. Further investigation and justification of
the asymptotic expansion of the Witten spinor might also be interesting, for example, a
consistency check in the manner described in chapter[6] Furthermore, considering the case of
angular momentum, which is closely related to the mass, more closely might be insightful, some
results were already obtained by [105]]. Additionally, an analysis of the Hamiltonian framework
and the derivation of a geometric expression for the Bondi mass in odd dimensions is potentially
interesting. Finally, the relation of our results to supergravity was not considered in much detail.
As mentioned, the original motivation for Witten’s positivity proof came from supergravity
and the existence of Killing spinors and the geometry of X is closely related to this topic. A

discussion of this topic might be nice to see.
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Part III

Appendix
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APPENDIX A

Components of Riemann Tensor

Here, we collect the components of the Ricci tensor, adapted from [37]]. Indices in this chapter

are raised/lowered by yap, D4 is the covariant derivative of y4p.

-9 1 ) d-2. d—1 4. .
Rop=r Ba + 1 Z,BAYBCYBC i Pa+ T.BAYAB - YBCD[A)’lClB]]
s[_1s 1 BCp - Lep, 4 .1 cp. 4B,
r [_EﬁA + 50 (}’ ﬁc}’AB) — 2V VepPat vy Tvenp }’AB] (A1)
r4
Ry = =r’y*Pyap - 7 [ZYABYAB - }’CAYDBYABYCD] (A.2)

1 1
Rap = —;ﬁcﬁc)’AB +RaB — E,BAﬁB +(d = 1)D(pfay — 2(d - 3)ayas
1 1
— yasf“Pc - EﬁCDDYCD}’AB + EYCDD(Eﬁc)YAB

-2, 1 , 1 , 1 cp.
tri—vast E}/ABYCDYCD +5Dc (r“"Boyas) + EYCD)’CDD(Aﬂm

+yEE BeBryas + 0,(D(aPp)) + BaPr) — B Bavsc — (D Ba)imc — (d - 2)ayas

d-2 ) )
——ﬁ Beyas — yasay“Pyep — —YABﬁ BcypeyPE = 2yapa + yapB B Vep
_2 . ./ _ . ’ - ’ . 1 CD,,r Y

p ﬁE)’AB] +7 | yag —v© YD(A)’B)C + 4)’ Pyépyas + 4V YasYep

.. 1 . . 1 . ) .. 1 )
—ayaB — ZYCDYCDﬂE,BE)’AB - E}’CDYCD(X}’AB — ayAB — Ear(YEF,BE,BF))/AB

1 . 1. . 1 . . 1 L.
_EﬁEﬁEYAB - EﬁAﬁB - EﬁEﬁFYAEYBF + B Baym)c + EYCDﬁEﬁEYCAYDB
+aYCDYCAYDB] (A.3)

1d-2 -2 1
Ry = —-—ﬁ Pa+ TﬂAﬁA + EYCED(EﬂC) = v PranfBe

/ . L aB, s 1. 1 4z ,
+r [)’AB}’AB +y* Py apa + ZYABYABﬁCﬁc +2p%Ba + EYAB/J’A/J’B + EDAﬁA -(d-2)a
_ 1 . 1 .
—ay*Pyap - —ﬁCﬁCYABYAB + —ﬁAﬁB}/AB
+r? [——YCA}’D Byépias + y Byig—a - EYABYABQ - Z}’AB yasB<Pe - Ear(ﬁAﬂA)
(A4)
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APPENDIX B

Physical and Unphysical Derivative of Spinor

We want to derive (7.34), i.e., an expression relating

Vo =00 + 0oy and Vi = 8y + o) . (B.1)

If we subtract the second equation from the first this yields

(Va=Va)Y = (0g — @a)¥ (B.2)
since 8, = d,. Thus, we would like an explicit expression for
S v\ _ subg
Wg — Qg = s {r er’v, (reZ) —eH Van} [04,0v]

v o

where wj, —e”bVae and e = reé, used. Using A, = ey L1€va this can be rewritten as

b
1 ~
©q = o = 3 [PV ar + 6 (Y, - Va)éy | [0 0]

To further simplify this, we use the formula for conformal transformation of the covariant

derivative and find
Vo) = Vaé) — —r 254 (Va(r*Goa) + Vo (r*Gaa) = Va(r*Gav)) &
= @aeb -r" (5bVar +85Vyr — gabﬁcr) e,
Hence,
Wg — Og = % {r_l/l‘”Var —rlenb (SZ‘ﬁar + 52@5}’ - gaﬁcr) éé’} (o4, 00]. (B.3)
The first two terms on the right side cancel and the remaining expression can be written as
0 — (g = —%é”év (8697 - gb9er) [0 00

= %ég”éz] {ebr} [0y, 0]

= —%eay ;] {Vb } ({ov, 04} = 20,0,)

=~ (G ¥"r - 5 ) (B.4)
and therefore can be written as

Vo = Vi — zir {(Var) = 6465 (V27)} . (B.5)
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Substituting

one finds

This is equation (7.34).

. . . - o~ 1 - .
Vo = Valr29) = r20a + S 2 (Far)i

Vo = r'/? (W/} + zir&az;b(%"r)) .
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APPENDIX C

Local Symmetries and Conserved Quantities

In this chapter we sketch the construction behind the Hamiltonian formalism, which is used
to derive the geometric expression for the Bondi mass. As a motivation we show how the
symplectic structure of classical mechanics leads to the familiar equations that are usually
derived without reference to the underlying manifold structure, see e.g. [22,/115/|116]]. Then,
we review how to derive conserved quantities and, in particular, the Bondi mass in higher
dimensions. We skip many details, such as convergence issues, uniqueness etc., and refer to the

references [[17,[56|[117]], which we follow closely in the following.

C.1 Hamiltonian Mechanics and Symplectic Manifolds

As a motivation we consider the symplectic structure present in classical mechanics without
much rigor and the Hamiltonian to be defined is time-independent. Let M be a smooth manifold
and T* M its cotangent bundle called phase space. Locally, we have a chart on T*R" ~ R" xR"

with coordinates ((x'), (p;)). There is a unique 1-form on T*M and in coordinates the 1-form is
0 = pidx’. (C.1)

It is called canonical 1-form, Poincaré 1-form, Liouville 1-form or symplectic potential. The

latter name is due to the fact that the symplectic form can be defined as
w*=do =dp; ndq'. (C.2)

This is a symplectic form since dw? = 0 and w? is nondegenerate, that is
VE£03An: w (&, n) #0 (C.3)

where £, € TM (in local coordinates det w;; # 0) and thus (T*M, w?) is a symplectic manifold.
Due to this structure, to each vector ¢ tangent to the symplectic manifold at point x there is an
associated 1-form a)é on Ty M given by the formula wl () = w?(y, &) for all n € T,y M. Since w,y,

¢

is non-degenerate there is an inverse 0 of wgy, i.e. 0

wpe = 02, and this induces a (fiberwise)
isomorphism I : T:M — T, M. In coordinates, the isomorphism reads £¢ = ©%® (wé)b. That is,
if we have a 1-form there is a corresponding vector field. In this sense, the symplectic form
acts like a metric. We will now use this to make a connection with the usual Hamiltonian

equation of motions. Let H : M — R be a function. Then at each point there is a tangent vector
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I(dH), associated to dH, which defines a vector field I(dH) = Xy on M where 0?(Xy,—) =
a))l(H(—) = dH(-) or, equivalently, (Xp)¢ = w“b(ng)b. H is called Hamiltonian and the
associated vector field Xp; is called Hamiltonian vector field if there is a 1-parameter group of

diffeomorphisms g; : M — M induced by X such that

d
di t:Ogt x = Xpg(x) (C4)

This preserves the symplectic structure (g;)*®? = w?. An equivalent condition is Ly, »* = 0
and for d = 1 this is just Liouville’s theorem. g; is called Hamiltonian flow. To summarize, we

have the following maps
C(M) > H —%3 (dH), € T*M —1> (I(dH))* = (Xy)* € TM.

Now, solutions to the equations of motion are trajectories y : R — M which satisfy (dH), =
wqpy?. In classical mechanics, where y(t) = (p(t), g(t)) is some trajectory in phase space, this

yields the well known Hamilton equations

)'/=XH(x)<:>p=—i;L; and q:%, (C.5)
i.e,, y is an integral curve of the Hamiltonian vector field if and only if it solves the equations
on the right side. Using the usual definition H = ¢'p; — L one can also derive these equations
from computing §H using p' = dL/dq; and p' = dL/dq;, thus SH = §'5p; — p'5q; which gives
the same equations.
The Poisson bracket {—, —} of functions F and H is

{F,H} = 0*(Xp, Xr) = Lx.H (C.6)

and if {F, H} = 0 then F is constant along the integral curves of H and vice versa (essentially

Noether’s theorem).

C.2 Covariant Phase Space

In this section we define some general concepts generalizing the definitions in to theories
other than classical mechanics. In particular, the definitions are applicable to general relativity.
We follow [117] closely. There are not many references to general relativity in this section and
we will discuss the application of this general construction and its use in general relativity in
the subsequent sections.

