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Abstract

We proof that the Bondi mass of an asymptotically �at, vacuum spacetime is non-negative in all
odd dimensions d ≥ 5 assuming that a suitable spinor ful�lling the Witten equation exists. This
extends classical results by Witten and others on the positivity in four dimensions and recent
results by Hollands and Thorne in even higher dimensions. Our proof holds for manifolds which
admit Killing spinors near in�nity, in particular, if in�nity is the standard sphere. To enable our
proof we investigate the asymptotic expansion of Bondi coordinates and how imposing Einstein
equations restricts the allowed asymptotic decay of metric coe�cients and spinor �elds. We
also derive a coordinate expression for the Bondi mass in odd dimensions.
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CHAPTER 1

Introduction

It would probably be surprising to see that a theory of fundamental importance to the un-
derstanding of nature and the foundations of physics is largely ignored for half a century.
However, this was the case for general relativity which, after its conception around 1915, did
not receive much attention. It was only around the year of Einstein’s death in 1955 that general
relativity attracted more attention and entered the mainstream of theoretical physics. This shift
in attitude was due to several breakthroughs, and the period from the 1960s to the mid 1970s
has been coined the “golden age of general relativity” [1]. Several of the concepts, which are
now paradigmatic for general relativity, were found during this time. R. Kerr found the Kerr
metric (uncharged, rotating black hole) in 1963 [2], the no-hair conjecture was stated and some
simple cases proven, e.g., Israel showed the uniqueness of the Schwarzschild metric in 1967 [3].
The �rst few of the famous singularity theorems were proven by R. Penrose and S. Hawking
between 1965 and 1970 [4–6]. The foundation of black hole thermodynamics was laid in 1973 by
J. Bekenstein [7] and J. Bardeen, B. Carter and S. Hawking [8] and in 1975 Hawking showed the
existence of Hawking radiation [9] just one year after the �rst indirect evidence of gravitational
waves was discovered by R. Hulse and J. Taylor in 1974. In the same period several other authors
worked on a problem of tantamount importance, but which has received much less publicity
due to its technical nature. It was only starting in 1960 that a rigorous de�nition of mass was
available [10, 11]. At the �rst glance, this problem seems to be either irrelevant or trivial. After
all, not much thought is spend on this in other theories and it is not obvious that one should do
anything di�erently in general relativity. So why was this considered a relevant/non-trivial
problem? The reason lies at the very foundation of general relativity and is, in fact, the argument
that lead Einstein 1907 to his theory of gravitation, namely, the equivalence principle. It states
that the trajectory of a point mass in a gravitational �eld is independent of its structure (in
vacuum, a rock and a feather fall in the same way) and that the outcome of an experiment is
independent of the velocity and position of the laboratory. Another way of saying this is that
in a closed laboratory (no interactions with the environment) it is not possible to distinguish
between a system which accelerates far away from any masses and a system which is in free
fall close to a mass. In Einsteins words:

“Wir betrachten zwei Bezugssysteme Σ1 und Σ2. Σ1 sei in Richtung der X -Achse
beschleunigt, und es sei γ die (zeitlich konstante) Größe dieser Beschleunigung. Σ2

sei ruhend; es be�nde sich aber in einem homogenen Gravitationsfelde, das allen
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CHAPTER 1. INTRODUCTION

Gegenständen die Beschleunigung −γ in Richtung der X -Achse erteilt. Soweit wir
wissen, unterscheiden sich die physikalischen Gesetze in bezug auf Σ1 nicht von
denjenigen in bezug auf Σ2; es liegt dies daran, daß alle Körper im Gravitationsfelde
gleich beschleunigt werden. Wir haben daher bei dem gegenwärtigen Stande
unserer Erfahrung keinen Anlaß zu der Annahme, daß sich die Systeme Σ1 und Σ2

in irgendeiner Beziehung voneinander unterscheiden, und wollen daher [...] die
völlige physikalische Gleichwertigkeit von Gravitationsfeld und entsprechender
Beschleunigung des Bezugssystems annehmen.” [p. 454 of 12]

A consequence is that a local measurement in a system freely falling in some gravitational
�eld no gravitational �eld is measured. With this in mind it is possible to see why de�ning
mass is an issue. By the famous E =mc2 mass and energy are equivalent. It is a basic fact of
general relativity that the gravitational �eld has itself an energy or, equivalently, a mass. Thus,
the mass of a system consists of two components, the mass of the matter, which creates the
gravitational �eld, and the energy/mass “stored” in the gravitational �eld. To quantify the full
mass one would like to add the two parts. However, as just discussed, a laboratory freely falling
does not measure any gravitational �eld and this is the case for any local measurement at any
point of the gravitational �eld. Therefore, it is a direct consequence of the equivalence principle
that it is not possible to measure the mass of the gravitational �eld locally. But then half of the
components which make up the mass of a system are missing. It is due to this consequence of
the equivalence principle and the equivalence of mass and energy that a de�nition of mass is
highly non-trivial in general relativity. That the space(time) on which the systems “lives” is
altered by the system is what fundamentally distinguishes general relativity from other theories
and the reason why there are no problems with de�ning mass in other theories. At this point it
might seem that instead of asking why there is a problem with de�ning mass one now should
question whether the mass of a system can be de�ned at all. It turns out that this is indeed
possible and the precise way this is done was the breakthrough in the early 1960s alluded to
above. We will review the de�nition of mass (in four dimensions) in chapter 4. For now, note
that we always wrote that a local measurement cannot measure the gravitational �eld and
indeed the idea is to not do local but global measurements. By going far away from the system
and then performing the measurement it is possible to account for both components of the
mass in a suitable manner and the mass of a system can be de�ned.

After the question whether it is possible to de�ne the mass of a system was answered in the
a�rmative a new problem came up, namely, is the mass positive? As before, the question seems
strange at �rst and a justi�cation of why this is a problem is in order. The ground state of a
spacetime in general relativity is set to be the �at space to which one assigns zero energy. Thus,
the point of zero energy is �xed by the situation that there is no matter and no gravitational
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�eld. In Newtonian gravity a bound system has negative energy but in general relativity this
would be a problem since negative energy is equivalent to negative mass which would lead to a
repelling rather than attracting gravitational force. Additionally, there might be gravitational
radiation which reduces the mass of a system by carrying energy away. Together with the
indirect way of de�ning the mass described above this leads to the question whether mass is
positive and Minkowski space a stable ground state. If the mass were not positive this would
signify an inherent instability in the theory. It has turned out to be remarkably di�cult to
establish this result and a proof for rather general conditions was found only in 1979 by R.
Schoen and S. Yau [13] and, in 1981, E. Witten found a signi�cantly simpler proof exploiting
spinor techniques [14]. These proofs settled the debate about whether mass is positive in four
dimensional general relativity. We will discuss this further in chapter 4.

The goal of this thesis is to �nd an expression of the so-called Bondi mass (one of the masses
that can be de�ned), in higher odd dimensions d ≥ 5 and to show that it is positive. The question
of whether aspects of four dimensional gravity carry over to higher dimensions is a delicate
issue and, a priori, very unclear. In some cases higher dimensions behave just like the usual four
dimensional theory, in other cases there are di�erences. Additionally, and perhaps surprisingly,
there are crucial di�erences between even and odd dimensions. For example, in four dimensions
there is a so-called memory e�ect basically saying that a system of test particles, which are
exposed to gravitational radiation, may be permanently displaced by the radiation such that
there remains a memory of the perturbation in the system. This e�ect has been known for
more than 40 years and is related to asymptotic symmetries. However, it turns out that the
memory e�ect does not exist in higher dimensions [15, 16]. Another example is the de�nition
of conformal null in�nity. Here, the de�nition from four dimensions can be adopted to even
higher dimensions but not to odd ones [17, 18]. These two examples illustrate that the role
of dimensions in general relativity is a non-trivial and interesting issue. It turns out that the
idea of the proof of positivity carries over to higher dimensions but the proof is considerably
more di�cult. This is because the physically relevant terms are not of sub-leading order in
an asymptotic series expansion in distance r but fall o� much slower as r → ∞. In particular,
the deviation from Minkowski space due to radiation falls of slower than the deviation which
is present near spatial in�nity while in four dimensions they fall-o� is of the same order. An
expression for the Bondi mass and its positivity has been found in even dimensions [17, 19]. In
chapter 6 we derive a coordinate expression for the Bondi mass in odd dimensions and chapter
7 contains the proof of the positivity of the Bondi mass in odd dimensions. These are the two
main results of this thesis.

A more detailed outline is as follows. In the �rst part we give background information
and introduce some rather well-known concepts. For the proof of positivity we need spinors
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CHAPTER 1. INTRODUCTION

on curved spacetime. They are motivated and introduced in chapter 3. In chapter 4 we look
primarily at gravity in four dimensions. In section 4.1 we introduce Bondi coordinates in the
conformal framework and it is discussed why we have to use Bondi coordinates in odd higher
dimensions. Section 4.2 contains a review of the classical results concerning Bondi and ADM
mass and we derive some of the expressions. The question of positivity is considered in more
detail in section 4.3 where we sketch the proof due to Witten. In the second part we �rst
look at gravitational waves as an example of general relativity in odd dimensions in section
5.1 and we then summarize our assumptions and specify the spacetime we will work on for
the remainder of the thesis in section 5.2. Afterwards, we start considering the Bondi mass
in higher dimensions. We then 6.1, investigate how the vacuum Einstein equations can be
used to investigate the metric in Bondi coordinates and �nd some structure. The results of this
investigation are used in section 6.2 to derive a coordinate expression for the Bondi mass in odd
dimensions. This is the �rst main result of this thesis. Chapter 7 contains the proof of positivity
of the Bondi mass in odd dimensions, the most important result of this work. In section 7.1 we
adapt the general de�nitions of spinors and gamma matrices to the manifold and coordinates we
chose. A outline of the proof is given in section 7.2. Then, the proof follows in the subsequent
sections 7.3-7.9. In chapter 8 we discuss our results and compare them with results in four
dimensions and works of other authors in higher dimensions. We summarize the thesis and
give an outlook in chapter 9. The third part contains some appendices. In appendix A we write
down the components of the Ricci tensor in Bondi coordinates and appendix B contains an
auxiliary computation relating the spin derivative in the physical and unphysical spacetime. A
brief, non-rigorous summary of how to de�ne conserved quantities in general relativity and
how to derive a geometric expression for the Bondi mass can be found in appendix C. Finally,
appendix D explains the idea of holonomy and it is outlined how this can be used to classify
manifolds which admit Killing spinors.
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CHAPTER 2

Notation and Glossary

Some important notations and the chapter/section where they are introduced are listed in the
following. Some symbols are also used with a di�erent de�nition in some places if the meaning
is clear from context. (M,д) always denotes a Riemannian or Lorentzian manifold. Throughout
the thesis we use geometric units G = c = 1.

ϵa1a2 ... (with indices) Volume element
TX Tangent space of X
∇ Levi-Civita derivative of д
? Hodge star operator
Γabc Christo�el symbol
Rabcd , Rab , R Riemann-, Ricci tensor, Ricci scalar
<(x ), =(x ) Real part, imaginary part of x
x[ayb] ≡ 1

2 (xayb − yaxb ) Antisymmetrization
x (ayb ) ≡ 1

2 (xayb + yaxb ) Symmetrization
Cl (V ,q), Clr,s , Clcr,s Cli�ord algebras Section 3.3.1
dot “·” Cli�ord Multiplication (for spinors) Section 3.3.1
S (M ) (Complex) spinor bundle Section 3.3.3, Section 7.1.1
ϵ (without indices) Killing spinor Section 3.4
(u, r ,xA) Bondi coordinates Section 4.1.2
γAB “Round” metric Section 4.1.2
I + Conformal null in�nity Section 4.1
(M̃, д̃) Unphysical spacetime Section 4.1.1
NAB News tensor Section 4.2.2, Section 6.2
(M ,д) odd-d Lorentzian, spin manifold Section 5.2
x (n) nth coe�cient of series expansion in r Section 5.2
ẋ r -derivative of x Section 5.2
x ′ u-derivative of x Section 5.2
(Σ, s ) (d − 2)-dimensional spin manifold Section 5.2
D, D Levi-Civita/spin derivative of sAB , γAB Section 5.2
∇ Spin derivative of д Section 7.1.5
µд̃ Bondi mass density Section 6.2
Cд , Kд Weyl, Schouten tensor of д Section 6.2
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mΣ Bondi mass of Σ Section 6.2
Q (X ,Y ) (Witten-Nester) 2-form: Section 7.1.1
e
µ
a , ẽµa Tetrad Section 7.1.2
σa , σ̃a Gamma matrices in curved spacetime Section 7.1.3
P± Projectors Section 7.1.4
ΓA (one index) Gamma matrix on subspace Section 7.1.4
H Hypersurface Section 7.1.6
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CHAPTER 3

Spinors

This chapter starts with a very brief, non-rigorous discussion of the notion of principal G-bundle
and associated bundle in section 3.1. The main purpose is not to give a pedagogical introduction
but to �x notations. We also discuss, as an example, how the tangent bundle of a manifold can
be de�ned as an associated bundle. This simple example already shows all ingredients necessary
to de�ne spinors such that it can be used as a well-known reference for the construction of spin
bundles. In section 3.2 we motivate why spinors are relevant and how they are related to group
theory by looking at the relation of SU (2) and SO (3). Thereafter, in section 3.3, we introduce
Cli�ord algebras which are then used to de�ne spin groups and the relevant representations.
This section is rather algebraic and relatively unrelated to the previous sections. However, once
we have de�ned the spin group we can make the connection with geometry by going back to
the topic of section 3.1 and de�ning spin bundles and spinors as associated bundles and sections
thereof. Finally, we de�ne the notion of Killing spinor �elds in section 3.4. This concept will be
crucial in the proof of mass positivity.

3.1 Principal G-bundle and Associated Bundle
We recall the de�nition of the principal and associated bundle and �x some notations we will
need; we refer to the literature, e.g. [20–23], for an introduction. A principalG-bundle, where
G is a topological group, is a �ber bundle π : U → M together with a right action U ×G → U

such that

y ∈ Ux ⇒ yд ∈ Ux ∀д ∈ G (3.1)

and G acts transitively (thus the orbits of the G-action are the �bers) and freely on the �bers.
Thus, each �ber of the principalG-bundle is homeomorphic toG and locally the bundle is equal
to T ×G where T is an open subset of M , see Figure 3.1. The orbit space U /G is homeomorphic
to M .

Given a principalG-bundleU , there is an associated bundle, which is constructed as follows.
Let F be another space. An action of G on U × F is given by (u, f ) → (uд,д−1 f ) where д ∈ G,
u ∈ U , and f ∈ F . The associated bundle p : E → M is de�ned to be the quotient space (space
of orbits) E B U × F/G where (u, f ) and (uд,д−1 f ) are identi�ed. This de�nes an equivalence
class [u, f ] = {(u, f ) · д ≡ (uд,д−1 f ) : д ∈ G}. In the special case that F is a vector space V , let
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3.1. PRINCIPAL G-BUNDLE AND ASSOCIATED BUNDLE

ρ be a representation of G onV . The associated bundle is writtenU ×ρ V . The two points (u,v )
and (uд, ρ (д)−1v ) of U ×V , v ∈ V , are identi�ed in U ×ρ V .