We consider a d-dimensional spacetime M with topology R X 7~ where M is a globally
hyperbolic d-dimensional spacetime and each slice 7; of the foliation of R X 7" is a (d — 1)-
dimensional compact submanifold without boundary. ¢ : M — M is a field and the manifold .%
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is the set of all field configurations, i.e., ¢ is represented by a point in .%. In general relativity,
the field variable is the spacetime metric. There is an action S which is a functional on .%#,
ie. §:.7 — R, and it is defined by S[¢] = f o L where L is the n-form Lagrangian density.
The boldface implies that there is an implicit volume form, i.e. L = Le,, .. 4, With L the scalar
Lagrangian density. Thus, L is an example of a scalar density, which can be integrated over M. A

vector density ©? is defined similarly, ©? = v®

€q,...a, and this can be made into an (d — 1)—form
by contracting with the first index, i.e. v = oP €bay...ay- Thus, there is no notational difference
between d—forms, (d — 1)—forms etc., but it should be clear from the context what is meant by
a given boldface letter.

Let there be a smooth one-parameter family ¢(1) : M — M. The first variation of the

Lagrangian density about the field configuration ¢y = ¢(0) is

0L = iL = E(p)d¢ + dO(¢,5¢) (C.7)
A |2,

Here, §¢“(x) is a tangent to the curve c(1) = ¢(4, x) (with x fixed) in M at the point 1 = 0.
Thus, §¢“(x) may be viewed as a vector in the tangent space to M at the point ¢o(x). 6* is
called symplectic potential current density (which will be justified later). Since the action
at field configuration ¢, is stationary (dS/dA = 0) for all variations §¢¢ if and only if E,5¢¢ =
at ¢, the equation E = 0 is the equation of motion for ¢. We saw that the field variation §¢$¢
may be viewed as a vector in the tangent space to M at the point ¢y(x). A different point of
view is possible and often preferable. This perspective is to look at the variation §¢“ as a vector
in the tangent space to .% at the point ¢. Using an abstract index notation with capital roman
)A

letters for tensor fields on .#, we can write (6¢)” when we view field variations in this manner.

Now, take the equation (C.7) as defining for 0 and define the functional

9[¢“,6¢“]EL0, (C.8)

where the orientation is chosen to be n*e,, .. o, with n® future-directed and timelike. The so
defined 0 depends on 7 and is called presymplectic potential . Assuming that 6 is continuous
it defines a dual vector field on .%, denoted 64, and given by 04(5¢)* = 0[$%, 5¢*] for all (5¢)*.
Let d denote the exterior derivative on .% (it should always be clear from context if d is the

dimension or the derivative). Then there is a 2-form wap = wap) on .% defined by

wap = (d0)ap . (C.9)

(On the level of densities this is w® = 5,05 — 6,0;.) By definition it is exact (and in particular
closed) and called presymplectic form because it has all properties of a symplectic form

except that it is degenerate (any d¢* with support away from 7~ gives rise to degeneracy
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direction (§¢)“ for wap). This equation also justifies the name “presymplectic potential” for
0. Thus, (%, w) is a presymplectic space. There is a so-called reduction procedure, which is
used to create a symplectic space from the presymplectic space. The idea is to “divide out”
the degeneracies by defining an equivalence relation on .% by ¢; =~ ¢, if and only if ¢; and
¢, lie on the same integral submanifold of degeneracy vectors. A integral submanifold is a
higher-dimensional version of integral curves. Like integral curves, integral submanifolds are
also generated by/associated to a vector field and foliate M. In the present case one looks at
the integral submanifold corresponding to the degeneracy vectors; see [[117]] for the precise
argument.

Let T’ denote set of equivalence classes of .# and 7 : .# — T the map, which maps each field
onto its equivalence class. Assuming that I' has a manifold structure, it results in .# having
the structure of a fiber bundle over I' with projection 7 and the fibers being all the fields in
an equivalence class. Note that the procedure described is very similar to the construction of
principle G—bundles. We use the same index notation for tensors on I as for tensors on .Z.

Lastly, define the 2-form Q45 on T by
WAB = JZ*QAB . (C.lO)

Qup is closed (by construction) but does not need to be exact. Since we divided out the
degeneracies in this construction, we now have the symplectic manifold (', Q45). Note that

it depends on 77, as the definition of w does. We have the following chain of relations

Jr

0 v 4y Ty Q.

So far we have worked only with the second term in the variation of the Lagrange density
(C.7). Recall that the first term corresponds to the equation of motion of the field ¢, i.e., this
is the part where the dynamics (and physics) is “hidden”. Thus, to describe a physical system
we have to also make use of this equation. This leads to the physical phase space, the route
being as follows. Let . be the submanifold of . which consists of all solutions of the equation
of motion E, = 0. By restricting the above reduction procedure to .# we define I' = 7[.%]
which is a submanifold of T called constraint submanifold. Defining a symplectic form on T
in the obvious way, namely @ap = #*Qap, we have the physical symplectic manifold (T, Q45)
which, in many physical theories, is equal to the phase space. In particular, it can be shown that
the definition of (T, Q43) is independent of 7°. One may view I as the set of all kinematically
possible states while I consists of all dynamically possible states. That is, if both are not equal,
i.e. if T is a true subset of T, then there are (physical) constrains.

So far we only discussed Lagrangians and, to make a connection with classical mechanics and

conserved quantities (an example being the Bondi mass), we would like to define a Hamiltonian.
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34’

I
e

Figure C.1: Projection from space of all states .# and space of all solutions .# onto phase space

I and constrained phase space T, respectively.

It is constructed as follows. Let t* be a complete vector field on M such that the diffeomorphisms
A(t) generated by t* map Cauchy surfaces into Cauchy surfaces. t¢ is called time translation,
although it does not have to be timelike. There is a 1-parameter family of field configurations
¢(t) = ¢ o A(t) (“time evolution”) and the associated variation is denoted 5;¢*. Assume that for
each solution ¢ € .% we have (5;$)* = t# such that 74 is a tangent vector field on .%. This
vector field represents time evolution on .% induced by t* and £, @5 = 0, since ¢ € .%# and
thus o is independent of 7. Now, assume that 74 is such that it has a well-defined projection
to a vector field T4 on T. If this is possible and T exists it represents time evolution on T and

L7Q4p = 0. Then, there exists a function H on I such that, evaluated on I', we have
(dH)a = QuT? & T4 = Q*B(dH);, (C.11)

which are Hamilton’s equations of motion. Such a Hamiltonian exists only if the projection of

the time translation vector field to I is possible, see [117]] for details.

C.3 Symmetries at Infinity

We now follow mostly [56]. Our goal is to define the Bondi mass. We have seen in the last
two sections that a Hamiltonian, which is related to a conserved quantity, can be associated
to a vector field. In the following sections we will show how this can be used to define the
Bondi mass, but first we have to describe more precisely the vector fields to be used. Let 8 be
a boundary of M such that M U 8 is a d-dimensional manifold with boundary. We consider
slices 7~ in the physical spacetime, M, which extend smoothly to 8 in the unphysical spacetime,
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M U 8, such that the extended hypersurface intersects 8 smooth in a (d — 2)-dimensional
submanifold, denoted 97 and called cross section of 8. 7~ U d7 is assumed to be compact.
An infinitesimal asymptotic symmetry £¢ is a complete vector field on M U B such that £¢
is tangent to B on B. £ is a representation of an infinitesimal asymptotic symmetry if its
associated one-parameter group of diffeomorphisms maps .% into itself. Equivalently, £¢ is a
representation, if the field variation Ls¢ with ¢ € . is a vector tangent to .%. In this way, the
vector field gives rise to the variations of the field ¢, which is the connection to the previous
section. Two representations £ and £’ are equivalent if they coincide on B and give rise to
the “same transformation” (see [56]] for details). The equivalence classes of representatives of
infinitesimal asymptotic symmetries are the infinitesimal asymptotic symmetries of the theory.
d¢¢ = Lr¢ may be viewed as the dynamical evolution vector field corresponding to the notion
of “translations” generated by £¢. Define the Noether current (d — 1)-form (a vector density)

associated with £ by

J=0(¢, Lep) - ¢ L=dQ (C.12)
Here, ¢ - L denotes the contraction of £ with L and we have the Noether charge
Q0= f Jj¥n, (C.13)
.

that is independent of 7~ only if ¢ € .%, since j is conserved in this case. If the time evolution
vector field induced by £ on T preserves the symplectic form Q45 the time evolution will be
generated by a Hamiltonian He. In this way we can introduce the notion of a Hamiltonian H

conjugate to the vector field £ (note the similarity to classical mechanics in section |C.1).

C.4 Hamiltonian associated with Symmetry

We now make the notion of a Hamiltonian He : .# — R associated to the vector field £¢ at time
7 more precise. However, as shown by [56]], a Hamiltonian Hy corresponding to a conserved
quantity exists in general only if the extension of @ to 8B has vanishing pullback to 8. This is
the case at spatial infinity but not at null infinity. Therefore, a definition of ADM mass is easier
than one of Bondi mass (especially in higher dimensions). We consider in the following only
the case of null infinity and show how an analog of Hy can be defined. We use the notation H;
for the “Hamiltonian-like” function to distinguish it from the true Hamiltonian H.

On B let © be the symplectic potential for the (at null infinity non-vanishing) pullback & of
the extension of the symplectic current form o to 8. We require © to be independent of the

the conformal factor. On B we have

(§, 019, 629) = 6:0(9, 629) — 5,0(¢, 61¢9) , (C.14)

113



APPENDIX C. LOCAL SYMMETRIES AND CONSERVED QUANTITIES

for all ¢ € .# and 8,¢, 5,¢ tangent to .%. Now, let H; satisfy

57{§=L75Q—§-9+f67_§-®. (C.15)

This defines a “conserved quantity” up to a constant, which is fixed by requiring that H;
vanishes for a reference solution (Minkowski spacetime). Note that #; is in general not truly
conserved because there is a nonzero flux F¢ on 8 associated with the “conserved quantity”.
The flux is due to radiation. If we make the reasonable demand that the flux and © vanish if

there is no radiation, thus in particular for Minkowski spacetime, one finds
Fr =0(p, L:¢) . (C.16)

This shows that © is directly related to the radiation present in the spacetime and the reason
why it has to occur in H; in the way it does. Note that, additionally, the flux vanishes whenever

&? is an exact symmetry, i.e. Lz¢ = 0, even if radiation is present.

C.5 BMS symmetry and Bondi Mass in 4 dimensions

Now, we can consider a spacetime which is asymptotically flat at future null infinity .#*. We
take § = Q%g, where Q = 0 on .#*, and .% consists of g. Now, explicit formulas for all forms
and quantities defined above can be calculated, e.g., there is the Noether charge

Qab [é{] = _ﬁeabcdvcfd . (C.17)

While it is straightforward to write down the expressions for w etc. on the physical spacetime, the
crucial issue is whether it is possible to extent the presymplectic current 3-form w continuously
to .# 7. It turns out that this is indeed possible and it is in general non-vanishing on .# . Thus,
a true Hamiltonian does not exist. Since the infinitesimal asymptotic symmetries are given by
the infinitesimal BMS symmetries we want to find the “conserved quantity” H; for each BMS
generator £% and each cross section 97 of .#*. Assuming that the vacuum Einstein equations
R.p» = 0 hold, one can define the Bondi news tensor Ny, on .# " and the symplectic potential
satisfies

O = —QN,;,690e® (C.18)

which defines © uniquely and €® is the volume form of dimension 3. Since the representative
of the BMS group is not relevant we can choose the Geroch-Winicour gauge V¢£, = 0 and thus

the “conserved quantity” is

5%:[ (5Q—§-0)+£f Napdg®te - e®, (C.19)
T Jar 21 Jr
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which is unique if the Minkowski spacetime is chosen as a reference where H; = 0 to fix the

constant. The flux formula is

F = O(gabs Legab) = ———Nap Legare™. (C.20)

321

To find the “conserved quantity” ¢ (and not just its variation) which has the desired properties,
[56] compare their results to the classical results of 58,60, 62] and show that the H; found
by them has to be the solution in the current case, too. This shows that the procedure is in

agreement with previous results for d = 4.

C.6 BMS symmetry and Bondi Mass in Higher Dimensions

Now, we finally come to the Bondi mass in higher dimensions. The idea of defining asymptotic
flatness and null infinity is similar to d = 4, see [[17] for details. The derivation of §H; is also
similar. As before, the crucial issue is to proof that a symplectic current has a finite restriction
to .# " and that there exists a potential © for the pullback of symplectic current density to .# ™.
Again, it is shown that this is possible. The news tensor is defined as follows. Let n, = V,Q,

choose any smooth covector field [, on M such that [,I* = 0 and n®l, = 1 at #* and set
Gab = Gab + 2n(alp) - (C.21)
For d > 4 the news tensor on .7 is defined by
= Q2GR Sn) (C22)

where {* is the pullback to .#*. This definition does not hold for d = 4. Similarly to d = 4, the

symplectic potential is defined as

1

_ cd (d-1)
= — N, " C.23
3271’GT cd€ ( )

Tap = Q7479/253,,. The variation of H; is

SH; = f (6Q-¢-0) + f Nggr¢de - €4V (C.24)
oT
which is the same as in d = 4, if the correct definition for Ny, is used. The flux associated with
&% through a segment S of .#* is

1

Fr=—— cdn eld1) C.25
& 327G SX cd€ ( )
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where yq, = Q (@0 2£§§ab- Again, the flux vanishes, if the news vanishes. So far, the
derivation was basically the same.

Now, consider the special case of “translational” asymptotic symmetries £¢ = an® — QV%a
for some function a. One can show that this is an asymptotic symmetry only if « has the
following properties. In the case d = 4, a can be any arbitrary function on a given cross section
of .#7* which is propagated along the null generator to other cross sections. The corresponding
symmetry is called supertranslations (this leads back to the BMS group). However, in d > 4 there
are only d linearly independent functions & allowed and the associated translational asymptotic
symmetries associated with these correspond to the d translational Killing fields in Minkowski
spacetime. Thus, there are no additional symmetries due to the asymptotic structure of the
spacetime, i.e., there is no analog of the angle-dependent translations in higher dimensions. If
a > 0 the asymptotic translations correspond to the future directed timelike or null translational

Killing fields of Minkowski. In this case (@ > 0), the flux formula can be written as

1
Fr=—-—— NN e <o0. C.26
£ = 320G J® cd€ (C.26)

Thus, the energy radiated away is always positive.

Since the goal is to derive an expression for s one cannot simply compare §H; to other
results (the linkage formalism does not seem to carry over to higher dimensions). Hence, the
above equation is not useful anymore and some additional steps are necessary to find H;. Take
a = const., simply to make the expressions shorter, i.e., ¢ = an®. The idea is to extend the
(d — 1)—form O, thus far defined only at .#*, to the entire unphysical spacetime, and then
define a new (d — 2)—form p that is related to © (but not simply equal to it, du # ©). Since ©
essentially determines the flux this can be used to rewrite down a different expression for the

flux. Then, it is shown that

Hg(B) = fg 7 (C.27)

for any cross section B of .#*. Substituting the definition of y this means that the Bondi mass

has been found, the result is

He = m L aQ (@9 (ﬁRabq“qbd(Vcld)nelf - Q_ll[eCf]denblcnd) €efay...ag s »

(C.28)
which does not depend on choice of I;, and where C,p.4 is the Weyl tensor. Note, that the
formula is not correct for d = 4. Thus, the Bondi mass is the “conserved quantity” associated to
the asymptotic time translation £ = an?®. the integrand of is equal to (6.41).
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Holonomy

We first define some special Riemannian manifolds. Again, we are not very rigorous. Then, after
defining the holonomy group, we briefly describe how to characterize Riemannian manifolds in
terms of their holonomy group. This can be used to classify all Riemannian manifolds admitting

parallel spinors. We state the result in the third section and give some examples.

D.1 Kaihler, Calabi, Yau, Sasaki and Einstein

Let (M, g) be a complex Riemannian manifold. A complex manifold “looks locally like” C"
similarly to how a real manifold “looks locally like” R". Let (M, g) be a real manifold then
(M, ], g) is a complex manifold where J is globally defined and fiberwise (on each tangent
space of the manifold) a linear map J : TM — TM with J? = —1, see [20,[113] for a rigorous
introduction to complex manifolds and for a discussion of the following definitions. If a smooth
manifold M admits a complex structure it must be even-dimensional. If at each point p € M we
have

GpUpX. JpY) = gp(X.Y) (D.1)
for all X, Y € T,M then g is called Hermitian metric and (M, g) a Hermitian manifold. Given

such a metric, we can define the anti-symmetric 2-form

which is called Kidhler form. A Kihler manifold is a Hermitian manifold (M, g) whose Kéhler
form is closed, dQ = 0. Then g is called Kéhler metric. By definition, the Kihler manifold is a
symplectic manifold. If (M, g) is a compact Kahler manifold with Ricci flat metric than it is called
Calabi-Yau manifold. A Kihler-Einstein metric is a Riemannian metric that is a Kahler
metric and an Einstein metric. The corresponding Kéhler-Einstein manifold has constant Ricci
curvature (by definition of Einstein metrics) and thus Calabi-Yau manifolds are an example.
For the last notion we want to define we need the following construction. Let (M, g) be a
Riemannian metric. Then, the Riemannian cone is defined as the manifold M x R>? with metric
t2g + dt? where t € R”? is a positive real number. Now, let there be a 1-form 6 on M. If the
2-form t2d0 + 2t0 on the cone is a Kihler form and if this makes the cone a Kihler manifold then
M is called Sasakian manifold. If the cone is additionally Ricci-flat then the manifold is called
Sasaki-Einstein. If the cone is hyperkahler (see below) then M is called 3-Sasakian. Since

Kahler manifolds are always even dimensional, Sasakian manifolds are always odd dimensional.
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Figure D.1: A loop on M at p lifts to a curve on TM and parallel transport of a vector around
the loop is possible. The vector is initially X but after transport along the loop it is X, and this

induces a linear transformation on T, M.