M

G

⇡

x

⇡�1(x)

U

Figure 3.1: Principal Bundle

(ug, g�1f)

x

y

(u, f)

[u, f ]

F

M

G
p(y) b

⇡(b)

U = G ⇥ M

E = F ⇥ M

U ⇥ F = G ⇥ M ⇥ F

Figure 3.2: Associated Bundle

3.1.1 Example: Frame Bundle and Tangent Bundle
As an example we want to construct a principal G-bundle, which gives us bases of the tangent
space at each point (the frame bundle), and, as an associated bundle, the tangent bundle. We
start by looking for a principal bundle whose �ber above any point x ∈ M consists of all ordered
bases for the tangent space TxM at x . As a group we thus choose the general linear group
Gl (n,R) which, with its natural action, is known to carry one basis into another. If there is
additional structure on M (e.g. a Riemannian metric) then certain bases are distinguished (e.g.
orthonormal bases) that reduce the structure group fromGl (n,R) to some subgroup (e.g. SO (n)).
We will not assume any additional structure, but the following discussion can easily be modi�ed
to accommodate this case. A frame at x ∈ M is an ordered basis B = (b1, ...,bn ) for TxM such
that there is a natural isomorphism between the standard basis {ei } of Rn and B given by ei 7→ bi .
Then, we de�ne PGl (M )x as the set of all frames at x and PGl (M ) B ∪x ∈MPGl (M )x . There is
a surjective map π : PGl (M ) → M de�ned �berwise by π (B) = x . Together with the natural
action α : PGl (M ) × Gl (n,R) → PGl (M ), α (p,д) 7→ p · д of Gl (n,R) on PGl (M ) we have the
principalGl (n,R)-bundle over M , π : PGl (M ) → M , called frame bundle over M . A local cross
section s : U ⊆ M → PGl (M ) assigns to each x ∈ U a frame s (x ) = (b1 (x ), ...,bn (x )) de�ning
the frame �eld.

It is natural to look at the vector bundle (that is, the �ber is a vector space V ) associated
with the frame bundle and given by the representations of Gl (n,R) on the vector space. We
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CHAPTER 3. SPINORS

consider the natural (matrix) representation ρ : Gl (n,R) → Gl (Rn ) of Gl (n,R) on the vector
space Rn . For д ∈ Gl (n,R) and v ∈ Rn the representation is given by ρ (д)v = д · v = дv with
the usual matrix multiplication in the last term. We have now all parts needed to de�ne an
associated vector bundle. Associated to the frame bundle PGl (M ) is a bundle

TM B PGl (M ) ×ρ Rn , (3.2)

the tangent bundle of M . The �bers of this bundle are just the usual tangent spaces TxM at
each point x ∈ M . (Note, that other choices of the representation are possible and yield other
bundles, e.g. choosing ρ (д) = (дT )−1 yields the cotangent bundle.) A cross section of the tangent
bundle yields a vector �eld on M . In this context it is very easy to make sense of the abstract
de�nitions. The associated bundle consists of points obtained by de�ning the equivalence class
[B,v] = {(p,v ) · д ≡ (pд,д−1v ) : д ∈ Gl (n,R)}. We have the frame B = (b1, ...,bn ) and in these
coordinates the vector can be written as v = vibi . Then, the part pд = (b̃1, ..., b̃n ) simply is
the basis in new coordinates given by b̃j = biд

i
j while the part д−1v = (ṽ1, ..., ṽn )

T , ṽ j = дjivi ,
transforms the coordinates of the vector, seen as a n-tuple, such that in the end the vector does
not change,

ṽ jb̃j = д
j
kv

kblд
l
j = v

ibi . (3.3)

Thus, the set {(pд,д−1v ) : д ∈ Gl (n,R)} simply contains all possible descriptions (in all bases
available) of a given tangent vector v at x and [B,v] is the vector independent of the basis
chosen. Hence, this construction of the tangent bundle as an associated bundle of the frame
bundle is just an elaborate way of saying that a vector is an object transforming “in the right
way” under a change of coordinates. While this “coordinate dependent” de�nition might seem
old-fashioned it turns out that spinors have to be de�ned very similar, i.e., as objects which
transform under a given group “in the right way”.

The remainder of this chapter aims specifying what group has to be taken to replaceGl (n,R)
and what “in the right way” actually means for spinors. In section 3.2 we heuristically motivate
the rather abstract de�nitions to be discussed in subsequent sections by looking at the example
of SU (2) and SO (3). Then, in section 3.3, we de�ne the Cli�ord algebra and use this to de�ne
the spin group (which will replace Gl (n,R)) that is used to construct the associated bundle
whose cross sections will yield spinor �elds.

3.2 Motivation
The constructions and de�nitions in the next sections are rather abstract. This section will
provide a motivation and show the basic idea behind the constructions in the following sections
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3.2. MOTIVATION

by looking at a concrete example, namely the groups SU (2) and SO (3), and how these are
related to the de�nition of spinors as well as the general idea behind the construction of spinor
�elds on curved spacetimes. For a more detailed and explicit discussion of this example see e.g.
[22, 24].

We start with some facts about the topology of SU (2) and SO (3). SU (2) is simply connected,
which can be seen visually by noting that SU (2) is isomorphic to a 3-sphere that is simply
connected. In contrast, SO (3) is connected, but not simply connected; the fundamental group
is π1 (SO (3)) = Z2. SO (3) is isomorphic to the projective space PR3, which is geometrically a
3-sphere with antipodal points identi�ed. Due to the identi�cation of antipodal points, not
all curves on the sphere are homotopic to the identity. We are now interested in SO (3) as the
group of rotations on R3, i.e., the matrix representation of SO (3) on R3. From this point of view
the fact that SO (3) is not simply connected has the following consequence. Consider the curve
in SO (3) which is a family of rotations about a �xed axis traversed once from 0 to 2π . This
curve cannot be deformed continuously to the identity, since it is a loop in SO (3) and thus not
homotopic to the identity. However, the same curve traversed twice is homotopic to the identity.
To see the relevance of this a look at the relation between SO (3) and SU (2) is useful. There
exists a homomorphism, called Ad, from SU (2) onto SO (3) and the two groups are locally the
same (isomorphic Lie algebras, su(2) � so(3)), i.e., when looking only at in�nitesimal rotations
the action of both groups is indistinguishable. The map is de�ned as

Ad : SU (2) → SO (3), Ad(д)Y = дYд−1 (3.4)

where д ∈ SU (2) and Y ∈ su(2). Because su(2) is as a vector space isomorphic to R3, Ad de�nes
an action of SU (2) on R3, which in fact is equal to the matrix representation of SO (3) on R3.
Ad is onto and thus every rotation in R3 (that is, every element of SO (3)) has a corresponding
element in SU (2). However, the elements of both groups are not in a one-to-one correspondence.
Since the map Ad is 2 : 1 (ker(Ad) = Z2) there are two elements u ∈ SU (2) for each R ∈ SO (3);
Ad(±д) = R ∈ SO (3). This can be seen from (3.4) where, due to the conjugation, the minus
signs cancel. Given an axis of rotation n and an angle θ , let σ be the vector of the three Pauli
matrices (which are a basis of su(2)) and let E be the vector of the basis of so(3). Then,

Ad(u) ≡ Ad exp
(σ
2i · nθ

)
= exp (E · nθ ) ≡ R (3.5)

The factor of 1/2 inu is responsible for the 2 : 1-mapping, since, as one easily sees, rotations with
θ = 2π and θ = 4π yield di�erent values for u ∈ SU (2), namely −1 and +1, while both give the
same value for R ∈ SO (3). Therefore, one is lead to study the rotations/representations of SU (2)
instead of SO (3), since, using Ad, one can always return to SO (3) and SU (2) encompasses a
�ner/more interesting structure. As we have seen, SU (2) acts onR3 via the adjoint representation.
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CHAPTER 3. SPINORS

but its fundamental representation is on C2. Now, let д ∈ SU (2) induce a change of basis
R3 → R3 (via the adjoint representation). The same element д ∈ SU (2) can act on C2 (via the
fundamental representation) and thus there is a transformation of the element (ψ1,ψ2) ∈ C2

associated to the change of basis R3 → R3. This element is called a spinor. Thus, SU (2) is also
called Spin(3) in this context. In higher dimensions, Spin(n) denotes the universal cover of
SO (n), although Spin(n) is not generally given by SU (n). A very similar construction relates
the identity component of the Lorentz group and its double cover Sl (2,C). Thus, spinors are
de�ned as elements of a complex vector space that transform under the double cover of the
orthogonal group changing the basis of physical space.

In curved spacetimes this entails the following. Take two observers O1 and O2 at a point
p ∈ M in (M,д), where each observer is represented by an orthonormal tetrad at p. There is a
Lorentz transformation (acting on TpM) rotating the tetrad of O2 into that of O1. In the next
section, this will be done by de�ning an action of the orthogonal group on the tangent bundle.
Consequently, spinors are de�ned as elements of a complex vector space which “transform in
the right way”. For each Lorentz transformation there is an associated spinor transformation
ψ → Λψ = ψ ′ such that all measurements made by O2 on ψ ′ yield the same results as all
measurements of O1 onψ . In the next section this is done by lifting the orthogonal group to
a spin group which then is used via a representation on some complex vector space to de�ne
spinors as elements of this space.

3.3 Spinors

The aim of this section is to introduce the notion of a spinor �eld on a manifold. A crucial
ingredient is the Cli�ord algebra, a generalization of the well-known algebra generated by Pauli
and gamma matrices. This topic is very broad and only a few important notions/de�nitions and
properties are introduced in the following subsection. Afterwards, spinor groups are introduced
which de�ne spinors via a representation on an appropriate vector space. Lastly, we will brie�y
describe how these concepts can be used to de�ne spinor �elds and the Dirac operator on
(pseudo-)Riemannian manifolds in arbitrary dimensions. More complete treatments of Cli�ord
algebras and spinors can be found in a plethora of books and review articles, we follow mostly
[23, 25–28].
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3.3.1 Cli�ord Algebra
Let V be a �nite-dimensional vector space over a �eld K (either R or C). De�ne a quadratic
form q on the �eld. Denote the tensor algebra over V as

T (V ) B
∞⊕

k=0

*.
,

k⊗
V +/

-
. (3.6)

To proceed we need the following basic concept from ring theory. Let (R,+) the additive group
of a ring (R,+, ·). If

i) (I ,+) is a subgroup of (R,+, ·), and

ii) ∀x ∈ I ,∀r ∈ R: x · r , r · x ∈ I ,

I is called an ideal. Now, let Iq (V ) be the ideal in T (V ) generated by all elements of the form
{v ⊗ v − q(v )1} where v ∈ V . Loosely speaking, T (V ) is the most general algebra containing
the vector space V (i.e. all other algebras that contain V are in T (V )) and by taking a quotient
with the ideal Iq (V ) we can remove all elements of T (V ) which do not ful�l the relation we
want to dictate in the Cli�ord algebra. Thus, the Cli�ord algebra Cl (V ,q) of the quadratic
space (V ,q) is de�ned to be the quotient

Cl (V ,q) B T (V )/Iq (V ). (3.7)

For a given pair (V ,q) the Cli�ord algebra is unique up to isomorphism [Corollary 5.1.3 in 23].
If the K-vector space (V ,q) is n-dimensional the corresponding Cli�ord algebra has dimension
2n [Corollary 5.1.8 in 23]. The projection ρ : T (V ) → Cl (V ,q) is an algebra homomorphism
and the restriction of ρ to V yields a linear mapping j B ρ |V : V → Cl (V ,q). This map is
injective and ful�ls

j (v )2 = q(v )1 ∀v ∈ V . (3.8)
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CHAPTER 3. SPINORS

De�ning the symmetric bilinear form

2η(u,v ) = q(u +v ) − q(u) − q(v ), u,v ∈ V , (3.9)

we have
j (u) · j (v ) + j (v ) · j (u) = 2η(u,v ). (3.10)

Thus, any basis {e1, ...en } of V generates, together with the identity 1, the algebra Cl (V ,q)

multiplicatively. That is, the basis elements ful�l the relations j (ek ) · j (el ) + j (el ) · j (ek ) =
2η(ek , el ), which de�nes the Cli�ord algebra, and the 2n elements

1, j (ei1 ) · ... · j (eik ), 1 ≤ i1 < ...ik ≤ n, 1 ≤ k ≤ n (3.11)

are a vector space basis of the Cli�ord algebra 1, see Fig. 3.3.
There is a map p ∈ Aut(Cl (V ,q)), p◦ j (v ) = −j (v ) called parity automorphism ofCl (V ,q).

It induces a Z2-grading of the Cli�ord algebra,

Cl (V ,q) = Cl0 (V ,q) ⊕ Cl1 (V ,q) (3.12)

where Cl i (V ,q) =
{
a ∈ Cl (V ,q) : p (a) = (−1)ia

}
. Additionally, there is map on T (V ) given

by v1 ⊗ ... ⊗ vr → vr ⊗ ... ⊗ v1 preserving the ideal. Thus, there is an anti-automorphism
( )t : Cl (V ,q) → Cl (V ,q), (a ·b)t = bt ·at called transpose. The two maps p and ( )t commute.

Given a Cli�ord algebra over a real vector space, there is an associated Cli�ord algebra,
which is obtained by complexi�cation. More precisely, let (V ,q) be a real quadratic space and
let (VC,qC) ≡ (V ⊗ C,q ⊗ C) be its complexi�cation. Then,

Cl (VC,qC) � Cl (V ,q) ⊗R C (3.13)

is an algebra isomorphism [Proposition 5.1.14 in 23]. The Cli�ord algebra Cl (Rr+s ,q) with
q(x) = −x2

1 − ... − x2
r + x

2
r+1 + ... + x

2
r+s , where x = (x1, ...,xr+s ) is the standard basis of Rr+s ,

will be denoted Clr,s and its complexi�cation will be denoted Clcr,s . If one index is zero it is not
written, i.e. Cl0,n ≡ Cln . In the following, let r + s = n.

As is often the case in physics, the Cli�ord algebra enters via a representation on an
appropriate vector space. By representation of a Cli�ord algebra we mean the following. Let
(V ,q) be a quadratic vector space over a commutative �eld k ⊂ K. Then a K-representation
of the Cli�ord algebra Cl (V ,q) is a k-algebra homomorphism

ρ : Cl (V ,q) → AutK (W ). (3.14)

1As vector spaces, Cl (V ,q) and the exterior algebra ΛV are isomorphic. [Corollary 5.1.10 in 23]. For q = 0 they
are isomorphic as algebras.
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whereW is a �nite-dimensional vector space over K and called Cl (V ,q)-module. To simplify
notation we introduce the Cli�ord multiplication

φ ·w B ρ (φ) (w ) , (3.15)

where φ ∈ Cl (V ,q) and w ∈W .
For Clcn one �nds [Proposition 5.1.19 in 23]

Clc2k � C(2
k ), Clc2k+1 � C(2

k ) ⊕ C(2k ). (3.16)

which have the (irreducible) representations

γ2k : Clc2k → End(∆2k ) (3.17)

and
γ2k+1 : Clc2k+1 → End(∆2k+1) ⊕ End(∆2k+1) (3.18)

The space
∆n B C

2f , f =
⌊n

2

⌋
(3.19)

is called the complex n-spinor module and the representation γn is called the spin repre-
sentation of Clcn . We will often write γ instead of γn . On ∆n there exists a positive-de�nite
hermitian inner product 〈 , 〉.