D.2 Holonomy Group

A Holonomy group can be defined very generally for a connection on a principal G-bundle,
but we will only consider the case of a tangent space and the Levi-Civita connection. The idea
is to capture some aspects of the curvature/geometry of the manifold in a group (via parallel
transport) thereby enabling the use of group theory to describe the geometry.

Let (M, g) be an n—dimensional Riemannian manifold with Levi-Civita connection V. Let
p be a point in (M, g), let {c()|0 < ¢t < 1, ¢(0) = c¢(1) = p} be the set of closed loops at p and
let X € T,M. By parallel transporting X once along c(t) we have a new vector X, € T,M, see
Fig. Thus, parallel transport along c(¢) with connection V induce a linear transformation
I : T,M — T, M. The set of these transformations is called holonomy group at p, denoted
by H(p), since it can be shown that there is a group structure on this space. See also [20 [26]]. If
M is connected (as we always assume) the holonomy groups of two points p, g of M are related
by conjugation and are thus isomorphic. Hence, it is not necessary to specify the base point
and we simply write H. Since the parallel transport preserves the length of a vector, that is
g(X,X) = g(II.X,I1.X), H is a subgroup of SO(n) (since we assume that M is orientable). It is
then possible to reduce the classification of Riemannian holonomy groups to representation
theory on T,M. The classification was largely done by Berger [118]. The result is that if a

Riemannian manifold is irreducible (the universal cover is not a Riemannian product) and locally
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non-symmetric (VR # O then the identity component of H must be one of the following ([26]])

dim M H Geometry

n S0(n) Generic

2m U(m) Kihler

2m SU(m) Calabi-Yau

4m Sp(m) hyperkahler

4m Sp(m) - Sp(1) = Sp1 X Spm/Z; | quaternionic Kéhler
7 G, exceptional
8 Spin(7) exceptional

Here, Sp(m) - Sp(1) is the image of Sp; X Sp,, € Spin(4m) under the map Spin(4m) — SO(4m).
G; is a Lie group which can be defined as the automorphism group of the octonions. A quater-
nionic Kihler manifold is a special kind of Kihler manifold, defined by this holonomy group,
and a hyperkihler manifold is a Ricci-flat quaternionic Kahler manifold and thus a special
kind of a Calabi-Yau manifold. To explain why those are the holonomy groups of the correspond-
ing geometry one can look at the additional structure defined in each case listed in “Geometry”
and see that the holonomy group is exactly such that it leaves the defining structure invariant.
For example, the holonomy group of a Kéhler manifold is contained in U(m), because this
group is the subgroup of O(n) which preserves J under parallel transport and thus the defining

structure of a Kdhler manifold is preserved by U (m).

D.3 Manifolds Admitting Parallel or Killing Spinors

Assuming that a spin manifold admits a Killing spinor yields rather strong restrictions on the
possible geometries of the manifold. They can be classified using the corresponding holonomy
group. First, we look at the case of parallel spinors and afterwards at Killing spinors with
A # 0. A spin manifold admits parallel spinors only if it is Ricci flat. [33] showed that an
irreducible, simply-connected Riemannian spin manifold spin manifolds admits a (non-trivial)

parallel spinor only if its holonomy group appears in the following table

dim M H Geometry
2m SU(m) c SO(2m) | Calabi-Yau
4m Sp(m) € SO(2m) | hyperkéhler

7 G, C SO(7) exceptional
8 Spin(7) € SO(8) | exceptional

IThe classification of locally symmetric spaces is due to E. Cartan but we will not need this case.
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where m > 2 and N is the dimension of the space of parallel spinors. See section 5 in [[114] for
examples of manifolds which have these holonomies. We will now turn to Killing spinors. It
can be shown that the case of Killing spinors on M can be reduced to the case of parallel spinors
on the cone over M, see e.g. [Theorem 14.2.1 in[113]]. This was used by Bér in [34] to show
that a complete simply-connected Riemannian spin manifold (M, g) admits non-trivial Killing

spinors if and only if one of the following possibilities is present

dim M H(g) Geometry

n id Sphere
4m+1 | SU(2m + 1) | Sasaki-Einstein
4m+3 | SU(2m + 2) | Sasaki-Einstein

4m+3 | Sp(m+1) 3-Sasakian
7 Spin(7) exceptional
6 G, exceptional

where m > 1, n > 1, and g is the metric on the Riemannian cone (which is necessarily
Ricci flat since the cone admits parallel spinors). S? X S°® is an example of an Sasaki-Einstein
manifold in 5 dimensions. Examples of the 6-dimensional case are given in [Theorem 14.3.12
in |113], they are SU(2) x SU(2), SU(3)/T? and CP3. For a discussion of the 7—dimensional
case see [[113], there are hundreds of examples and the classification is not yet complete. Some
examples are ([34]) SO(5)/SO(3), the squashed 7—sphere and Aloff-Wallach manifolds Ny ; =
SU(3)/S! where (k,1) # (1,1) and the inclusion S' — SU(3) is given by z — diag (zk, 2!, z_l_k).
Furthermore, examples of 3-Sasakian 7—dimensional spaces are ([Theorem 13.4.6 in [113])
Sp(2)/Sp(1), Sp(2)/(Sp(1) X Z3), SU(3)/(SU(1) x U(1)). Some examples of Sasaki-Einstein

7—dimensional spaces are given in [Proposition 11.7.2 in|113].

120



References

Kip S. Thorne. “Warping Spacetime”. In: The Future of Theoretical Physics and Cosmology.
Ed. by G. W. Gibbons, E. P. S. Shellard, and S. J. Rankin. Cambridge: Cambridge University
Press, 2003, pp. 74-104. 1sBN: 0-521-82081-2 (page .

Roy P. Kerr. “Gravitational Field of a Spinning Mass as an Example of Algebraically Spe-
cial Metrics”. In: Phys. Rev. Lett. 11 (5 1963), pp. 237-238. Do1:|10. 1103 /PhysRevLett .
11.237|(page[l).

W. Israel. “Event Horizons in Static Vacuum Space-Times”. In: Physical Review 164 (1967),
pp. 1776-1779. p0O1:|10. 1103 /PhysRev. 164 . 1776 (page 7).

Roger Penrose. “Gravitational Collapse and Space-Time Singularities”. In: Phys. Rev. Lett.
14 (3 1965), pp. 57-59. DOI:[10.1103/PhysRevLett . 14 .57 (page[7).

S. W. Hawking. “The occurrence of singularities in cosmology. IIl. Causality and singu-
larities”. In: Proc. Roy. Soc. Lond A300.1461 (1967), pp. 187-201. po1:/10. 1098 /rspal
1967 . 0164/ (page[7).

S. W. Hawking and R. Penrose. “The Singularities of Gravitational Collapse and Cosmol-
ogy”.In: Proc. Roy. Soc. Lond A314 (1970), pp. 529-548. D01:/10. 1098 /rspa.1970.0021
(page[7).

J. D. Bekenstein. “Black Holes and Entropy”. In: Phys. Rev. D 7 (1973), pp. 2333-2346.
DOI:|10.1103/PhysRevD. 7. 2333|(page[l).

J. M. Bardeen, B. Carter, and S. W. Hawking. “The four laws of black hole mechanics”.
In: Commun. Math. Phys 31 (1973), pp. 161-170. Do1:[10. 1007 /BF01645742| (page[).

S. W. Hawking. “Particle creation by black holes”. In: Commun. Math. Phys 43 (1975),
pp. 199-220. po1:[10. 1007 /BF02345020| (page 7).

R. Arnowitt, S. Deser, and C. W. Misner. “Canonical Variables for General Relativity”. In:
Phys. Rev. 117 (6 1960), pp. 1595-1602. po1:|10.1103/PhysRev.117. 1595 (pages

41).
H. Bondi. “Gravitational Waves in General Relativity”. In: Nature 186.4724 (1960), pp. 535—
535. por:|10.1038/186535a0|(pages [39).

A. Einstein. “Uber das Relativititsprinzip und die aus demselben gezogenen Folgerun-
gen”. In: Jahrbuch der Radioaktivitit und Elektronik 4 (1908), pp. 411-462 (page [g).

121


http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1103/PhysRevLett.14.57
http://dx.doi.org/10.1098/rspa.1967.0164
http://dx.doi.org/10.1098/rspa.1967.0164
http://dx.doi.org/10.1098/rspa.1970.0021
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRev.117.1595
http://dx.doi.org/10.1038/186535a0

REFERENCES

[13]

(19]

(23]

[24]

R. Schoen and S.-T. Yau. “On the Proof of the positive mass conjecture in general
relativity”. In: Commun. Math. Phys. 65 (1979), pp. 45-76. DO1:/10.1007 /BF01940959
(pages [9} [44).

Edward Witten. “A Simple Proof of the Positive Energy Theorem”. In: Commun. Math.

Phys. 80 (1981), pp. 381-402. pOI:[10. 1007 /BF01208277| (pages 9} [44] [45} [71] [78} [101).
S. Hollands, A. Ishibashi, and R. M. Wald. “BMS supertranslations and memory in
four and higher dimensions”. In: Class. Quantum Grav 34.15 (2017), p. 155005. DoI:
10.1088/1361-6382/aa777a, arXiv:1612.03290 [gr-qc]|(pages[9} 38).

G. Satishchandran and R. M. Wald. “Memory effect for particle scattering in odd space-
time dimensions”. In: Phys. Rev. D 97.2 (2018), p. 024036. D0O1:(10. 1103 /PhysRevD. 97 |
024036, arXiv:[1712.00873 [gr-qc] (pages[9] [49] 50).

S. Hollands and A. Ishibashi. “Asymptotic flatness and Bondi energy in higher dimen-
sional gravity”. In: J. Math. Phys 46.2 (2005), p. 022503. po1: 10.1063/1.1829152.

arXiv:|gr-qc/0304054 (pages[9] [30] [38] [53] [54] [63} [108] [115).

S. Hollands and R. M. Wald. “Conformal null infinity does not exist for radiating solutions
in odd spacetime dimensions”. In: Class. Quantum Grav 21 (2004), pp. 5139-5145. por:
10.1088/0264-9381/21/22/008| arXiv: gr-qc/0407014| (pages[9} [30} [53} [101).

S.Hollands and A. Thorne. “Bondi Mass Cannot Become Negative in Higher Dimensions”.
In: Commun. Math. Phys. 333 (2015), pp. 1037-1059. DO1:/{10. 1007 /500220-014-2096+

8l arXiv:|1307.1603 [gr-qc] (pages[9} [53}[63][71] [79] [99} [101).
M. Nakahara. Geometry, Topology and Physics. 2nd ed. Boca Raton, FL: Taylor & Francis,

2003. 1sBN: 0-7503-0606-8 (pages [118).

C.Nash and S. Sen. Topology and Geometry for Physicists. 3rd. London: Academic Press
Limited, 1983. 1sBN: 0-12-514081-9 (pages|[14] [23).

T. Frankel. The Geometry of Physics: An Introduction. 3rd. Cambridge: Cambridge Uni-
versity Press, 2011. DoI: [10 . 1017 / CaddressB09781139061377 (pages
108).

G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics. Vol. 2.
Dordrecht: Springer Netherlands, 2017. po1:10.1007/978-94-024-0959- 8 (pages(14]

TSN 3.

G. L. Naber. Topology, Geometry and Gauge fields. New York: Springer New York, 2011.
DOI:[10.1007/978-1-4419-7254-5|(page[17).

122


http://dx.doi.org/10.1007/BF01940959
http://dx.doi.org/10.1007/BF01208277
http://dx.doi.org/10.1088/1361-6382/aa777a
http://arxiv.org/abs/1612.03290
http://dx.doi.org/10.1103/PhysRevD.97.024036
http://dx.doi.org/10.1103/PhysRevD.97.024036
http://arxiv.org/abs/1712.00873
http://dx.doi.org/10.1063/1.1829152
http://arxiv.org/abs/gr-qc/0304054
http://dx.doi.org/10.1088/0264-9381/21/22/008
http://arxiv.org/abs/gr-qc/0407014
http://dx.doi.org/10.1007/s00220-014-2096-8
http://dx.doi.org/10.1007/s00220-014-2096-8
http://arxiv.org/abs/1307.1603
http://dx.doi.org/10.1017/CaddressBO9781139061377
http://dx.doi.org/10.1007/978-94-024-0959-8
http://dx.doi.org/10.1007/978-1-4419-7254-5

REFERENCES

[25]

[26]

[27]

[37]

[38]

H. Baum. Spin-Strukturen und Dirac-Operatoren iiber pseudoriemannschen Mannigfaltigkeiten.
Leipzig: Teubner, 1981. 1SBN: 3322005933 (pages[18] [23).

H. B Lawson and M.-L. Michelsohn. Spin Geometry. Princeton, New Jersey: Princeton
University Press, 1989. 1sBN: 0-691-08542-0 (pages 18] [21] [118] [119).

T. Trautman. “Connections and the Dirac operator on spinor bundles”. In: Journal of
Geometry and Physics 58.2 (2008), pp. 238-252. poI: https://doi.org/10.1016/j |

geomphys.2007.11.001|(page|[L8).

M. F. Atiyah, R. Bott, and A. Shapiro. “Clifford modules”. In: Topology 3 (1964), pp. 3-38.
DOI:[10.1016/0040-9383(64)90003-5 (page[18).

T. Friedrich. Dirac-Operatoren in der Riemannschen Geometrie. Braunschweig: Vieweg,
1997. 1SBN: 3-528-06926-0 (pages[22} [27).

R. Geroch. “Spinor Structure of Space-Times in General Relativity. I”. In: J. Math. Phys 9
(1968), pp. 1739-1744. DOI:10.1063/1.1664507| (page [23).

H. Baum et al. Twistors and Killing spinors on Riemannian manifolds. Stuttgart; Leipzig:
Teubner, 1991. 1sBN: 3-8154-2014-8 (page [27).

N. Hitchin. “Harmonic Spinors”. In: Advances in Mathematics 14 (1 1974), pp. 1-55. DOI:
10.1016/0001-8708(74)90021- 8 (page27).

M. Wang. “Parallel Spinors and Parallel Forms”. In: Ann Glob Anal Geom 7 (1989),
pp. 59-68. DOI:[10. 1007 /BF00137402| (pages[27}[119).

C. Bar. “Real Killing spinors and holonomy”. In: Commun. Math. Phys 154 (1993), pp. 509—
521. DOI:[10.1007/BF02102106|(pages[27} [120).

R. M. Wald. General Relativity. Chicago: Chicago University Press, 1984. po1:/10.7208/

chicago/9780226870373.001.0001|(pages 2830l [36] [38] 39] [42] [48).

A. Ishibashi. “Higher Dimensional Bondi Energy with a Globally Specified Background
Structure”. In: Class. Quant. Grav. 25.16 (2008), p. 165004. DOI:{10.1088/0264-9381/
25/16/165004. arXiv:/0712.4348 [gr-qc] (pages 28] [30} [63).

S. Hollands, A. Ishibashi, and R. M. Wald. “A Higher dimensional stationary rotating
black hole must be axisymmetric”. In: Commun. Math. Phys. 271 (2007), pp. 699-722.
DOI:10.1007/500220-007-0216-4. arXiv:|gr-qc/0605106|(pages[28] [30] [104).
Roger Penrose. “Asymptotic properties of fields and space-times”. In: Phys. Rev. Lett. 10
(1963), pp. 66—68. DOI:|10.1103/PhysRevLett . 10. 66| (pages|[28] 38).

123


http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2007.11.001
http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2007.11.001
http://dx.doi.org/10.1016/0040-9383(64)90003-5
http://dx.doi.org/10.1063/1.1664507
http://dx.doi.org/10.1016/0001-8708(74)90021-8
http://dx.doi.org/10.1007/BF00137402
http://dx.doi.org/10.1007/BF02102106
http://dx.doi.org/10.7208/chicago/9780226870373.001.0001
http://dx.doi.org/10.7208/chicago/9780226870373.001.0001
http://dx.doi.org/10.1088/0264-9381/25/16/165004
http://dx.doi.org/10.1088/0264-9381/25/16/165004
http://arxiv.org/abs/0712.4348
http://dx.doi.org/10.1007/s00220-007-0216-4
http://arxiv.org/abs/gr-qc/0605106
http://dx.doi.org/10.1103/PhysRevLett.10.66

REFERENCES

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

A. Ashtekar and R. O. Hansen. “A unified treatment of null and spatial infinity in general
relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at
spatial infinity”. In: J. Math. Phys. 19 (1978), pp. 1542-1566. DO1:10.1063/1.523863

(pages [B1).

A. Ashtekar. “Asymptotic Structure of the Gravitational Field at Spatial Infinity”. In:
General Relativity and Gravitation II. Ed. by A. Held. New York: Plenum, 1980, p. 37. por:

10.1002/asna. 2103020310 (pages[28] [29] [38] [41).
A. Ashtekar and J. D. Romano. “Spatial infinity as a boundary of spacetime”. In: Class.
Quantum Grav 9 (1992), pp. 1069-1100. DOI: 10.1088/0264-9381/9/4/019 (pages|[28]

9} ).

H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. “Gravitational waves in general

relativity. 7. Waves from axisymmetric isolated systems”. In: Proc. Roy. Soc. Lond. A269
(1962), pp. 21-52. DOI:|10.1098/rspa. 1962. 0161 (pages 30| [38H40).