For example, the Cli�ord algebra appears in physics when introducing gamma matrices,
for example to write down the Dirac equation. To see this note that the Cli�ord algebra of
Minkowski space (M,η) isCl1,3. One can show [Table II in 26] thatClc4 = Cl1,3⊗RC � C(4) where
C(4) denotes the algebra of 4× 4 complex matrices. Thus, the generators of the complexi�cation
of the Cli�ord algebra of Minkowski space can be represented by such matrices. A standard
choice is

γ : M ⊆ Clc4 → C(4) ⊆ End(C4), γ (eµ ) = *
,

0 σµ

σ̃µ 0
+
-

(3.20)

where eµ is the standard basis of R4, σµ are the Pauli matrices2, and σ̃0 = σ0 while σ̃i = −σi . Let
γµ ≡ γ (eµ ). Then

γµ · γν + γν · γµ = 2ηµν 1 (3.21)

by virtue of the commutation relations of the Pauli matrices. Therefore, γ extends to an algebra
isomorphism Clc4 → End(∆4).

2The Pauli matrices generate the Cli�ord algebra of R3.
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3.3.2 Spinor Groups
The Cli�ord algebra can be used to de�ne Spin groups that are the double cover of the orthogonal
group of a given quadratic form. This will be done in this section.

Elements v ∈ V with q(v ) , 0 have an inverse v−1 = v/q(v ) and the subset Cl (V ,q)∗ of
Cl (V ,q) containing all invertible elements is a Lie group of dimension 2n . The Cli�ord group
of (V ,q) is a Lie subgroup de�ned as

Γ(V ,q) B
{
a ∈ Cl (V ,q)∗ : p (a)va−1 ∈ V ∀v ∈ V

}
(3.22)

and it has a natural representation

Ãd : Γ(V ,q) → Aut(V ), Ãd(a)v B p (a)va−1 (3.23)

called the twisted adjoint representation. Let O (V ,q) be the orthogonal group of (V ,q), the
subgroup of Aut(V ,q) leaving q invariant and let SO (V ,q) be the subgroup of elements with
determinant 1. De�ne the norm mapping N : Cl (V ,q) → Cl (V ,q), N (a) B a p (at ). Note that
for v ∈ V this reduces to N (v ) = −q(v ). The so-called pin group is de�ned as

Pin(V ,q) B {a ∈ Γ(V ,q) : N (a) = 1}, (3.24)

and the spin group as

Spin(V ,q) B Pin(V ,q) ∩
(
Γ(V ,q) ∩Cl0 (V ,q)∗

)
. (3.25)

Thus, for a ∈ Spin(V ,q), we have N (a) = a p (at ) = aat = 1. Note the similarity to the well-
known relation for the usual orthogonal groups. In fact, Spin(n,R) is the double covering of
SO (n,R) and for n > 2 it is the universal cover since Spin(n) is simply connected in this case.
We have ρ (a)w = awat , w ∈W , as the representation on a vector spaceW and this gives an
explicit double covering of SO (n) by Spin(n) since ρ (a) = ρ (±a). The spin group and special
orthogonal group corresponding to Clr,s are denoted by Spinr,s and SOr,s , respectively. Both
are Lie groups. Spinr,s is a double covering of the identity component SO0

r,s . The covering is
universal if r > 2, s = 0, 1 or s > 2, r = 0, 1. We will always assume that this is the case in the
following. The relations between pin group and orthogonal group are similar.
Well-known examples that appear in physics are Spin(2) � U (1), Spin(3) � SU (2), and Spin1,3 �

Sl (2,C). The last one, the double cover of the Lorentz group, is needed to de�ne spinors in four
dimensional spacetime. Since Pinr,s and Spinr,s are inClcn (with r + s = n) the representation of
Clcn restricts to faithful representations of these groups. This representation is called spinor
representation, it is unitary with respect to the inner product de�ned above [Satz on p. 26
in 29]. The complex spin group Spincr,s is the subgroup of Clcr,s � Clr,s ⊗ C generated by

22



3.3. SPINORS

Spinr,s ⊂ Clr,s andU (1) ⊂ C. Again, the discussion above is the same for the complexi�cations
with the obvious replacements. An explicit, less abstract discussion of all concepts introduced
so far can be found in [Chapter 19 of 22] in the context of the Dirac operator on Minkowski
space. A discussion of the following section in the case of four dimensions can also be found
there.

3.3.3 Spin Geometry

Now we can de�ne spin structures and spinors for pseudo-Riemannian manifolds (M,д). It
turns out that Cli�ord algebras appear very naturally once a metric on the manifold is de�ned.
The reason is the following. Let π : E → M be a pseudo-Riemannian vector bundle. In each
�ber, π−1 (p) = Ep there is a quadratic form 〈v,v〉 to be used for the construction of a Cli�ord
algebraCl (Ep ). Doing so at each point results is a bundleCl (E) = ∪p∈MCl (Ep ) → M of Cli�ord
algebras over M called Cli�ord bundle of E. Using an irreducible representation of the spin
group, one can then de�ne spinor �elds and the Dirac operator.

The �rst step is to de�ne a spin structure on the tangent bundle of a manifold M . Let
π : E → M be a real orientable n-dimensional pseudo-Riemannian vector bundle with n > 2.
Choose an orientation of E and let PSO (E) be the bundle of oriented orthonormal frames. Let λ
be the covering homomorphism λ : Spinr,s → SOr,s which has kernel Z2. A spin structure on
E is a pair (PSpin (E),Λ), where PSpin (E) is a principal Spinr,s -bundle over M and the bundle map
Λ is a 2-sheeted covering Λ : PSpin (E) → PSO (E) such that Λ(pд) = Λ(p)λ(д) for all p ∈ PSpin (E)

and all д ∈ Spinr,s . Thus, there is a diagram

Spin SO

PSpin (E) PSO (E)

λ

Λ

A spin manifold is an oriented pseudo-Riemannian manifold with spin structure on its
tangent bundle, E = TM . A Spinc -manifold is de�ned with Spinc instead of Spin. It turns out that
a spin structure on the tangent bundle does not always exist and the existence is related to the
second Stiefel-Whitney class. To de�ne this class some standard tools from algebraic geometry
need to be introduced. We do not want to do this here and refer to the literature on algebraic
geometry and obstruction theory, see e.g. [20–23, 25] and for the case of four dimensional
spacetime in general relativity additionally [30]. We now assume that a spin structure exists.
That is, given the bundle PSO (TM ) ≡ PSO (M ) of oriented orthonormal frames of the vector
space TM we assume that we can lift the structure group SOr,s of PSO (M ) to Spinr,s such that
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we have a bundle of frames PSpin (M ) consisting of all bases of TM that transform under the
action of Spinr,s on M . Locally, PSpin (M ) = U × Spinr,s for an open set U ⊂ M .

This allows describing how spinors are related to this. As mentioned, the (irreducible) repre-
sentations of the Spin group are the crucial component. To see why, note that the fundamental
representation of SOr,s on (Rn ,q) induces an action on the tensor algebra over Rn which leaves
Iq (R

n ) invariant. Thus, there is a representation ρ of SOr,s on the Cli�ord algebra given by

ρ : SOr,s → Aut(Clr,s ). (3.26)

As described in section 3.1, a representation of a group can be used to construct a new bundle
associated to the principal bundle.

Let E be an oriented pseudo-Riemannian vector bundle of rank n and let PSO (E) be the
bundle of oriented orthonormal frames. The associated algebra bundle

Cl (E) B PSO (E) ×ρ Clr,s (3.27)

is the Cli�ord bundle of E. Given an oriented pseudo-Riemannian manifold (M,д),Cl (TM ) is
called Cli�ord bundle of M , denoted Cl (M ). This can again (c.f. the example in section 3.1) be
understood as saying that coordinate transformations by SO (n) on frames are “compensated”
by associated transformations ofCln such that we have, in the end, invariance under coordinate
transformation. Cl (E) is a bundle of Cli�ord algebras over M , i.e., each �ber of the bundle is a
Cli�ord algebra. The �berwise multiplication in Cl (E) provides the space of sections of Cl (E)
with an algebra structure. All operations de�ned for Cli�ord algebras carry over to the Cli�ord
bundles.

Recall that the vector space TM ⊂ Cl (M ) generates Cl (M ) �berwise. The last step is
to de�ne a vector bundle with �ber ∆n on which there is an irreducible representation of
Clr,s and the Spin group, respectively. The concrete de�nition is as follows. Let (M,д) be a
pseudo-Riemannian manifold with spin structure (PSpin (M ),Λ). The vector bundle

S (M ) B PSpin (M ) ×γ N , (3.28)

where N is a left module for Clr,s and where γ : Spinr,s → SO (N ) is the spinor representation
given by left multiplication of elements of Spinr,s ⊂ Cl0

r,s , is called the (real) spinor bundle
of (M,д) over Cl (M ). A section of the spinor bundle is called a spinor �eld. A complex spinor
bundle is de�ned equivalently with the complexi�ed Cli�ord algebra and a complex module
N = ∆n . The de�nition of spinor bundle and spinor �elds is in complete analogy to the
de�nition of the tangent bundle and vector �elds discussed in section 3.1. In the end, we simply
replaced the general linear group/orthogonal group in (3.2) by the spin group and then chose
an appropriate vector space such that there again is an irreducible representation for the new
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group. The cross section is thereby changed from de�ning a vector �eld to de�ning a spinor
�eld. In general, ∆n has structure beyond that of a complex vector space, for example, one can
de�ne a real and imaginary part of elements of ∆n . However, spinors inherit only the structure
that is preserved under the action of the spin group and, since the real and imaginary parts mix,
it is not possible to de�ne the real part of a spinor. Furthermore, note that for X ∈ TpM the
relation

γ (X )2 = д(X ,X )1 (3.29)

holds.
The last part of this section introduces the Dirac operator. We begin with de�ning a

connection on the bundle PSpin (M ). IfM admits a (pseudo-)Riemannian metric, the distinguished
connection on the frame bundle PSO (M ) is just the usual Levi-Civita connection. Since we now
want to work on PSpin (M ), we need to lift the Levi-Civita connection on PSO (M ) to a connection
on PSpin (M ), which can be done as follows. Let (M,д) be an oriented pseudo-Riemannian spin
manifold. Let ω be the Levi-Civita connection of д viewed as a principal connection on PSO (M ).
Let dλ : spinr,s → sor,s be an isomorphism of Lie algebras. The unique lift ω̂ = (dλ)−1Λ∗ω is
the connection on PSpin (M ), called spin connection. Hence, the diagram

TPSpin (M ) spinr,s

TPSO (M ) sor,s

ω̂

Λ′ dλ

ω

commutes. Just as the Levi-Civita covariant derivative derived from the Levi-Civita connection
acts on vectors (the sections of the tangent bundle) the spin connection can be used to de�ne a
covariant derivative, which acts on spinors (the sections of the spinor bundle). (From a physics
point of view the spin connection can be seen as the gauge �eld of the local Lorentz group such
that the physics is not changed under a Lorentz transformation.) Let ∇ be this spin derivative
(we use the same notation for the Levi-Civita derivative and the spin derivative since, when
acting on vectors, they are equal) associated with the metric д, i.e., the covariant derivative on
S (M ). Then we have

∇Φ = dΦ +
∑

i<j

ωi j ⊗ eiej · Φ, Φ ∈ Γ(S (M )), (3.30)

at p ∈ M , where {ej } is an orthonormal basis of TpM , and ωi j are the coe�cients of the
spin connection form. The Dirac operator of S (M ) is a �rst-order di�erential operator D :
Γ(S (M )) → Γ(S (M )). In coordinates,

DΦ =
n∑

j=1
ej · ∇ejΦ. (3.31)
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For Minkowski space, the Cli�ord bundle is trivial, we have ∇ej → ∂j , S (M ) = R4 × C4, and,
using the de�nition of the Cli�ord multiplication, the Dirac operator reads

DMinkowskiΦ =
4∑

j=1
γj∂jΦ = γ

j∂jΦ = /∂Φ . (3.32)

Considering γj ≡ γ (ej ) and (3.29) (which in this case are just the commutation relations of the
gamma matrices) we have

D2
Minkowski = γ

i∂iγ
j∂j = ∂

j∂j , (3.33)

the Laplacian. We summarize the results of this section in the following table comparing the
results for spinors (complex case) with the well-known analogous concepts for vectors.

Vector Spinor
Principal bundle PSO (M ) PSpin (M )

Structure group SOr,s Spincr,s
Representation space Rn ∆n B C

2f , f =
⌊
n
2

⌋

Associated bundle TM = PSO (M ) ×ρ Rn S (M ) = PSpin (M ) ×γ ∆n
Cross section Vector �eld Spinor �eld
Connection Levi-Civita connection ω Spin connection ω̂
Covariant Derivative Levi-Civita derivative ∇ Spin derivative ∇

The numerous maps we de�ned are summarized in the following diagram, exp is the usual
exponential map from a Lie algebra to the group.

TPSpin spin so TPSO

PSpin Spin SO PSO

∆n Rn

• S (M ) TM •

Λ′

ω̂ dλ

exp

ω

exp
λ

γ ρ
Λ
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3.4 Killing Spinor
The last important notion about spinors we will need is about Killing spinors on a Riemannian
manifold. The spinor �eld ϵ de�ned on a spin manifold (Σ, s ) is called a real Killing spinor, if
there is a constant λ ∈ R\{0}, such that ϵ ful�ls

∇Xϵ = i λ2X · ϵ (3.34)

for all X ∈ TΣ. λ is called Killing number. If λ = 0 then ϵ is called parallel spinor.
If λ is complex and non-zero then ϵ is called complex Killing spinor. Note, however, that

real/complex refer only to λ, the spinor �eld is a section of a complex spinor bundle in either
case. We will work only with real Killing spinors and refer to them simply as Killing spinor.
Additionally, we now assume that the spinor �eld is de�ned on a Riemannian manifold. Some
important facts about Killing spinors that are relevant to us are listed in the following, we refer
to [29, 31] for proofs and further discussion. The Killing spinor ϵ is a eigenspinor of the Dirac
operator with eigenvalue −nλ, where n = dim(Σ). A Killing spinor is a special case of a twistor
spinor. Associated to the Killing vector ϵ there is a vector �eld

Vϵ =
n∑

i=1
(ei · ϵ, ϵ ) ei (3.35)

which is a Killing vector �eld on the Riemannian manifold (Σ, s ) with orthonormal basis {ej }.
This explains the name “Killing spinor”. If there exists a Killing spinor on (Σ, s ) then (Σ, s ) is a
compact Einstein manifold of positive scalar curvature

R = 4n(n − 1)λ2 > 0 . (3.36)

This condition is rather restrictive and it is possible to classify all manifolds, which may carry
Killing spinors or parallel spinors, by their holonomy group. For parallel spinor this was done
by [32, 33] and for Killing spinors by [34]. See Appendix D for a brief discussion and examples
of manifolds which admit Killing spinors.
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CHAPTER 4

Conformal In�nity and Mass in Four Dimensions

We begin our discussion of mass in general relativity and its positivity with a look at the four
dimensional case since this is well understood and can serve as an example/motivation for
the more complicated higher dimensional case. For this we �rst need to introduce the notion
of null in�nity and asymptotic �atness. We will also discuss how to construct a coordinate
system, called Bondi coordinates, near null in�nity. It turns out that four dimensions and even
dimensions d ≥ 4 are rather similar and thus we will discuss the more general case. However,
the case of odd dimensions is di�erent, for reasons to be explained in the �rst section, and thus
we will discuss it in more detail only in the next chapter. The second section of this chapter
consists of a review of the di�erent de�nitions of mass in four-dimensional general relativity.
Thereafter, we brie�y discuss the problem of positivity in four dimensions.