R. K. Sachs. “Gravitational waves in general relativity 8. Waves in asymptotically flat
space-time”. In: Proc. Roy. Soc. Lond. A270 (1962), pp. 103-126. DO1:(10. 1098 /rspa .

1962. 0161/ (pages[30] [38H40).
T. Méadler and J. Winicour. “Bondi-Sachs Formalism”. In: Scholarpedia 11 (2016). po1:
10.4249/scholarpedia.33528, arXiv:[1609.01731 [gr-qc]|(pages[30] [40).

F.R. Tangherlini. “Asymptotic properties of fields and space-times”. In: Il Nuovo Cimento
27 (1963), pp. 636—651. DOI:[10. 1007 /BF02784569) (page 33).

Gary T. Horowitz and Paul Tod. “A relation between local and total energy in general
relativity”. In: Commun. Math. Phys. 85 (1982), pp. 429-447. po1:/10.1007 /BF01208723

(page34).
J. L. Jaramillo and E. Gourgoulhon. “Mass and Angular Momentum in General Relativity”.

In: Mass and Motion in General Relativity. Ed. by L. Blanchet, A. Spallicci, and B. Whiting.
Springer Netherlands, 2011, pp. 87-124. po1:/10.1007/978-90-481-3015- 3| arXiv:

1001.5429 [gr-qc]|(pages[35] [42).

Lasz16 B. Szabados. “Quasi-Local Energy-Momentum and Angular Momentum in GR: A
Review Article”. In: Living Reviews in Relativity 7.1 (2004), p. 4. DOI:|10.12942/1rr-

2004 -4/ (pages 35 [41).
A. Komar. “Covariant Conservation Laws in General Relativity*”. In: Phys. Rev. 113.3
(1959), pp. 934-936. DOI:[10. 1103 /PhysRev. 113. 934 (page [37).

124


http://dx.doi.org/10.1063/1.523863
http://dx.doi.org/10.1002/asna.2103020310
http://dx.doi.org/10.1088/0264-9381/9/4/019
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.4249/scholarpedia.33528
http://arxiv.org/abs/1609.01731
http://dx.doi.org/10.1007/BF02784569
http://dx.doi.org/10.1007/BF01208723
http://dx.doi.org/10.1007/978-90-481-3015-3
http://arxiv.org/abs/1001.5429
http://dx.doi.org/10.12942/lrr-2004-4
http://dx.doi.org/10.12942/lrr-2004-4
http://dx.doi.org/10.1103/PhysRev.113.934

REFERENCES

[50]

[51]

[52]

[57]

[58]

[59]

[60]

Andrzej Trautman. “Radiation and Boundary Conditions in the Theory of Gravitation”.
In: Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 6.6 (1958), pp. 407-412. arXiv:(1604 |

03145 [gr-qc]|(page[38).

J. Winicour and L. Tamburino. “Lorentz-covariant gravitational energy-momentum
linkages”. In: Phys. Rev. Lett. 15.15 (1965), pp. 601-605. DO1:|10. 1103 /PhysRevLett .

15.601|(page 38).

L. Tamburino and J. Winicour. “Gravitational Fields in Finite and Conformal Bondi
Frames”. In: Phys. Rev. 150 (1966), pp. 1039-1053. po1:/10.1103 /PhysRev.150.1039

(pages [38] [40).
J. Winicour. “Some Total Invariants of Asymptotically Flat Space-Times”. In: . Math.
Phys 9.6 (1968), pp. 861-867. DOI:[10.1063/1. 1664652/ (pages [38] [40).

R. Sachs. “Asymptotic symmetries in gravitational theory”. In: Phys. Rev. 128 (1962),
pp. 2851-2864. DOI:|10. 1103 /PhysRev. 128 . 2851 |(page [38).

Robert Geroch. “Asymptotic structure of space-time”. In: Asymptotic structure of space-
time. Ed. by F.P. Esposito and Witten L. Boston: Springer, 1977, pp. 1-105. 1sBN: 978-1-

4684-2345-7 (pages[38] [41).

R. M. Wald and A. Zoupas. “General definition of “conserved quantities” in general
relativity and other theories of gravity”. In: Phys. Rev. D 61.8 (2000), p. 084027. DoOI:
10.1103/PhysRevD.61.084027. arXiv:\gr-qc/9911095 (pages[38] [39] [63] [108] [112]
i)

A. Ashtekar. “Geometry and Physics of Null Infinity”. In: Surveys in Differential Geometry,
Vol. 20. Ed. by L. Bieri and S.-T. Yau. Somerville, MA: International Press, 2015, pp. 99-122.
DOI:110.4310/SDG.2015.v20.n1.a5, arXiv: 1409.1800 [gr-qc] (page.

R. Geroch and J. Winicour. “Linkages in general relativity”. In: J. Math. Phys 22.4 (1981),
pp. 803-812. DOI:10.1063/1.524987|(pages[38] [115).

P. T. Chrusciel, J. Jezierski, and J. Kijowski. Hamiltonian field theory in the radiating
regime. Vol. 70. Berlin; New York: Springer Science & Business Media, 2002. por1: 10 .
1007/3-540-45604-X (page 39).

A. Ashtekar and M. Streubel. “Symplectic Geometry of Radiative Modes and Conserved
Quantities at Null Infinity”. In: Proc. Roy. Soc. Lond. A376 (1981), pp. 585-607. DOI:

10.1098/rspa.1981.0109 (pages[39} [115).

W. T. Shaw. “Symplectic geometry of null infinity and two-surface twistors”. In: Class.
Quantum Grav 1 (1984), pp. L33-L37. Do1:|10.1088/0264-9381/1/4/001 (page 39).

125


http://arxiv.org/abs/1604.03145
http://arxiv.org/abs/1604.03145
http://dx.doi.org/10.1103/PhysRevLett.15.601
http://dx.doi.org/10.1103/PhysRevLett.15.601
http://dx.doi.org/10.1103/PhysRev.150.1039
http://dx.doi.org/10.1063/1.1664652
http://dx.doi.org/10.1103/PhysRev.128.2851
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://arxiv.org/abs/gr-qc/9911095
http://dx.doi.org/10.4310/SDG.2015.v20.n1.a5
http://arxiv.org/abs/1409.1800
http://dx.doi.org/10.1063/1.524987
http://dx.doi.org/10.1007/3-540-45604-X
http://dx.doi.org/10.1007/3-540-45604-X
http://dx.doi.org/10.1098/rspa.1981.0109
http://dx.doi.org/10.1088/0264-9381/1/4/001

REFERENCES

[66]

(74]

T. Dray and M. Streubel. “Angular momentum at null infinity”. In: Class. Quantum Grav
1(1984), pp. 15-26. DOI:[10.1088/0264-9381/1/1/005|(pages 39} [115).

A. Ashtekar and J. Winicour. “Linkages and Hamiltonians at null infinity”. In: J. Math.
Phys 23 (1982), pp. 2410-2417. DO1:[10. 1063 /1. 525283 (page 39).

C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. San Francisco: W. H. Freeman,
1973. 1sBN: 0-7167-0344-0 (pages [39] [48).

S. Carroll. Spacetime and Geometry. San Francisco: Addison Wesley, 2004. 1sBN: 080-538-
732-3 (pages [39] [48).

P. T. Chrusciel, J. Jezierski, and M. A. MacCallum. “Uniqueness of the Trautman-Bondi
mass”. In: Phys. Rev. D 58.8 (1998), p. 084001. Do1:'10.1103/PhysRevD.58.084001.
arXiv: gr-qc/9803010| (page [40).

R. Arnowitt, S. Deser, and C. W. Misner. “Energy and the Criteria for Radiation in
General Relativity”. In: Phys. Rev. 118 (4 1960), pp. 1100-1104. po1:{10. 1103 /PhysRev |

118.1100 (page[41).

R. Arnowitt, S. Deser, and C. W. Misner. “Coordinate Invariance and Energy Expressions
in General Relativity”. In: Phys. Rev. 122 (3 1961), pp. 997-1006. po1:{10. 1103 /PhysRev |
122.997 (page [41).

R. Arnowitt, S. Deser, and C. W. Misner. “The dynamics of general relativity”. In: Grav-
itation: an introduction to current research. Ed. by L. Witten. New York: Wiley, 1962,
pp. 227-264. DOI:[10.1007/510714-008-0661- 1, arXiv: gr-qc/0405109 (page [41).

T. Regge and C. Teitelboim. “Role of surface integrals in the Hamiltonian formulation of
general relativity”. In: Annals of Physics 88.1 (1974), pp. 286-318. DOI:|10.1016/0003~
4916 (74)90404- 7| (pages[41] [46).

R. Beig and N. O Murchadha. “The Poincaré group as the symmetry group of canonical

general relativity”. In: Annals of Physics 174.2 (1987), pp. 463-498. poL: https://doi.
0rg/10.1016/0003-4916(87) 90037 - 6|(page [41).

R. Geroch. “Structure of the Gravitational Field at Spatial Infinity”. In: 13.7 (1972),
pp. 956—-968. DOI:[10.1063/1.1666094 (page [41).

Abhay Ashtekar and Anne Magnon-Ashtekar. “Energy-Momentum in General Rela-
tivity”. In: Phys. Rev. Lett. 43.3 (1979), p. 181. po1:|[10. 1103 /PhysRevLett.43.181

(page[42).
R. Penrose, R. D. Sorkin, and E. Woolgar. “A Positive Mass Theorem Based on the Focus-
ing and Retardation of Null Geodesics”. In: (1993). arXiv:|gr-qc/9301015|(page [43).

126


http://dx.doi.org/10.1088/0264-9381/1/1/005
http://dx.doi.org/10.1063/1.525283
http://dx.doi.org/10.1103/PhysRevD.58.084001
http://arxiv.org/abs/gr-qc/9803010
http://dx.doi.org/10.1103/PhysRev.118.1100
http://dx.doi.org/10.1103/PhysRev.118.1100
http://dx.doi.org/10.1103/PhysRev.122.997
http://dx.doi.org/10.1103/PhysRev.122.997
http://dx.doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/https://doi.org/10.1016/0003-4916(87)90037-6
http://dx.doi.org/https://doi.org/10.1016/0003-4916(87)90037-6
http://dx.doi.org/10.1063/1.1666094
http://dx.doi.org/10.1103/PhysRevLett.43.181
http://arxiv.org/abs/gr-qc/9301015

REFERENCES

[75]

[79]

[80]

[81]

R. Schoen and S.-T. Yau. “Positivity of the total mass of a general space-time”. In: Phys.
Rev. Lett. 43 (1979), pp. 1457-1459. pOI:10. 1103 /PhysRevLett.43.1457|(page[44).

R. Schoen and S.-T. Yau. “Proof of the positive mass theorem. II”. In: Commun. Math.
Phys 79 (1981), pp. 231-260. DOI:[10.1007 /BF01942062|(page [44).

S. Deser and C. Teitelboim. “Supergravity Has Positive Energy”. In: Phys. Rev. Lett. 39 (5
1977), pp. 249-252. poI:[10.1103/PhysRevLett.39. 249 (page[44).

S. Deser, J. H. Kay, and K. S. Stelle. “Hamiltonian formulation of supergravity”. In: Phys.
Rev. D 16 (1977), pp. 2448-2455. Do1:[10. 1103 /PhysRevD. 16 . 2448|(page [44).

M. T. Grisaru. “Positivity of the energy in Einstein theory”. In: Phys. Lett., B 73.2 (1978),
pp. 207-208. DOI:|10.1016/0370-2693(78) 90837 - 7| (page [44).

G. T. Horowitz. “The positive energy theorem and its extensions”. In: Asymptotic Behavior
of Mass and Spacetime Geometry. Ed. by F. J. Flaherty. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1984, pp. 1-21. DOI:[10. 1007 /BFb0048063 (pages[44] [45).

J. A. Nester. “A New gravitational energy expression with a simple positivity proof”. In:
Phys. Lett. 83A.6 (1981), p. 241. DOI:[10.1016/0375-9601(81)90972-5 (pages

78).
R. Schoen and S.-T. Yau. “Proof that the Bondi Mass is Positive”. In: Phys. Rev. Lett. 48
(1982), pp. 369-371. DOI:10.1103/PhysRevLett . 48.369|(page [45).

W. Israel and J. M. Nester. “Positivity of the Bondi gravitational mass”. In: Physics Letters
A 85.5 (1981), pp. 259-260. DOI:|10.1016/0375-9601(81) 90951 - 8| (pages [45} [78).

M. Ludvigsen and J. A. G. Vickers. “The Positivity of the Bondi Mass”. In: 7. Phys. A14
(1981), pp. L389-L391. por:[10.1088/0305-4470/14/10/002| (page [45).

M. Ludvigsen and J. A. G. Vickers. “A simple proof of the positivity of the Bondi
mass”. In: Journal of Physics A: Mathematical and General 15.2 (1982), pp. L67-L70. por:
10.1088/0305-4470/15/2/003| (page [43).

G. T. Horowitz and M. J. Perry. “Gravitational Energy Cannot Become Negative”. In:
Phys. Rev. Lett. 48 (1982), p. 371. DOI:[10. 1103 /PhysRevLett . 48 . 371 (page [45).

G. W. Gibbons et al. “Positive Mass Theorems for Black Holes”. In: Commun. Math. Phys.
88 (1983), p. 295. DOI:|10. 1007 /BF01213209)(pages[45| [79).

O. Reula and K. P. Tod. “Positivity of the Bondi energy”. In: J. Math. Phys 25 (1984),
pp. 1004-1008. DOI:10.1063/1.526267| (page [45).

127


http://dx.doi.org/10.1103/PhysRevLett.43.1457
http://dx.doi.org/10.1007/BF01942062
http://dx.doi.org/10.1103/PhysRevLett.39.249
http://dx.doi.org/10.1103/PhysRevD.16.2448
http://dx.doi.org/10.1016/0370-2693(78)90837-7
http://dx.doi.org/10.1007/BFb0048063
http://dx.doi.org/10.1016/0375-9601(81)90972-5
http://dx.doi.org/10.1103/PhysRevLett.48.369
http://dx.doi.org/10.1016/0375-9601(81)90951-8
http://dx.doi.org/10.1088/0305-4470/14/10/002
http://dx.doi.org/10.1088/0305-4470/15/2/003
http://dx.doi.org/10.1103/PhysRevLett.48.371
http://dx.doi.org/10.1007/BF01213209
http://dx.doi.org/10.1063/1.526267

REFERENCES

(89]

[90]

[91]

[99]

[100]

[101]

G. W. Gibbons and C. M. Hull. “A bogomolny bound for general relativity and solitons
in N=2 supergravity”. In: Physics Letters B 109 (1982), pp. 190-194. po1:110.1016/0370~

2693(82)90751- 1 (page [45).
O. M. Moreschi and G. A. J. Sparling. “On the positive energy theorem involving mass

and electromagnetic charges”. In: Commun. Math. Phys 95.1 (1984), pp. 113-120. por:
10.1007/BF01215757|(page [45).

M. J. Perry. “The positive mass theorem and black holes”. In: Asymptotic Behavior of
Mass and Spacetime Geometry. Ed. by F. J. Flaherty. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1984, pp. 31-40. 1sBN: 978-3-540-38897-5 (page [45).

C. M. Hull. “The positivity of gravitational energy and global supersymmetry”. In:
Commun. Math. Phys 90 (1983), pp. 545-561. DOI:[10. 1007 /BF01216185| (page [45).

M. Herzlich. “The positive mass theorem for black holes revisited”. In: Journal of Ge-
ometry and Physics 26.1 (1998), pp. 97-111. po1:/10.1016/S0393-0440(97)00040-5

(page [45).
O. Reula. “Existence theorem for solutions of Witten’s equation and nonnegativity of

total mass”. In: J. Math. Phys 23 (1982), pp. 810-814. DOI:[10.1063/1. 525421/(page[45).

P. T. Chrusciel. “A remark on the positive-energy theorem”. In: Class. Quantum Grav
3.6 (1986), pp. L115-L121. pO1:[10.1088/0264-9381/3/6/002| (page [45).

J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New
Have: Yale University Press, 1923 (page [48).

D. Hilbert and R. Courant. Methoden der Mathematischen Physik. 2nd ed. Vol. 2. Berlin:
Springer, 1937 (page [48).

S. Hassani. Mathematical Physics. 2nd. New York: Springer International, 2013. por:
10.1007/978-3-319-01195-0|(page [49).

F. G. Friedlander. The Wave Equation on a Curved Space-Time. Cambridge: Cambridge
University Press, 1975. 1sBN: 0-521-20567-0 (page [49).

H. Soodak and M. S. Tiersten. “Wakes and waves in N dimensions”. In: American Journal
of Physics 61.5 (1993), pp. 395-401. DOI:/0.1119/1. 17230 (page [49).

D. Garfinkle et al. “The memory effect for particle scattering in even spacetime di-
mensions”. In: Class. Quantum Grav 34.14 (2017), p. 145015. por: 10 . 1088 / 1361 -
6382/aa777b. arXiv:(1702.00095 [gr-qc] (pages[49H51).

128


http://dx.doi.org/10.1016/0370-2693(82)90751-1
http://dx.doi.org/10.1016/0370-2693(82)90751-1
http://dx.doi.org/10.1007/BF01215757
http://dx.doi.org/10.1007/BF01216185
http://dx.doi.org/10.1016/S0393-0440(97)00040-5
http://dx.doi.org/10.1063/1.525421
http://dx.doi.org/10.1088/0264-9381/3/6/002
http://dx.doi.org/10.1007/978-3-319-01195-0
http://dx.doi.org/0.1119/1.17230
http://dx.doi.org/10.1088/1361-6382/aa777b
http://dx.doi.org/10.1088/1361-6382/aa777b
http://arxiv.org/abs/1702.00095

REFERENCES

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

V. Cardoso, O. J. C. Dias, and J. P. S. Lemos. “Gravitational radiation in D-dimensional
spacetimes”. In: Phys. Rev. D 67.6 (2003), p. 064026. DOI: |10 . 1103 / PhysRevD . 67 |
064026, arXiv: hep-th/0212168 (page[51).