4.1 Null In�nity and Bondi Coordinates in Even Dimen-
sions

We start by recalling the de�nition of conformal null in�nity in four dimensions and discuss
why the de�nition carries over to higher even (but not odd) dimensions. Then, we construct
Bondi coordinates in even dimensions following the arguments in [35–37]. Using this, we de�ne
asymptotic �atness by assuming that a suitable conformal embedding and Bondi coordinates
exist.

4.1.1 Conformal Transformation
We want to �nd a suitable coordinate system to study the problem of an isolated system (sitting
in some compact region of spacetime) which radiates gravitational waves. The challenge now is
to de�ne asymptotic �atness and “going to in�nity” in a meaningful way, which is a nontrivial
problem since there is no background spacetime that one could use as a reference. A possibility
to deal with this is to bring the points at in�nity to a �nite distance thereby circumventing
the problem. The procedure is similar to the compacti�cation used to construct real/complex
projective spaces, a well-known example being the Riemann sphere. We brie�y and very
informally describe the basic idea behind this technique which was introduced by R. Penrose in
[38]. An introduction can, for example, be found in [35, 39–41]. Then, we use the introduced
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notions to de�ne a suitable coordinate system near in�nity. We �rst consider four dimensional
spacetimes. As mentioned we want to transform the spacetime in such a way that “points at
in�nity” are brought to a �nite distance. A natural requirement for a transformation of the
metric is that the causal structure is not changed, that is null/timelike/spacelike vectors are
mapped onto null/timelike/spacelike vectors. Otherwise, physical processes and the result of
measurements would be changed by the transformation rendering a study of physical processes
in the transformed spacetime worthless. Let (M̃, д̃) be a new spacetime, called unphysical
spacetime, where M̃ is a manifold with boundary such that (M,д) can be mapped into (M̃, д̃)

via a conformal isometry. That is, let Ω be a smooth, strictly positive function and letψ : M →
ψ (M ) ⊂ M̃ such that

д̃ = Ω2ψ ∗д . (4.1)

It can be shown, see e.g. [35], that the causal structure is persevered by this transformation.
The transformation of the metric naturally induces transformations of all quantities which
depend on the metric, e.g. the Levi-Civita derivative or the Riemann tensor. Now, making
a suitable choice for Ω achieves the desired goal of bringing points in�nitely far away in
(M,д) to a �nite distance in (M̃, д̃). The concrete choice of Ω depends on the situation at
hand. This construction essentially adds a boundary to M and this boundary represents in�nity.
The boundary of the unphysical spacetime is equal to the union of null in�nity (endpoints
of null geodesics) and spatial in�nity. We denote future null in�nity be I +. It is important
to note that this method e�ectively replaces the fallo� conditions (in the physical spacetime)
by di�erentiability conditions (in the unphysical spacetimes) in the de�nition of asymptotic
�atness. Due to this the di�erential structure at in�nity is crucial and there are some additional
technical conditions about the smoothness at in�nity necessary, see [35, 39–41]. If the mapping
into an unphysical spacetime in the manner above is possible and if the smoothness conditions
are ful�lled the spacetime is usually said to be asymptotically �at. However, we will need an
additional assumption, namely the existence of a suitable coordinate system, so the existence
of such a mapping is only the �rst assumption and does not yet de�ne an asymptotically �at
spacetime. The advantage of the conformal method is that one obtains, with weak assumptions
on the di�erentiability of the �elds, the desired de�nitions. The geometric methods applied
do not require the introduction of a coordinate system to de�ne in�nity while simultaneously
supplying a clear geometric picture of the situation at hand. Additionally, taking limits, which
can be subtle, is avoided. These are reasons why the de�nition via conformal mappings is the
preferred method in four dimensions and one would like to also use the technique in higher
dimensions. Looking at the above steps one could guess that there should be no problem with
the generalization to higher dimensions, since the geometric method does not seem to crucially
depend on the dimension. It turns out that this guess is indeed correct for even dimensions
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dim(M ) C d > 4, see [17] for details, and the de�nitions are very similar to four dimensions.
However, as shown by [18], it is not possible to de�ne conformal null in�nity for odd dimensions
d ≥ 5, as the unphysical metric is at most (d−3)/2 times di�erentiable and therefore not smooth.
As mentioned above the assumptions on the di�erentiability of �elds at in�nity are crucial for
the de�nition and hence, one is left only with the possibility of using so-called Bondi coordinates,
which indeed can be generalized to arbitrary higher dimensions. We will show how Bondi
coordinates are constructed in the unphysical spacetime (in even dimensions) in the next section
and come back to odd dimensions in the next chapter.

4.1.2 Bondi Coordinates
Since we are not particularly interested in the source, it su�ces to study the e�ects at large
distances and the coordinates should be chosen in a way that is as simple as possible. Such
a coordinate system was introduced by [11, 42, 43] and the coordinates are called Bondi
coordinates. See also e.g. [44] for a review. The intuition behind the di�erent coordinates is as
follows. Let there be a radiating source in some (compact) region of the spacetime (M,д) and
consider a family of null geodesics originating at the source at an instance of time. Similarly
to spherical coordinates, there is a coordinate r quantifying the distance from the source. It is
sometimes called luminosity distance and de�ned as the coordinate along the null geodesics.
We choose an orientation such that r increases when an observer moves away from the source.
Then a “point” in null in�nity, the “point” to which a speci�c light ray travels in an in�nite
amount of time, is at r → ∞ where the limit is taken by going along null geodesics of radiation.
The second coordinateu is called retarded time (see below for the reason) and used to distinguish
null geodesics corresponding to radiation that was emitted from the source at di�erent times.
u increases as time moves forward, i.e. larger u correspond to later times, see Fig. 4.1. The
remaining coordinates will be denoted by xA B (x1, ...,xd−2). These are local coordinates on
the (d − 2)-dimensional (r ,u)-constant surfaces Σ.

Following [35–37] we now describe how such a coordinate system is constructed in even
dimensions. It is important to note that we do not proof that such a coordinate system exists at
null in�nity but, in the end, impose the existence as a condition for asymptotic �atness at null
in�nity. We begin by constructing a coordinate system (u,Ω,xA), where A = 1, ...,d − 2, on a
small open neighborhood O of an arbitrary point p ∈ I + such that the following holds. De�ne

na = д̃ab ∇̃bΩ (4.2)

which is null at I + ∩O and Ω is a scalar chosen to be Ω = 0 on I + ∩O. With a suitable gauge
choice (see [35]) na satis�es the geodesic equation

na∇̃anb = 0 (4.3)
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Figure 4.1: Sketches of Bondi coordinates with focus on di�erent aspects. In (a), u is �xed and
the source of matter is indicated by Rab , 0. In (b), the de�nitions of null and spatial in�nity
in Bondi coordinates are sketched. Each point in this two-dimensional sketch represents a
(d − 2)-dimensional surface parametrized by xA near in�nity.

and the expansion, shear and twist of the null geodesic generators of I + ∩ O vanish. Thus,
na generates a congruence of null geodesics which do not intersect. u is de�ned as the a�ne
parameter along the null geodesic generators of I + ∩ O such that

na∇au = 1 (4.4)

and thus na = (∂/∂u)a . There exists a (d −2)-dimensional surface Σ in I +∩O which intersects
each of the null geodesic generators of I + ∩ O at precisely one point. On Σ local coordinates
xA = (x1, ...,xd−2) can be introduced. Letma

A = (∂/∂xA)a , then we have д̃abnamb
A = 1 and we

can de�ne a null vector �eld la on I + ∩ O such that д̃abnalb = 1 and д̃abmalb = 0, i.e., the null
geodesics generated by la are orthogonal to Σ and transverse to I + ∩ O. Let Ω denote the
a�ne parameter on the null geodesics de�ned by la with Ω = 0 on I + ∩O. The xA coordinates
are required to be constant along the orbits of na and la while u is required to be constant along
the curves de�ned by la . We have nala = 1 and lama = 0 everywhere on O, not just on I + ∩O.
In a coordinate system which ful�ls these conditions the unphysical metric takes the form

д̃ = −2Ω2αdu2 + 2dudΩ − 2rβAdudxA + γABdxAdxB (4.5)

on O where α , β,γAB are smooth functions on O and on I + ∩O α is a real constant and βA = 0
. Note that γABdxAdxB is a Riemannian (d − 2)-metric which does not, in general, coincide with
the metric s induced on Σ by д̃ when Ω , 0 , u.

It is not necessarily obvious that such a coordinate system exists on all of I + and not just
on I + ∩ O. If a global coordinate system exists on all of I + then Σ(u,Ω = 0) becomes a
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foliation of I + and the coordinates I + ∩ O are carried to all of I + by imposing that (Ω,xA)
are constant along the orbits of na generating I + and u can be visualized as the coordinate
along I +. However, in general, one might need more than one coordinate patch to cover
I +. If some null Killing vector exists at null in�nity it induces a one-parameter group of
isometries and it follows that a global foliation of I + exists. While we do not assume that
Killing vector �elds exist there are asymptotic symmetries (di�eomorphisms preserving the
asymptotic structure at in�nity), which are tangent to I +, and play a role similar to a Killing
symmetry. This motivates why a global coordinate system in some neighborhood of I + might
exist. We do not investigate this further and, in particular, do not give a proof for the existence
of such a global coordinate system. In the following we instead assume that such a coordinate
system exists and add it as a condition for asymptotic �atness at null in�nity. Far away from
null in�nity geodesics may overlap and it is not possible to carry the coordinates further and
thus there is no global coordinate system. Summarizing, we have the following de�nition. An
even-dimensional spacetime is called asymptotically �at near null in�nity if there exists a
conformal transformation M → M̃ in the sense described above, I + is isomorphic to Σ × R
where Σ is a compact, (d − 2) dimensional manifold, and near null in�nity the unphysical
metric takes the form (7.4). This de�nition of asymptotically �at is more general than the usual
de�nition where one demands that the metric becomes asymptotically Minkowski and thus
Σ ' Sd−2. We opt for a more general de�nition which will be justi�ed in the following chapter.
Finally, denoting by r the physical distance (that is in�nity is located at r = ∞) and setting
Ω = 1/r the physical metric can be written as

r 2д̃ = д = −2αdu2 − 2dudr − 2rβAdudxA + r 2γABdx
AdxB . (4.6)

We can check consistency by looking at d-dimensional Minkowski space. In spherical
coordinates the metric takes the form

ds2
M = −dt2 + dr 2 + r 2sABdx

AdxB (4.7)

where sABdxAdxB is the metric of the (d − 2)-dimensional unit sphere. De�ning the retarded
time as u = t − r (which justi�es the name) yields

ds2
M = −du2 − 2dudr + r 2sABdx

AdxB . (4.8)

This is equal to (4.6) in the limit r → ∞, when taking the above conditions into account and if
we take Σ � Sd−2.

4.1.3 Example: Schwarzschild
As an example we look at the Schwarzschild metric and how it transforms from the standard
coordinates to Bondi coordinates. We start in d = 4 dimensions, the generalization to higher
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dimensions is then straightforward. In spherical coordinates the Schwarzschild metric takes the
well-known form

д4d = −adt2 + a−1dr 2 + r 2dσ 2 (4.9)

where a = (r − c )/r is a function for the radius, c ∈ R is a parameter and dσ 2 the line element
of the sphere. The retarded time is de�ned as

u = t − r? , (4.10)

where r? is the tortoise coordinate de�ned by

r? =

∫
a−1dr = c ln(r/c − 1) + r . (4.11)

Thus, we have r? → −∞ as r → c and

dr?
dr
= a−1 . (4.12)

The reason for de�ning the retarded time this way and not by, say, u = t − r , is that for a
geodesic tangent ka the equation for radial null geodesics is given by

дabk
akb = 0⇒ dt

dr
= ± r

r − c (4.13)

and thus t = ±r? + const. So far, these are the usual de�nitions encountered, for example,
in the procedure to analytically continue the coordinates to the whole spacetime (Eddington-
Finkelstein coordinates), where one also utilizes the equation for radial null geodesics to de�ne
coordinates. For large r the di�erence between r and r? is of order ln(r ) and asymptotically
r ∼ r?. Since the Bondi coordinates are only an asymptotic coordinate system, the de�nitions
provided here are coherent with the ones introduced above. We have

dt = du + dr? and dr?
dr
= a−1 . (4.14)

Hence, the metric takes the form

д4d = −a(du2 + a−2dr 2 + 2a−1dudr ) + a−1dr 2 + r 2dσ 2 = −adu2 − 2dudr + r 2dσ 2

= −(1 − c/r )du2 − 2dudr + r 2sABdx
AdxB , (4.15)

which is the Schwarzschild metric in Bondi coordinates in four-dimensional spacetime. To
�nd the metric in higher dimensions it is only necessary to modify the parameter a towards
a = 1 − c/rd−3 and dσ 2 corresponds now to the metric of an unit (d − 2)-sphere. For now,
this is simply a de�nition of a new metric. It is not immediately obvious that this is the right
generalization to higher dimensions. It was �rst found by Tangherlini in [45] and we will
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show below in section 6.1.1, by explicitly solving the Einstein equations, that this is indeed the
Schwarzschild solution in d spacetime dimensions. In the new coordinates this metric is

дd = −(1 − cr 3−d )du2 − 2dudr + r 2sABdx
AdxB . (4.16)

Comparing with (4.6) one can see that βA = 0 and α = −(1 − cr 3−d ). In the next section, when
discussing the de�nition of mass in general relativity in four dimensions, we will continue with
discussing this metric and relate the parameter c to the mass of the Schwarzschild black hole.

4.2 Review of Mass in 4D
While ‘mass’ is a relatively straightforward concept in everyday live and classical mechanics
it becomes more di�cult in special relativity, where it is famously equal to the energy of a
system. Still, the mass appears as a simple parameter in relativistic Lagrangians and there are
no conceptual problems. However, this changes when taking gravity into account by going
to general relativity. Here, it is a non-trivial problem to even de�ne some concept of mass
as there is no way to de�ne a satisfying stress-energy tensor of the gravitational �eld. In
most classical �eld theories the total energy of a system can be de�ned as a volume integral
over a positive energy density T00. Then the positivity of the total energy is a consequence of
the conservation of the stress-energy tensor with a positive timelike component. In general
relativity this is impossible. While locally there is a stress-energy tensor encoding the energy
density of matter �elds, there is none for the gravitational �eld, since this would violate the
equivalence principle. Namely, a freely falling observer does not measure any gravitational
�eld and thus the gravitational energy density cannot be de�ned at spacetime points. However,
matter �elds and the gravitational �eld contribute both to the total energy of a system and
hence it is not possible to carry over the de�nition of total energy of a system as an integral over
T00. We have to accept the nonexistence of a local notion of energy density in general relativity.
Since a notion of mass/energy would be desirable a di�erent path has to be taken. That is,
instead of using local (point-like) de�nitions it is necessary to look for notions associated with
extended domains of spacetime. Then, it is indeed possible to de�ne, e.g., the total energy of an
isolated system employing the asymptotic �atness of spacetime in a manner described below.
As required, this asymptotic mass/energy de�nition includes contributions from the matter
as well as from the gravitational �eld. Relating this total energy to the local energy density
of matter �elds given by the stress-energy tensor is a non-trivial task [46]. However, these
de�nitions exist only if some additional structure, e.g., symmetry, is assumed. We now review
how a notion of asymptotic/total energy is de�ned in four dimensional general relativity. To do
this we �rst look at Newtonian theory and afterwards try to �nd a �tting analogue in general
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Figure 4.2: To de�ne the mass M in Newtonian physics one considers a sphere S that completely
encloses the mass. The projection of the gradient of the gravitational potential, ∇ϕ, onto the
outward pointing normal n̂ of the sphere has to be integrated over S .

relativity. The general idea is that in �at spacetimes, symmetries give rise to conserved integrals
and one might hope that in asymptotically �at spacetimes the asymptotic symmetries give
rise to similar integrals. This turns out to be indeed the case. For example, asymptotic time
translations at null in�nity give rise to the so-called Bondi mass. Additionally, one could try
to de�ne an energy-momentum for �nite regions of spacetime. This leads to many so-called
quasi-local mass de�nitions. We will not discuss this here as it is nicely reviewed for example
in [47, 48].

4.2.1 Mass in Newtonian Theory
Consider an isolated system. In the vacuum region outside the system, the Poisson equation for
the Newtonian potential ϕ reduces to Laplace’s equation

∆ϕ = 0 . (4.17)

Having our goal of de�ning mass in general relativity in mind, we now choose a slightly unusual
way to de�ne the total mass M of the system, namely

MNewt B
1

4π

∫

S
∇ϕ · n̂dA . (4.18)

The surface integral is taken over a topological 2-sphere S completely enclosing the source(s) of
the gravitational �eld and n̂ is the unit normal of S pointing outward, see Fig. 4.2. Because (4.17)
holds the integral is independent of S , since the mass enclosed by the surface does not change.
To connect this to the standard de�nition of the mass, we consider the multipole expansion of

ϕ (r ) = −
∫

R3

1
|r − x |dm̃(x ) , (4.19)

35



CHAPTER 4. CONFORMAL INFINITY AND MASS IN FOUR DIMENSIONS

with dm̃(x ) as the di�erential mass. The result

ϕ (r ) = −M̃Newt
|r | + O (r

−2) (4.20)

is equal to the work needed to bring a unit mass from in�nity to the distance r from a point
mass M̃Newt =

∫
R3 dm̃(x ). Thus,

∇ϕ (r ) = M̃Newt
r 2 r̂ + O (r−3) . (4.21)

Plugging this into (4.18), choosing for S the 2-sphere, and working with spherical coordinates
yields

MNewt =
1

4π

∫ 2π

0

∫ 1

−1
∇ϕ · r̂ r 2d (cosθ )dφ ' M̃Newt , (4.22)

and thus the two de�nitions are equivalent. The interpretation of (4.18) is straightforward: ∇ϕ
is the force that must be exerted on a unit mass to “neutralize” the gravitational force and hold
it at one point. Hence, 4πM is the total force necessary to hold test matter, with unit surface
mass density distributed over S , in place. The de�nitions in general relativity are similar to the
Newtonian case.

4.2.2 Mass in General Relativity
The simplest case is an asymptotically �at spacetime which is static. We always assume
that the spacetime is vacuum near in�nity and follow the discussion in [35]. There exists a
timelike Killing vector ξ a , which is normalized such that the so-called redshift factor V B ξ aξa

approaches 1 at in�nity. In general it is impossible to have a meaningful notion of “staying in
place”, since there is no background manifold to be used as a reference point. However, for static
(and stationary) spacetimes it is possible by virtue of the timelike Killing vector �eld, namely,
an observer is staying in place if they are following an orbit of ξ a . Thus, the acceleration of the
orbit

ab =
1
V 2 ξ

a∇aξb (4.23)

is equal to the force needed to keep a unit test mass in place. This (local) force di�ers from the
force that must be applied by an observer at in�nity by a factor of V . Hence, the total outward
force that must be exerted by an observer at in�nity is

F B V ·
∫

S
abn̂

b dA =
1
V

∫

S
n̂b ξ a∇aξb dA , (4.24)

where S is again a topological 2-sphere with the unit outward pointing normal n̂a , which is
orthogonal to ξ a , see Fig. 4.3. Let ϵabcd be the volume element associated with the spacetime
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Figure 4.3: If an (asymptotically) Killing vector �eld ξ a is present, the mass M present in
spacetime can be found by integrating over a sphere S at in�nity (dashed line). Following
integral curves of a Killing vector �eld ξ a is the analogue of “staying in place” in Newtonian
physics.

metric. Using Killing’s equation we can rewrite (4.24) as

F = −1
2

∫

S
ϵabcd∇cξd = −1

2

∫

S
?ξ . (4.25)

It is possible to show that this integral is independent of the choice of S , as was the case for the
integral (4.18) in the Newtonian case. Since both integrals, (4.18) and (4.25), are independent of
S and they have the same physical interpretation it is natural to de�ne

MKomar B − 1
8π

∫

S
ϵabcd∇cξd = F

4π . (4.26)

The assumption that ξ a is a Killing vector is the only requirement to show that the integral is
independent of the choice of S and hence (4.26) may also be used as a satisfactory notion of mass
for stationary, asymptotically �at spacetimes. This result was �rst derived in [49] and thus (4.26)
is called Komar mass. It is a satisfying de�nition of mass for all stationary, asymptotically �at
spacetimes which are vacuum near in�nity. Due to the symmetry used in this de�nition, the
Komar mass is the most straightforward generalization of the de�nition of physical quantities
as conserved under symmetry (c.f. Noether theorem charges). A similar construction employing
spacelike instead of timelike Killing vectors leads to a de�nition of angular momentum.

Moving on to non-stationary, asymptotically �at spacetimes the di�culty arises that the
notion of “staying in place” used above is no longer available. Thus, it is not obvious how to
generalize the above scheme or if it is even possible. It seems that the only chance to de�ne
the mass of an isolated system is for an observer to still measure from in�nity while replacing
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the Killing vector with something new. Recall from section 4.1 that there are di�erent kinds of
in�nities, e.g., spatial in�nity and null in�nity (move away from the system along space-like
or null directions, respectively). It turns out that it is possible to replace the Killing vector
and there are, corresponding to the two kinds of in�nity, two types of masses one can de�ne.
These are the Bondi mass at null in�nity and the ADM mass (Arnowitt, Deser, and Misner) at
spatial in�nity. We will see below why such a distinction/di�erence was not necessary for the
Komar mass. First, we look at the Bondi mass (sometimes also called Trautman-Bondi mass or
Trautman-Bondi-Sachs mass). It was �rst introduced by [50] and [11, 42, 43], where to each null
cone a number, the so-called Bondi mass of this null cone, was associated. That is, to de�ne this
mass one looks at a �xed retarded time u = t − r by going to null in�nity on a asymptotic null
surface. For each �xed u there is then a number which quanti�es the mass/energy in a system at
timeu. This is the total mass on the chosen hypersurface. We now want to sketch how this mass
is de�ned explicitly. Note that there are two (equivalent) “languages” in which an expression
for the Bondi mass can be formulated. Owing to the similarity to the Komar mass we start with
the de�nition of Bondi mass using the so-called linkage formulation which was introduced by
[51–53] building on work of [38]. Let ξ a now be the generator of an asymptotic time translation
symmetry1. In particular, ξ a does not satisfy the Killing equation everywhere on the spacetime
but only at in�nity. Hence, in general, an integral similar to (4.26) now depends on the choice
of S (this being the reason why the Komar mass cannot be used as a mass de�nition). But, since
ξ a ful�ls the Killing equation at in�nity, ξ a acts more and more like a Killing vector the closer
it is to in�nity. As a consequence, the dependence of the integral on S becomes smaller and
smaller as one goes to in�nity. Exploiting this, we can slightly modify (4.26) to adapt it to the
new situation. Thus, de�ne the mass as

M (u) B − 1
8π

∫

S
ϵabcd∇cξd = − 1

8π

∫

S
?ξ (4.27)

where S is an asymptotic two-sphere at given retarded time u. This expression is not inherently
gauge invariant and a gauge condition needs to be added. As shown by [58] a satisfactory choice
is ∇aξ a = 0 which is in particular ful�lled if ξ a satis�es the Killing equation at in�nity. With
this choice, while the integrand is not invariant under passage to an equivalent generator, the
integral is invariant. Note that there is also the symplectic, or Hamiltonian, approach where the

1An asymptotic symmetry is a spacetime di�eomorphism that preserves the asymptotic structure of the
spacetime. Asymptotic symmetries form a group (Spi group at spatial in�nity and BMS group at null in�nity) which
includes the Poincaré group as a subgroup. See, e.g., [35, 42, 54–56] (BMS group) and [39, 40, 57] (Spi group) and
references therein for an introduction and discussions of this topic in d = 4 and, for example [15, 17] for higher
dimensions.
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mass is de�ned as the quantity conserved under in�nitesimal asymptotic timelike translations2,
see, e.g., [56, 59–62] for an introduction. The relation between the linkage and the symplectic
approaches was examined by [63] essentially showing that, in physically relevant cases, the
approaches yield the same results.

The second “language” is the way it was originally de�ned by Bondi, Sachs and others in
[11, 42, 43] using Bondi coordinates, that is, the metric takes the form (4.6). As a �rst step/as
motivation we will try to use similarities with Newtonian physics again. We look at a system
with mass M such that its gravitational potential is ϕ = −M/r , which de�nes the acceleration
by taking the gradient, a B −∇ϕ. The Newtonian limit of general relativity is given by the
following conditions [35, 64, 65]:

• Particles move slowly in the sense that dx i
dτ � dt

dτ where τ is the proper time of a particle.

• The gravitational �eld is a perturbation h of Minkowski space η, i.e., д = η + h.

• The gravitational �eld is static, ∂tд = 0.

Using these three assumptions the geodesic equation of slow particles simpli�es considerably,
namely

d2x µ

dτ 2 + Γ
µ
00

(
dt

dτ

)2
=
d2x µ

dτ 2 −
1
2η

µν ∂νh00

(
dt

dτ

)2
= 0 . (4.28)

Due to the assumption that the gravitational �eld is static, the 0-component of this equation
yields dt/dτ = const . The i-component is equal to

d2x i

dτ 2 =
1
2

(
dt

dτ

)2
∂ih00 (4.29)

which is reminiscent of Newtons second law and thus we identifyh00 = −2ϕ orд00 = −(1+2ϕ) =
2M/r − 1. Hence, we see that for consistency there should in general be a relation between the
time-component of the metric and the mass of the system. However, in general relativity the
mass of a system can change by radiating gravitational waves and, in general, an expression for
the mass of a system must depend on time. Since there are no gravitational waves in Newtonian
gravity it is clear that we cannot �nd a satisfactory notion of mass by considering only the
Newtonian limit. Thus, in Bondi coordinates, we can use дuu = −2α to de�ne the mass of a
system at a �xed u = u0 but a time-dependent component is still missing. That is, let u0 be �xed
and let (θ ,φ) be the usual spherical coordinates on the unit sphere at in�nity. Then integrating

m(u0) B lim
r→∞ r

2 ∂α

∂r

�����u=u0

(4.30)

2This approach will be relevant later in the context of higher dimensional Bondi mass.
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over a sphere S at in�nity,
∫
S m(u0) sin(θ )dθdφ, de�nes the mass of a system at time u0. Taking

u0 as the starting point of the observation this mass can be viewed as the “starting mass” previous
to any radiation being emitted. Therefore, we are now looking for a function of m(u) telling us
how the mass evolves over time with m(u0) as an initial value. As shown by [42, 43] a so-called
news function can be de�ned which completely determines the change of mass. Following
them we de�ne the news tensor as

NAB B
1
2
∂

∂u

[
lim
r→∞ r (γAB − sAB )

]
. (4.31)

This quantity describes how the deviation of the spherical part of the general metric from the
unit sphere changes over time near in�nity, that is, it encodes the energy �ux of gravitational
waves, since gravitational radiation appears as a perturbation of the AB-part of the metric.
Knowledge of this tensor is su�cient to know how the mass changes over time since, using the
Einstein equations, one can show [44] that

2∂um = DADBN
AB − NABN

AB , (4.32)

where DA is the covariant derivative of sAB . Assuming NAB is known for u0 ≤ u ≤ u1 we
can integrate this equation with initial valuem(u0) yielding a time-dependent functionm(u).
Finally, integratingm(u) over a sphere at in�nity, de�nes the Bondi mass. Thus, we have the
following result. Let S be the 2-dimensional unit sphere at in�nity which is parametrized by
(θ ,φ). The time-dependent scalar function

M (u) B
1

4π

∫

S
m(u,θ ,φ) sinθdθdφ (4.33)

is called the Bondi mass. Integrating (4.32) one �nds the Bondi mass loss formula

d

du
M (u) = −1

4

∫

S
NABNAB sinθdθdφ . (4.34)

Since the right-hand side of (4.34) is non-positive, the Bondi mass can only decrease or stay
constant, the latter is the case only if there is no news. It was shown by [52, 53] that the two
ways of writing the Bondi mass in the di�erent “languages” described, i.e., via the linkage
formalism or metric coe�cients, are indeed equivalent. In fact, the de�nition is unique in some
sense, see [66].

Example: Schwarzschild

As a simple example we look at the Schwarzschild metric. As we have seen, we can de�ne the
mass either through an integral or through a power series of some metric component. Since the
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4.2. REVIEW OF MASS IN 4D

Schwarzschild metric is static, the Komar mass and the Bondi mass (as well as the ADM mass
discussed next) are equal. Thus, we start with computing (4.26)/(4.27) for the Schwarzschild
metric, which reads, in spherical coordinates,

ds2 = −
(
1 − c

r

)
dt2 +

(
1 − c

r

)−1
dr 2 + r 2

(
dθ 2 + sin2 θdϕ2

)
. (4.35)

The timelike Killing vector is given by

ξµ =
(c
r
− 1, 0, 0, 0

)
(4.36)

and thus we have
α ≡ ϵabϵabcd∇cξd = − 1

sinθ r
2 sin(θ ) c

r 2 = −c . (4.37)

Plugging this into (4.26) yields

MKomar = − 1
8π

∫

S
αϵab = − 1

8π

∫ 2π

0

∫ π

0
c sin(θ )dθdϕ = c

2 (4.38)

for the mass of a Schwarzschild black hole. To test the second way the Bondi mass was de�ned
we need the Schwarzschild metric in Bondi coordinates, i.e., (4.15), where we immediately see
that the uu-component is equal to −2α = c/r − 1 and thus, using (4.30), we �nd M = c/2 again.
Since the metric is static, the news tensor NAB is equal to zero. Hence, the Schwarzschild metric
can be rewritten in the form

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr 2 + r 2

(
dθ 2 + sin2 θdϕ2

)
(4.39)

which is usually found by taking the Newtonian limit to relate c and M since, as we have seen,
this is equal to the de�nition of the Bondi mass for the static Schwarzschild metric. The case of
the Kerr metric is very similar.

The second case, the ADM mass, is de�ned at a �xed physical time t at spatial in�nity. It
was introduced and investigated by R. Arnowitt, S. Deser and C. W. Misner in a series of papers
[10, 67, 68], see [69] for a contemporary review of these and related papers by the same authors.
The original approach was in the Hamiltonian framework ([70, 71]) a reformulation similar to
the linkage formalism described above exists as well, see, e.g., [39–41, 48, 55, 72] and references
therein. We will only discuss this topic heuristically and not go into details. The original result
by ADM can be summarized as follows. Consider 3-slices Ft where the family {Ft } is a foliation
of the spacetime such that on every slice the time t is constant. To each slice Ft we can associate
a number, the ADM mass. Let t µ be the evolution vector, a time-like vector which is normal to
Ft , which is chosen such that it generates asymptotic time translations. The ADM energy is
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Bondi

ADM

Radiation

Matter

Figure 4.4: Sketch of matter in a compact region of spacetime which emits gravitational radiation.
The ADM mass is de�ned on a spacelike surface F and thus all radiation crosses this surface
eventually. However, the Bondi mass is de�ned on an asymptotically null surface Nu at time u
and thus there might be radiation, which was emitted before time u, that never crosses Nu and
therefore does not contribute to the Bondi mass on this slice.

de�ned as the surface integral over the asymptotic behavior of the gravitational �eld and it can
be shown that an expression in asymptotically cartesian coordinates is given by [35, 47]

E = − lim
r→∞

����t=const.

1
16π

∫

S

(
∂khik − ∂ih

)
dAi (4.40)

where dS i is the normal surface element to a sphere of constant r , hik = дik −ηik and h = ηikhik .
The integral is taken over a bounding surface in the asymptotically �at region of Ft . It can be
shown that for any foliation {Ft } where t µ coincides with kµ at in�nity the Komar mass is equal
to the ADM mass.

The above de�nitions give rise to a natural interpretation of the two masses, see also the
sketch in Fig. 4.4. Since the ADM represents the net energy crossing an asymptotically �at
spacelike surface F , this surface eventually intersects all emitted radiation, because no signal
can travel faster than light, and therefore it is not possible for any physical process to change the
asymptotic behavior at spatial in�nity. Hence, the ADM mass is time independent and represents
the total energy of the system. On the other hand, the Bondi mass represents the energy crossing
an asymptotically null surface Nu and Nu does not intersect all emitted radiation, which results
in a time-dependence of the Bondi mass and the quantity is interpreted as the mass remaining
in the system at time u. Thus, while the ADM mass is a scalar constant over time the Bondi
mass is a scalar function of u which can change due to gravitational radiation. As shown in
[73], this intuition is right and for physically interesting systems the di�erence between the
Bondi mass and the ADM mass is the energy �ux carried away by the radiation between in�nite
past and given retarded time. Another question that arises is whether the masses de�ned above
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have to be positive for nonsingular spacetimes. In the following section we will explain why
this is an issue and sketch the proof(s) of the so-called positive energy theorem.

4.3 Positivity of Mass in General Relativity in 4D
Again, we start by looking at Newtonian gravity. Here, systems with negative energy are
ubiquitous since any bound system has negative total energy. Since the gravitational potential
is unbounded from below, it is possible to construct systems with negative total energy even if
the rest mass of the matter involved is taken into account. However, problems occur if we go to
general relativity. First, note that Minkowski space �xes the ground state with zero energy so we
are not free to choose any arbitrary zero point for the energy. Assume now that a system with
negative total energy constructed in Newtonian physics also exists in general relativity. In this
case, since energy is equal to mass, this would mean that the system has negative gravitational
mass which would result in a repelling rather than attracting gravitational force. Additionally,
one can imagine a radiating system. Since the radiation will carry away positive energy the total
energy in the system will decrease. Since the total energy was negative in the beginning and
if the energy were in fact unbounded from below it would be possible to extract an unlimited
amount of energy which is clearly unphysical. Thus, if systems with negative total mass were
allowed in GR this would indicate a fundamental problem with the theory in the sense that there
might not be any stable solutions. The idea from a physics point of view why this situation (that
is, total negative energy) cannot occur is that if we were to create a bound system with large
negative total energy we would inevitably end up with a black hole forming3 which has positive
total energy and this “saves” the theory. Thus, it is possible only in Newtonian gravity to create
a system with arbitrarily negative energy, but there we do not have mass-energy equality or
gravitational radiation and hence no problem.

While the intuitive solution is relatively straightforward, it has proven remarkably di�cult
to actually establish a proof of mass positivity in general relativity. The reason that there are
issues for general relativity, but not for most other theories is due to the nonexistence of a
stress-energy tensor for the gravitational �eld, as discussed in the beginning of section 4.2. It is
usually a trivial consequence of the conserved stress-energy tensor Tµν with positive timelike
component, which ensures that a physical system cannot radiate away more energy than it
initially had and that the ground state is stable. Since, as discussed above, the de�nition of the
total mass of a system is (more or less) independent of the stress-energy tensor, the standard

3There are in fact some connections between the proofs of the famous singularity theorems and proofs of the
positive energy theorem, see e.g. [74].
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arguments to show positivity of mass are no longer applicable. Thus, the stability of Minkowski
space as a ground state and a proof of the positive energy theorem are far from obvious and
highly non-trivial. This is the reason why the �rst proof was published only in 1979 by R. Schoen
and S.-T. Yau who showed in [13] that the ADM mass is positive, a more general case with less
strict assumptions was shown by the some authors shortly afterwards [75, 76]. Already earlier,
in 1977, S. Deser and C. Teitelboim showed that the energy in supergravity is positive [77] using
the Hamiltonian formalism of supergravity [78]. Following a suggestion of M. T. Grisaru ([79])
E. Witten considered the ~→ 0 limit of the proof in supergravity (in this limit the fermionic
parts present in supergravity drop out and classical general relativity is recovered) and found
a signi�cantly simpler proof of the positivity of ADM mass [14]. The new idea (the crucial
inspiration drawn from supergravity) was to use spinors also in classical general relativity to
facilitate the proof. To understand how spinors come into play it is advantageous to brie�y look
at the de�nition of charge in classical electromagnetism. We have the current 1-form J and the
electromagnetic �eld tensor 2-form F . They are related by the Maxwell equation d ? F = ?J .
Let V be a volume containing some charge distribution. The total charge in V is given by

q =
1

8π

∫

V
?J (4.41a)

which, using the Maxwell equation d ? F = ?J , can also be written as

q =
1

8π

∫

V
d ? F =

1
8π

∫

∂V
?F (4.41b)

where Stokes theorem was used in the last step. Now, note the similarity between (4.41a) and
the mass de�nition (4.27), but keep in mind that we are considering the ADM mass at the
moment. In the de�nition of the mass, the 1-form is obtained from the asymptotic timelike
Killing vector by lowering the index. The question is whether there is also an analogue of
(4.41b), i.e., whether there is a 2-form which, integrated over in�nity, yields the mass. Let us
take the analogue with electromagnetism and the similarity of (4.41a) and (4.27) as motivation
to look for an appropriate 2-from E. It seems that there is not much freedom in de�ning E. A
dimensional analysis shows that there must be one derivative involved and we integrate over
in�nity where the only distinguished vectors are the asymptotic symmetries. Thus, one might
guess that there are only two possibilities, namely [80]

E1
ab = ∇[aξb] , (4.42a)

and
E2
ab = ϵabcd∇cξd . (4.42b)

However, both choices are unsatisfactory. If we look at the integral
∫
∂S ?E over a two-sphere

the “mass” resulting from E1
ab depends on the order 1/r part of ξ a and thus the result is not
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related to the mass in the spacetime, cf. the Newtonian limit (4.29) and the discussion of the
Schwarzschild metric in section 4.2.2. The integral over E2

ab vanishes due to Stokes theorem [80].
Thus, the 2-forms which can be formed from ξ a do not yield a satisfactory de�nition of mass and
it seems that there is no analogue of (4.41b). However, now the motivation from supergravity
comes into play. If one allows spinors to be used, there are two additional possibilities. They
are constructed such that their imaginary part is equal to (4.42a) and (4.42b), respectively, but
the real part di�ers and thus is the interesting part. Take a spinor Ψ and de�ne

E3
ab = ∇[a (Ψ̄γb]Ψ) (4.42c)

E4
ab = 2ϵabcd

(
Ψ̄γ c∇dΨ − ∇d Ψ̄γcΨ

)
. (4.42d)

The integral over <(E3
ab ) has the same issue as the one over E1

ab . However, E4
ab leads to an

expression depending only on the asymptotic value of Ψ and in fact let Ψ = Ψ0 + O (r−1), where
Ψ0 is Killing. The vector Ψ̄0γ

aΨ0 is equal to the Killing vector ξ a (c.f. (3.35)). Setting E = E4 we
have

1
8π

∫

S
?E (4.43)

which is real (since the contribution of E2 vanishes under the integral) and this expression is the
analogue of (4.41b). This 2-form is called Witten-Nester 2-form, since it was not introduced
in Witten’s original proof in [14] but only introduced by J. A. Nester in [81], where a small error
in Witten’s line of argument was corrected. It was shown by [14, 81] that (4.43) is asymptotically
equal to the de�nition of the ADM and thus the expression (4.43) is an equivalent expression
for the ADM mass. Therefore, to show positivity of mass it su�ces to show that (4.43) is
positive. Using Stokes theorem, one thus wants to show that ∇aEab ≥ 0. Assuming only that
the dominant energy condition (a local condition) is ful�lled and restricting the freedom of Ψ by
allowing only spinors, which ful�l the Witten equation γ i∇iΨ = 0, where the index i runs only
over spatial coordinates, positivity can been shown, using some standard identities for gamma
matrices and spin derivatives, rather easily, see [14, 81]. (We will come back to this below in
our proof of the positivity in higher odd dimensions.) Having shown that the ADM mass is
positive, the natural next step was to consider the Bondi mass. Schoen and Yau were able to
adopt their strategy to the Bondi mass [82] while W. Israel and J. M. Nester [83], M. Ludvigsen
and J. A. G. Vickers [84, 85], as well as G. T. Horowitz and M. J. Perry [86] used Witten’s style of
argument, with only small modi�cations, to proof the positivity of Bondi mass in 1981, see also
[80]. Witten’s argument in particular has afterwards been used to include more general cases,
for example spacetimes with black holes [87, 88], electromagnetic charges [89, 90] (see also
[91]), and spacetimes which are asymptotically AdS [87]. There are also further investigation of
the relation between the proof in classical general relativity and supersymmetry (e.g. [92]) and
attempts to make the results more mathematically rigorous by, e.g., [93–95].
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The goal of this thesis is to show that the positivity of Bondi mass also holds for arbitrary
odd dimensions d ≥ 5. We do this with with an argument similar to the one in Witten’s original
work but new complications occur in higher dimensions requiring additional steps. In particular,
the spinor we use is not of the simple leading-order type as in four dimensions. Furthermore,
while the ADM mass is readily generalized to higher dimensions [70] it turns out that de�ning
the Bondi mass in higher dimensions is considerably more di�cult and, in particular, the linkage
formalism does not carry over to higher dimensions. We will discuss this in the next two
chapters and come back to the positivity afterwards.
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Bondi Mass and Positivity
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CHAPTER 5

Assumptions, Setup and Notations

The second part of this thesis is concerned with odd dimensional spacetimes and the goal is to
�nd a coordinate expression for the Bondi mass and show that it is positive. In this chapter we
state the assumptions and conditions we impose on the spacetime we are working with as well
as �x some notations for the rest of the thesis. It was already mentioned at several points that
there are some di�erences between even and odd dimensions concerning the de�nition of null
in�nity. In the �rst section of this chapter we look at gravitational waves in odd dimensions
to illustrate the issue and motivate our assumptions in the second section. These assumptions
are in particular concerned with de�ning asymptotic �atness (since in our case no smooth
conformal null in�nity is present) by imposing Bondi coordinates. Finally, the most important
results of the subsequent chapters are summarized.

5.1 A First Glance at Odd Dimensions: Gravitational Waves
At �rst glance it is not at all obvious why there should be a di�erence between even and odd
dimensional spacetimes in general. While one might expect a di�erence between d = 3 and
d = 4 dimensional spacetimes it is not clear why there should be a di�erence between, say
d = 8 and d = 9. However, it has been shown (already around 1900 by Hadamard for the scalar
wave equation in �at space [96, 97]) that there are crucial di�erences between the two cases.
One of the simplest and most instructive examples where the di�erence becomes apparent
are gravitational wave. (In fact, it would already su�ce to look at the scalar wave equation in
Minkowski spacetime to see the di�erence.) To see this it su�ces to look at the Green’s functions.
In essence, Huygen’s principle is violated already at leading order in r in odd dimensions and
the waves have a “tail”, i.e., support inside the lightcone. Before comparing both cases we
quickly recapitulate the standard setup for the treatment of gravitational waves in linearized
gravity. An introduction to this topic can be found in any standard book on general relativity,
see e.g. [35, 64, 65].

We want to derive a metric in the presence of gravitational waves in linearized gravity.
Assume that there is some matter with stress-tensorT on a Minkowski background (Rd ,η). The
trace-reversed metric perturbation is de�ned as

h̄ab B hab − 1
2ηabh , (5.1)
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where h ≡ ηabhab . Working in the gauge ∂ah̄ab = 0 the linearized Einstein equation reads

ηcd∂c∂dh̄ab = 16πTab . (5.2)

The solution of this equation is given by

h̄ab = 16π
∫

d5x ′G (x ,x ′)a
′b′

ab Ta′b′ (x
′) (5.3)

where G (x ,x ′)a′b′ab = η
a′
a η

b′
b G (x ,x ′) and G (x ,x ′) is the scalar Green’s function of the inhomoge-

neous wave equation for a �eld on d-dimensional Minkowski spacetime (Rd ,η), i.e.,

∂a∂aG (x ,x ′) = δ (x ,x ′) (5.4)

The Green’s function is found to be [98–100]

Ge (x ,x
′) =

1
2 (2π )

2−d
2 θ (t − t ′)

(
− 1
|ξ |
∂

∂ |ξ |
)d/2−2 (

δ (t − t ′ − |ξ |)
|ξ |

)
(5.5)

in even dimensions while in odd dimensions it is

Go (x ,x
′) = (2π )

1−d
2

(
− 1
t − t ′

∂

∂t ′

) d−3
2 θ (t − t ′ − |ξ |)√

(t − t ′)2 − |ξ |2
(5.6)

where ξ = x − x ′.
We now look more closely at the linearized perturbationhab in an odd-dimensional Minkowski

background. To illustrate what happens at lowest order in r , we look at 5-dimensional spacetime.
The treatment for higher1 odd dimensions is similar. We consider, similar to calculations in [16,
101], a perturbation generated by particle scattering of massive particles, where the ingoing and
outgoing particles interact only at a single point that is taken to be the origin. The stress-energy
tensor of the outgoing particles in coordinates (t ,x ) is

T (out)
ab (x ) =

∑

i

miviav
i
bδ (x −yi (t ))

dτ i

dt
θ (t ) (5.7)

wheremi is the rest mass, yi the spatial trajectory and via the four velocity of the ith outgoing
particle, τ i is its proper time. The expression for the ingoing particles T (in)

ab has the same form
with t → −t and the total stress-energy tensor is

Tab = T
(in)
ab +T

(out)
ab . (5.8)

1There is no gravitational radiation in d = 3 dimensions.
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In the following, we consider the case of a single particle (i = 1) of unit mass (m1 = 1) which
is “created” at the origin and rests there, i.e. y1 = 0. This is done to keep the expressions
shorter and focus on the aspects we are interested in; the general case can easily be recovered
by repeating the following calculation with the full stress-energy tensor (5.8), see also [16, 101].
Plugging (5.6) into (5.3) yields

h̄ab = 16π
∫

d5x ′Tab (x ′)
1

(2π )2

(
− 1
t − t ′

∂

∂t ′

)
θ (t − t ′ − |ξ |)√
(t − t ′)2 − |ξ |2

. (5.9)

Now, substituting (5.7) (for the single particle described above and v1
a ≡ va ,m1 ≡m), we have

= −4mvavb
π

∫
dt ′d4x ′

δ (x ′)θ (t ′)
t − t ′

∂

∂t ′
θ (t − t ′ − |ξ |)√
(t − t ′)2 − |ξ |2

= −4mvavb
π

∫ ∞

0
dt ′

1
t − t ′

∂

∂t ′
θ (t − t ′ − |x |)√
(t − t ′)2 − |x |2

.

De�ning r = |x | and u = t − r and using the latter to replace t ,

h̄ab = −4mvavb
π

∫ ∞

0
dt ′

1
u + r − t ′

∂

∂t ′
θ (u − t ′)√

(u + r − t ′)2 − r 2

=
4mvavb

π

∫ ∞

0
dt ′
∂

∂t ′
( 1
u + r − t ′

) θ (u − t ′)√
(u + r − t ′)2 − r 2

− 4mvavb
π

1
u + r − t ′

θ (u − t ′)√
(u + r − t ′)2 − r 2

������

∞

t ′=0
. (5.10)

We are interested in the limit r → ∞ as u = const. (null in�nity). The �rst term in (5.10)
decays as r−5/2 while the non-vanishing boundary term in the second term decays as r−3/2 and
therefore this is the relevant leading-order term. The result is

h̄ab =
4mvavb√

2π
θ (u)√
u
r−3/2 + O

(
r−5/2

)
. (5.11)

Doing the trace reverse yields

hab =
4m√
2π

(
vavb +

1
d − 2ηab

) θ (u)√
u
r−3/2 + O

(
r−5/2

)
. (5.12)

By the same procedure the result can be found for all odd dimensions d ≥ 5 and the leading
term in the metric perturbation is of order

hab ∼ r−d/2+1 + O
(
r−d/2

)
. (5.13)

Therefore, the relevant term is of half-integer order in 1/r . This is in contrast to even dimensions
where the perturbation is of integer order, as can be seen when repeating the above computations
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with (5.5) instead of (5.6) [101, 102]. Note that Huygens’ principle (the wave function has support
only on the light cone and all modes travel with speed of light) holds for all even dimensions
d ≥ 4 but does not hold for odd dimensions d ≥ 5, see also [103]. Instead, the wave has a
so-called tail meaning that there is support inside the lightcone and some modes travel slower
than speed of light, already in the leading order term. This means that a local event has e�ects
at all times. This is due to the function θ (u) in (5.12), which appears in odd dimensions while
in even dimensions it is replaced by a delta distribution. Thus, one sees already at this stage
that there are crucial di�erences between even and odd dimensions. The di�erences will be
important in the next section when an asymptotic expansion of the metric coe�cients in Bondi
coordinates is introduced.

5.2 Assumptions and Results
We state all assumptions and the general setup in this section and give an overview over the main
results we will derive in the subsequent chapters. (M ,д) is a smooth Lorentzian spin manifold
of odd dimension d ≥ 5. д has signature (−,+, ...,+). We saw in chapter 4 how to construct
Bondi coordinates in even dimensions and how they are used to de�ne asymptotic �atness. Now,
we are interested in spacetimes with odd dimensions. As mentioned above it is not possible to
de�ne a smooth conformal null in�nity since the unphysical metric is at most (d − 3)/2 times
di�erentiable. But it is still possible to de�ne asymptotic �atness by requiring that suitable Bondi
coordinates exist [104, 105]. The idea behind the coordinates remains the same, that is, we want
to de�ne a coordinate system far away from the source of gravitational force. Here, “far away”
can be visualized as saying that the gravitational force is so weak that massless dust travelling
on null geodesics is not in�uenced signi�cantly by the gravitational force on the time scale at
which we are looking at the problem. Then, in this region the geodesics do not intersect, as
required in chapter 4. The physical interpretation of the coordinates (u, r ,xA) remains the same
as above and so does their “character” (null/timelike/spacelike) and “transportation properties”.
For example, the surfaces u = const. are null, (∂au) (∂bu)дab = 0, and the d − 2 scalar functions
xA and r are de�ned such that they are constant along the integral lines of (∂/∂u). Similarly,
(u,xA) are constant along a given geodesic with a�ne parameter r , see chapter 4. Choosing
a �xed retarded time u and going to r → ∞ along the geodesic determined by u we arrive at
a “point” and the set of all such points (choosing di�erent u) is called future null in�nity. We
require the existence of such a coordinate system as a condition for asymptotic �atness such
that in the range where the unphysical metric is di�erentiable the de�nition agrees with the
one given for even dimensions. Additionally, we need the following condition. Assume that
there are functions α , βA, and γAB of (u, r ,xA) which are smooth and can be expanded in the
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power series

α (u, r ,xA) ∼
∑

n≥0

α (n) (u,xA)

rn/2 , (5.14a)

βA (u, r ,x
A) ∼

∑

n≥0

β (n) (u,xA)

rn/2 , (5.14b)

γAB (u, r ,x
A) ∼ sAB +

∑

n≥1

γ (n)
AB (u,x

A)

rn/2 , (5.14c)

where n ∈ N and α (0) is a real, positive constant. As we saw in the last section, there is a
dimension-dependent di�erence in the power of the leading order term for gravitational waves,
namely in even dimensions it is an integer power of r while in odd dimensions it is a half-integer
power. We do not want to exclude gravitational waves and thus an asymptotic expansion has to
be chosen which is consistent with the metric in the presence of gravitational radiation, namely
an expansion in half-integer powers of r . This motivates our choice of the power of r in (5.14).
A similar ansatz, but with more assumptions, was proposed by [105] and also used in [104, 106,
107]. The power series (5.14) are assumed to exist and to be well de�ned such that they are, e.g.,
di�erentiable, and α (n) , β (n) , γ (n)

AB are smooth functions of u and xA but are independent of r .
The spacetime (M ,д) is assumed to be vacuum near in�nity, that is, the vacuum Einstein

equations hold there. Furthermore, we take it to be asymptotically �at2, i.e., we require that
Bondi coordinates (u, r ,xA) with the properties described above exist and that near in�nity the
metric has the form

дabdx
adxb = −2αdu2 − 2dudr − 2rβAdudxA + r 2γABdx

AdxB , (5.15)

where the coe�cients α , βA and γAB are smooth and can be expanded as above. We denote
the r -derivative of some quantity x by ẋ ≡ ∂rx and the u-derivative by x ′ ≡ ∂ux . The compact
(d − 2)-dimensional manifold Σ(u, r ) is de�ned near in�nity as the surface of constant u and r

and we require that a spin structure can be de�ned on it. Thus, the coordinates on Σ are xA.
In d-dimensional Minkowski spacetime Σ is spherical, Σ � Sd−2, and xA are the usual angular
coordinates. The metric on Σ induced by д is the Riemannian metric sAB , which is equal to
γAB at u = 0 at in�nity. The spin derivative and Levi-Civita derivative on (Σ, s ) are denoted
D, the ones on (M ,д) by ∇ and the Levi-Civita derivative of γAB by D. We require that (Σ, s )
admits a real Killing spinor ϵ with constant λ. Thus, Σ is an Einstein space. Further, we require

2Recall that our de�nition of asymptotic �atness is used in a slightly di�erent sense than usual. It refers not
only to the case that the metric approaches the Minkowski metric at in�nity but is slightly more general.
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that the metric is related to the Killing spinor by3 α (0) = λ2/2. We can de�ne the conformal
transformation д̃ = Ω2д with Ω = 1/r such that the boundary of M̃ contains future null in�nity
I + � R × Σ, but it is not smooth [18]. Spacetime indices are raised/lowered by sAB unless
otherwise noted.

Figure 5.1: A sketch of the Bondi coordinates, a hypersurface and Σ in a conformal diagram. Σ
is represented by a point near/at null in�nity.

The main results of each chapter are as follows. In chapter 6 we use the Einstein equations
to show that coe�cients corresponding to low orders of r vanish. The results are summarized
in 6.1. We then use these results to derive an explicit expression for the Bondi mass in odd
dimensions in Bondi coordinates from results of [17]. In chapter 7, following [19], we establish
the main result of this thesis. With some additional assumptions (not yet stated here) we show
that the Bondi mass is non-negative, see Theorem 7.2.

3We can have Minkowski spacetime at in�nity only if α ∼ 1/2 and if λ , 1 we have a non-�at metric at in�nity.
We refer to the spacetime as asymptotically �at in either case which is the more general usage of the term mentioned
above.
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CHAPTER 6

Einstein Equations and Bondi Mass

In this chapter, we want to derive/de�ne an explicit expression for the Bondi mass in odd
dimensions d ≥ 5 in Bondi coordinates and interpret the result in physical terms, i.e., we want
generalizations of (4.33) and (4.34). Therefore, we �rst need to investigate Bondi coordinates in
odd dimensions. In the �rst section, we plug the asymptotic expansions of the Bondi coordinates
into the Einstein equations. It turns out that this method simpli�es the equations signi�cantly
and they can be solved iteratively at each order of r , which reveals some structure in the
asymptotic expansion. Then, in the second section, a geometric expression for the Bondi mass
derived by [17] in the Hamiltonian framework is utilized to �nd an explicit expression for the
Bondi mass.

6.1 Asymptotic Expansion and Einstein Equations
We assumed that the vacuum Einstein equations hold outside some compact region and using
them we want to �nd some additional structure in the metric (5.15). It turns out that assuming
that the power series (5.14) exist is very helpful in the following, where we want to discuss the
vacuum Einstein equations near in�nity. The explicit form of the vacuum Einstein equations

Rab = 0 , (6.1)

where Rab is the Ricci tensor, is given in appendix A in Bondi coordinates. Before considering
the general case, we �rst derive the Schwarzschild metric to illustrate the general idea and steps
which will reappear thereafter in the general discussion.

6.1.1 Schwarzschild Higher Dimensions Einstein Equations
To derive the Schwarzschild metric in higher dimensions we use the symmetry and make the
ansatz that γAB = f sAB = sAB + O (r−1/2) with f as a scalar function. Plugging this into the
rr -component (A.2) we �nd f = 1 and therefore γAB = sAB whence γ̇AB ≡ ∂rγAB = 0 and
γ ′AB ≡ ∂uγAB = 0. As a result, all derivatives of γAB in the other components of the Ricci tensor
vanish and the Einstein equations simplify signi�cantly. We start with the RrA-component
(A.1), which takes the simple form

d − 2
2 rβA − d − 2

2 r 2β̇A − 1
2r

3β̈A = 0 . (6.2)
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Now, plug in the asymptotic expansion (5.14) for βA. At order rk one �nds β (k )A = 0 if k , 2d − 4
and hence only one term remains such that

βA = β
(2d−4)
A r−d+2 . (6.3)

This can be used to investigate the asymptotic expansions of α . For this, we look at the ru-
component (A.4) that now reads

−d − 2
2r βAβ

A−d − 2
2 βAβ

A+
1
2D

AβA+r
(
2βAβ̇A +

1
2D

Aβ̇A − (d − 2)α̇
)
+r 2

(
−α̈ − 1

2∂r (β
Aβ̇A)

)
.

(6.4)
Again, plug in the asymptotic expansion for βA (now simply (6.3)) and α and consider the
equation at each order rk . For k , 2d − 4, 4d − 8 the terms with βA do not contribute and one
�nds (2d − 6 − k )α (k ) = 0 and therefore

α (k ) = 0 if k , 2d − 4, 2d − 6, 4d − 8 . (6.5)

The two terms in α that are related to βA are

α (2d−4) ∝ DAβ
A(2d−4) (6.6)

and
α (4d−8) ∝ βA(2d−4)β (2d−4)

A , (6.7)

where the prefactors are irrelevant for the discussion and we omit them. From the Ruu -
component (A.6) we �nd, at order r−4d+10, that

βA(2d−4)β (2d−4)
A = 0 . (6.8)

This can be used in the AB-component (A.3), which reduces to

β (2d−4)
A β (2d−4)

B ∝ sABβ
(2d−4)
C βC (2d−4) , (6.9)

to �nd β (2d−4)
A = 0. Consequently, all coe�cients β (n)A vanish and we have

βA = 0 . (6.10)

Thus, α takes the form
α = α (2d−6)r−(d−3) . (6.11)

Since DAα = 0 (from RuA) and ∂uα = 0 (from Ruu ) it follows that α (2d−6) is constant. Summa-
rizing, we have




α (2d−6)r−(d−3)

βA = 0

γAB = sAB

(6.12)
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and the metric reads

дabdx
adxb = −2α (2d−6)du2 − 2dudr + r 2sABdx

AdxB . (6.13)

If we de�ne M ≡ c/2 B −α (2d−6) we arrive at the metric (4.16). That α is constant with respect
to xA and u re�ects that the spacetime is static. (6.10) can be viewed a consequence of the
rotation symmetry of the ansatz for γAB .

6.1.2 Recursion Relations from Einstein Equations
In this subsection we will treat the general vacuum Einstein equations in a way very similar to
the Schwarzschild case just considered. That is, we plug in the asymptotic expansions (5.14)
into Rab = 0. The resulting equations are very lengthy but it turns out that it is possible to solve
the equations at low orders of r recursively, by looking at each order of r , which yields some
restrictions for the coe�cients α (n), β (n), and γ (n)

AB . We denote by RAB the Ricci tensor of γAB .
The results are summarized in the following lemma.

Lemma 6.1. We assume

γ (0)
AB

���u=0
= sAB ,

RAB = λ2 (d − 3)sAB , and

α (0) =
λ2

2 ,

where λ ∈ R is a constant. Then we have β (0)A = 0 and for 1 ≤ n ≤ d − 3,

α (n) = 0 , (6.14)

β (n)A = 0 , (6.15)

γ (n)
AB = 0 . (6.16)

In addition, we have for 1 ≤ n ≤ 2d − 5

β (n)A =
n

2(n + 2) (2d − n − 4)D
Bγ (n)

AB (6.17)

and for 1 ≤ n ≤ 2d − 7
α (n) =

n − 2
n(2d − n − 6)D

Aβ (n)A . (6.18)

Furthermore, if d > 4 then for 1 ≤ n ≤ 2d − 5 we have

γ (n) ≡ sABγ (n)
AB = 0 . (6.19)

Lastly,

γ (2d−4) = − 3d − 10
8(d − 3)γ

(d−2)ABγ (d−2)
AB . (6.20)
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Our assumptions in this lemma are essentially necessary only to ensure that the spacetime
is asymptotically �at and that a Killing spinor exists on Σ, see chapter 5. Thus, the assumptions
are not very restrictive. Note that the results in Lemma 6.1 (and also the results found in the
rest of this chapter) do not change if λ ∈ C.

Proof of Lemma 6.1

The relations in Lemma 6.1 are obtained by plugging the asymptotic expansions (5.14) into
the vacuum Einstein equations Rab = 0. The complexity of the equations reduces signi�cantly
when one looks at the equations at each order of r . Using at each step the results found from
lower orders the relations are found.
The �rst non-trivial equation is found at order r 3/2 where the Rr r component gives

γ (1) = 0. (6.21)

At order r , Rur yields
sABγ ′(0)AB = γ

′(0) = 0 (6.22)

while the RAB component gives
γ ′(0)AB = 0. (6.23)

We assumed that γ (0)
AB

���u=0
= sAB but this shows that γ (0)

AB = sAB for all u, not just for u = 0. Using
this assumption one �nds from RrA = 0 that

d − 2
2 β (0)A = 0. (6.24)

where DAsAB = 0 was used which holds since DA is the Levi-Civita derivative of sAB . The
relation

8sABγ (2)
AB =

3
2γ

(1)ABγ (1)
AB (6.25)

follows from Rr r .

At the next order, r 1/2, using the results from higher orders, leads in RAB = 0 to

γ (1)
AB = 0. (6.26)

Going back to (6.25) this yields
γ (2) = 0. (6.27)

From the Rr r component we �nd
γ (3) = 0. (6.28)

57



CHAPTER 6. EINSTEIN EQUATIONS AND BONDI MASS

Rur = 0 α (1) = 0 γ (3)
AB = 0

β (3)A = 0 0 = γ (6) = γ (7)

Results from
higher order

RAB=0

Rr r=0

RrA=0

Figure 6.1: A sketch of the structure of the argument at order r 0. The argument for other orders
of r is similar.

Additionally, we have β (1)A = 0 since RrA = 0 at the current order reads

2d − 7
8 β (1)A +

1
4

(
DAγ

(1) − DBγ (1)
AB

)
= 0. (6.29)

If d = 4 this is all we can say. Thus, from now on we assume d > 4.
At order r 0 we get the following equations. From RuA we �nd

DAα
(0) = 0. (6.30)

Assuming that sAB is the metric of a (d − 2)-dimensional Einstein space we know that RAB =
λ2 (d − 3)sAB and we assume α (0) = λ2

2 which is in accordance with (6.30). With theses two
assumptions we �nd from RAB that

(d − 4)γ ′(2)AB = 0. (6.31)

To conclude from this that γ (2)
AB = 0 the assumption d > 4 is necessary. If d = 4 we cannot

conclude γ (2)
AB = 0 and it is not possible to say more about the coe�cients than done so far.

Such a breakdown of the recursion relations will in fact appear for all dimensions and is in fact
crucial since it ensures that the series is not trivial and that physically relevant coe�cients do
not vanish identically. In the RrA component, γ (2)

AB = 0 leads to

(d − 3)β (2)A +
1
2

(
DAγ

(2) − DBγ (2)
AB

)
= (d − 3)β (2)A = 0 (6.32)

and Rr r = 0 yields the equations

γ (4) =
1
8γ

(1)ABγ (3)
AB = 0 = γ (5) . (6.33)

Continuing at order r−1/2, we have to assume d > 5 to �nd new relations. From Rur we �nd
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that α (1) = 0 which leads in RAB to γ (3)
AB = 0 since we know that R (1)

AB = 0 (by assumption).
Furthermore, the components Rr r and RrA yield γ (6) = γ (7) = 0 and β (3)A = 0, respectively.
Additionally, one �nds, using Rur at order r−1 and r−3/2, β (2)A = β

(3)
A = 0 implies α (2) = α (3) = 0.

To summarize, thus far we have found (if d > 5):

α (0) =
λ2

2
α (1) = α (2) = α (3) = 0

β (0)A = β
(1)
A = β

(2)
A = β

(3)
A = 0

γ (0)
AB = sAB

γ (1)
AB = γ

(2)
AB = γ

(3)
AB = 0

γ (0) = γ (1) = γ (2) = ... = γ (7) = 0

R (0)
AB = λ

2 (d − 3)sAB
R (1)
AB = 0

We can now continue inductively. At each new order r−k/2 we have to assume that the dimension
is d > k + 4. If this is not the case the induction breaks down because we cannot conclude from
the RAB component that γ (k+2)

AB = 0. Explicitly, the induction is done as follows. Assume that
for some integer k ≥ 2 we have:

α (0) =
λ2

2
α (1) = α (2) = ... = α (k ) = 0

β (0) = β (1) = ... = β (k+2) = 0

γ (0)
AB = sAB

γ (1)
AB = γ

(2)
AB = ... = γ

(k+2)
AB = 0

γ (1) = γ (2) = ... = γ (2k+5) = 0

We also know that R (1)
AB = R (2)

AB = ... = R (k )
AB = 0. At order r (k+1)/2 the Einstein equations yield

the following relations (assuming d > k + 4). The Rur component gives α (k+1) = 0 and at the
next orders α (k+2) = α (k+3) = 0. Thus from RAB we have (d − k − 4)γ (k+3)

AB = 0 since R (k+1)
AB = 0

and d > k + 4. With this RrA and Rr r yield β (k+3) = 0 and γ (2k+6) = γ (2k+7) = 0, respectively.
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Therefore, we now have:

α (0) =
λ2

2
α (1) = α (2) = ... = α (k+3) = 0

β (0) = β (1) = ... = β (k+3) = 0

γ (0)
AB = sAB

γ (1)
AB = γ

(2)
AB = ... = γ

(k+3)
AB = 0

γ (1) = γ (2) = ... = γ (2k+7) = 0

where k < d − 4 which completes the inductive step. Thus, we have the equations (6.14), (6.15),
and (6.16). If d does not ful�l this inequality we still �nd some relations between the coe�cients
from the Einstein equations. Namely, one has at order r−n/2 from component Rur

α (n)n (2d − n − 6)
4 +

1
2D

Aβ (n)A − n

4D
Aβ (n)A = 0

as long as n ≤ 2d − 7, this is (6.18). For greater n there are many more terms which do not
vanish and the equations become very lengthy. RrA = 0 simpli�es at order r−n/2 to

β (n+2)
A

(n + 4) (2d − n − 6)
8 +

n + 2
4

(
DAγ

(n+2) − DBγ (n+2)
AB

)
= 0

if n ≤ 2d − 5, proo�ng (6.17) holds. Again, for greater n there are additional terms and no such
simple equations are found. It is, of course, still possible to write down the equations but they
will not be needed. Furthermore, there is an equation from component Rr r for n = d − 4,

4n2 + 12n + 8
8 γ (2n+4) +

−3n2 − 8n − 4
16 γ (n+2)ABγ (n+2)

AB = 0 .

This is equal to (6.20) after substituting n = d − 4 and hence we have shown all relations in the
lemma. �

We have thus found that many components of the asymptotic expansion vanish or are
proportional to a total derivative for low orders of r (where “low” is determined by the dimension
d). For this, we only needed the assumptions in Lemma 6.1 (Σ is an Einstein manifold and
asymptotic �atness), and that the vacuum Einstein equations hold near in�nity. The results of
Lemma 6.1 will be used in the rest of the thesis to derive a coordinate expression for the Bondi
mass and to show its positivity. In particular, they are crucial to show that potentially diverging
integrals in fact exist and are well-de�ned.

6.1.3 Consistency of Asymptotic Expansion
Before we continue with the main thread of this chapter and use the relations just derived to �nd
an expression for the Bondi mass we present an additional argument to justify the asymptotic
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expansion (5.14) we assumed. We already saw that our choice is consistent with the metric in
presence of gravitational radiation. Here, we present brie�y a more general argument that can,
in principle, be used for every di�erential equation, where a power series ansatz is used, to
check if there are consistency issues. We note that the following argument does not proof that
a chosen series is the right ansatz but can only excludes some possibilities. The general idea is
as follows. For some function f assume some di�erential equation, for concreteness take, e.g.,

Âf = r 2∂2
r f , (6.34)

where Â is some operator independent of r , and assume an expansion

f ∼
∑

n∈Z
f (n)r−λ , (6.35)

where λ is related to n in some way such that λ > 0 if n > 0. Now, plug this series into the
di�erential equation. In our example this yields

r−λÂf (n) = λ(λ − 1) f (n−1)r−λ . (6.36)

Consider the equation for a given order of r , as was done in the proof of Lemma 6.1 above, in
the present example

Âf (n) = λ(λ − 1) f (n−1) . (6.37)

For some choices of λ a problem arises as follows. For the sake of argument, take λ = n/2.
Consequently, if we look at (6.37), since the prefactor n(n/2 − 1)/2 does not vanish we see that
f (0) is determined by f (−1) (order r 1/2), f (−1) is then related to f (−2) (order r 1) and so forth. For
the series to be non-trivial these coe�cients have to be non-zero. However, these parts of the
series corresponding to positive powers of r increase with increasing r and thus f does not
become small for large r . This is unphysical since we expect that the e�ect of some source at
the origin becomes small for large r . Thus, λ cannot be related to n like λ = n/2. This way one
can check the consistency of a chosen expansion for a given di�erential equation. We will now
use this argument to justify our choice of λ = n/2 in (5.14). Since the equations, which appear
when considering the full Einstein equations, are very lengthy we will restrict ourself in the
following to the linearized vacuum Einstein equations, which su�ce for our purpose, see also
[107]. Additionally, we consider only the case βA = 0 and α = 1/2. These assumptions are not
necessary for the argument, but are used only to keep the expressions shorter. We will look at
the RAB-component (A.3), which, with our assumptions, reads

0 =
(
∂2
r − 2∂u∂r

)
γAB − 2d

r 2 γAB −
6 − d
r
∂rγAB +

6 − d
r
∂uγAB + sAB . (6.38)
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Now, assume γAB ∼ ∑
n γ

(n)
AB r

−λ with the same conditions on λ as above. Substituting this series
yields

∑

n

[λ(λ + 1) + 2d]γ (n)
AB r

−λ+1 =
∑

n

[d − 4 − 2λ]γ ′(n)AB r−λ + sAB (6.39)

and at order r−λ we write this as

[λ(λ + 1) + 2d]γ (λ−1)
AB = [d − 4 − 2λ]γ ′(λ)AB + sAB . (6.40)

By the same reasoning as in the general argument presented above we want the most general
λ such that terms which increase with growing distance r (i.e. coe�cients corresponding to
positive powers of r ) are not necessary for a non-trivial series. Let us look at the prefactor on
the right-hand side. We see that it vanishes if λ = d/2 − 2 and, since d is an integer, this means
that λ is an integer (half-integer) for even (odd) dimensions. That the prefactor vanishes is
needed to avoid the inconsistencies. To see this, take for example at d = 8 and λ = n an integer.
For di�erent values of n we have

...

n = −1 : γ (−2)
AB ∝ γ ′(−1)

AB

n = 0 : γ (−1)
AB ∝ γ ′(0)AB

n = 1 : γ (0)
AB ∝ γ ′(1)AB + sAB

n = 2 : γ ′(1)AB = 0

n = 3 : γ (2)
AB ∝ −γ ′(3)AB

n = 4 : γ (3)
AB ∝ −γ ′(4)AB

...

where we omitted the unimportant prefactors. For greater/smaller n the list continues in the
obvious way without another component vanishing. Notice that due to the vanishing prefactor
for n = 2 we have γ (0)

AB = sAB in the n = 1 equation and thus γ (−1)
AB = 0 for n = 0 and all

components corresponding to positive powers of r vanish . Hence, all components which would
not decay as r → ∞ are zero by virtue of the prefactor vanishing for n = 2. Thus, a di�erent
choice for λ, where this does not happen, would have the unwanted coe�cients in the series.
This shows that the choice of an integer (half-integer) power for r in the asymptotic expansion
(5.14) is justi�ed and does not lead to inconsistencies. We now return to the main thread of this
chapter and give a de�nition of the Bondi mass.
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6.2 Bondi Mass in Odd Dimensions ≥ 5
We want to �nd a coordinate expression for the Bondi mass for odd dimensions d ≥ 5. We start
with some geometric de�nitions (that is without reference to any coordinate system) and show
subsequently that the expressions de�ned exist and have a meaningful form in Bondi coordinates.
Let Ω = 1/r . For a su�ciently large distance from the source, and thus for su�ciently small Ω,
we de�ne the Bondi mass density as

µд̃ B
1

8π (d − 3)Ω
−d+4

[
1
2
〈
Kд̃ − д̃,Hessд̃u

〉
д̃
− Ω−1Cд̃

(
∂

∂Ω
, gradд̃Ω,

∂

∂Ω
, gradд̃Ω

)]
(6.41)

where
Kд B

2
d − 2Ricд − 1

(d − 1) (d − 2)д · Scalд (6.42)

is the Schouten tensor. This expression was derived for even-dimensional spacetimes in [17]
using the Hamiltonian formalism [56]. See also Appendix C for a summary of the derivation.
Near null in�nity the (d − 2)−dimensional surface of constant r and u is denoted by Σ(u, r ). For
a given asymptotically null surface one can now de�ne the Bondi mass as an surface integral
over the Bondi mass density at null in�nity, i.e., the Bondi mass of Σ(0,∞) is de�ned as

mΣ = lim
r→∞

∫

Σ(0,r )
µд̃dSд̃ , (6.43)

where dSд