D.-C. Dai and D. Stojkovic. “Origin of the tail in Green’s functions in odd-dimensional
space-times”. In: European Physical Journal Plus 128 (2013), p. 122. D01:/110.1140/epjp/
12013-13122-1} arXiv:[1309.2996 [hep-th] (page[51).

K. Tanabe, N. Tanahashi, and T. Shiromizu. “On asymptotic structure at null infinity
in five dimensions”. In: J. Math. Phys 51.6 (2010), pp. 062502-062502. pO1:|10.1063 /1.
3429580 (pages[51] [52).

K. Tanabe, S. Kinoshita, and T. Shiromizu. “Asymptotic flatness at null infinity in arbitrary
dimensions”. In: Phys. Rev. D 84.4 (2011), p. 044055. DOI: |10 . 1103 /PhysRevD . 84 |
044055/ (pages|[51} [52] [99} [102).

M. Godazgar and H. S. Reall. “Peeling of the Weyl tensor and gravitational radiation in
higher dimensions”. In: Phys. Rev. D 85.8 (2012), p. 084021. poI:/10.1103/PhysRevD|
85.084021. arXiv:/1201.4373 [gr-qc]|(pages[52} [99).

M. Pate, A.-M. Raclariu, and A. Strominger. “Gravitational memory in higher dimensions”.
In: Journal of High Energy Physics 6 (2018), p. 138. Do1: 10.1007/JHEP06(2018) 138|
arXiv:[1712.01204 [hep-th] (pages[52}[61).

R. Emparan and H. S. Reall. “Black Holes in Higher Dimensions”. In: Living Rev. Rel.
11 (2008), p. 6. DOI:|10.12942/1rr-2008- 6| arXiv:|0801.3471 [hep-th]|(pages[64}
101).

R. C. Myers. “Myers-Perry black holes”. In: Black Holes in Higher Dimensions. Ed.
by G. Horowitz. Cambridge University Press, 2012, pp. 101-133. por1: 10 . 1017 /
CB09781139004176.006, arXiv:|1111.1903 [gr-qc]|(page[64).

A. Thorne. “Asymptotic Expansions and Bondi Positivity in Higher Dimensional Rela-
tivity”. MPhil Thesis. "Cardiff University", 2013. arXiv: 1307 . 6198 [gr-qc]|(pages

M. B. Green, J. H. Schwarz, and E. Witten. Superstring Theory: 25th Anniversary Edition.
Vol. 2. Cambridge: Cambridge University Press, 2012. po1:/10.1017/CB09781139248563

(page([79).

T. Ortin. Gravity and Strings. Cambridge: Cambridge University Press, 2004. po1: |10 |
1017/CB09780511616563| (page|[78).

C. P. Boyer and K. Galicki. Sasakian Geometry. New York: Oxford University Press, 2008.
DOI:[10.1093/acprof :0s0/9780198564959.001.0001|(pages[100] [117} [120).

129


http://dx.doi.org/10.1103/PhysRevD.67.064026
http://dx.doi.org/10.1103/PhysRevD.67.064026
http://arxiv.org/abs/hep-th/0212168
http://dx.doi.org/10.1140/epjp/i2013-13122-1
http://dx.doi.org/10.1140/epjp/i2013-13122-1
http://arxiv.org/abs/1309.2996
http://dx.doi.org/10.1063/1.3429580
http://dx.doi.org/10.1063/1.3429580
http://dx.doi.org/10.1103/PhysRevD.84.044055
http://dx.doi.org/10.1103/PhysRevD.84.044055
http://dx.doi.org/10.1103/PhysRevD.85.084021
http://dx.doi.org/10.1103/PhysRevD.85.084021
http://arxiv.org/abs/1201.4373
http://dx.doi.org/10.1007/JHEP06(2018)138
http://arxiv.org/abs/1712.01204
http://dx.doi.org/10.12942/lrr-2008-6
http://arxiv.org/abs/0801.3471
http://dx.doi.org/10.1017/CBO9781139004176.006
http://dx.doi.org/10.1017/CBO9781139004176.006
http://arxiv.org/abs/1111.1903
http://arxiv.org/abs/1307.6198
http://dx.doi.org/10.1017/CBO9781139248563
http://dx.doi.org/10.1017/CBO9780511616563
http://dx.doi.org/10.1017/CBO9780511616563
http://dx.doi.org/10.1093/acprof:oso/9780198564959.001.0001

REFERENCES

[114]

[115]

[116]

[117]

[118]

A. Moroianu and U. Semmelmann. “Parallel spinors and holonomy groups”. In: §. Math.
Phys 41 (2000), pp. 2395-2402. DoI: [10 . 1063 /1 . 533247, arXiv: math /9903062

[math.DG] (pages 120).
V. L Arnold. Mathematical Methods of Classical Mechanics. 2nd ed. New York: Springer,
1989. 1SBN: 978-1-4419-3087-3 (page [108).

G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics. Vol. 1. Dor-
drecht: Springer Netherlands, 2013. po1:[10.1007/978-94-007-5345- 7| (page [108).

J. Lee and R. M. Wald. “Local symmetries and constraints”. In: J. Math. Phys 31 (1990),
pp. 725-743. DO1:[10. 1063 /1. 528801 (pages [108] [109] [111} [112).

Marcel Berger. “Sur les groupes d’holonomie homogénes de variétés a connexion affine
et des variétés riemanniennes”. In: Bulletin de la Société Mathématique de France 83
(1955), pp. 279-330. DOI1:[10. 24033 /bsmf . 1464 (page(118).

130


http://dx.doi.org/10.1063/1.533247
http://arxiv.org/abs/math/9903062
http://arxiv.org/abs/math/9903062
http://dx.doi.org/10.1007/978-94-007-5345-7
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.24033/bsmf.1464

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on my own work, unless
stated otherwise. No other person’s work has been used without due acknowledgement in this
thesis. All references and verbatim extracts have been quoted, and all sources of information
have been acknowledged. This work has not been submitted elsewhere in any other form for

the fulfilment of any other degree or qualification.



	Introduction
	Notation and Glossary
	I Fundamentals
	Spinors
	Principal G-bundle and Associated Bundle
	Example: Frame Bundle and Tangent Bundle

	Motivation
	Spinors
	Clifford Algebra
	Spinor Groups
	Spin Geometry

	Killing Spinor

	Conformal Infinity and Mass in Four Dimensions
	Null Infinity and Bondi Coordinates in Even Dimensions
	Conformal Transformation
	Bondi Coordinates
	Example: Schwarzschild

	Review of Mass in 4D
	Mass in Newtonian Theory
	Mass in General Relativity

	Positivity of Mass in General Relativity in 4D


	II Bondi Mass and Positivity
	Assumptions, Setup and Notations
	A First Glance at Odd Dimensions: Gravitational Waves
	Assumptions and Results

	Einstein Equations and Bondi Mass
	Asymptotic Expansion and Einstein Equations
	Schwarzschild Higher Dimensions Einstein Equations
	Recursion Relations from Einstein Equations
	Consistency of Asymptotic Expansion

	Bondi Mass in Odd Dimensions 5

	Positivity of Bondi Mass
	Spin structure, Spinors, Tetrad and Gamma Matrices
	Spin Manifold
	Tetrad
	Gamma Matrices
	Projectors
	Spinor Connection
	Witten Equation

	Outline of Proof
	Positivity of Integral over Q
	Spinor Recursion Relation
	Proof Lemma  ??— Step 1: Witten Equation
	Equation (??)
	Rewriting the Witten Equation

	Proof Lemma  ??— Step 2: Auxiliary Calculations
	Commutator [n,A]
	Derivative of Gamma Matrices

	Proof Lemma ??— Step 3: Witten Equation at Order r-n/2
	Proof Lemma  ??— Step 4: Recursion Formula Spinor
	Existence of Integral

	Discussion
	Discussion of Chapter 6
	Discussion of Chapter ??

	Summary and Outlook

	III Appendix
	Components of Riemann Tensor
	Physical and Unphysical Derivative of Spinor
	Local Symmetries and Conserved Quantities
	Hamiltonian Mechanics and Symplectic Manifolds
	Covariant Phase Space
	Symmetries at Infinity
	Hamiltonian associated with Symmetry
	BMS symmetry and Bondi Mass in 4 dimensions
	BMS symmetry and Bondi Mass in Higher Dimensions

	Holonomy
	Kähler, Calabi, Yau, Sasaki and Einstein
	Holonomy Group
	Manifolds Admitting Parallel or Killing Spinors


	References

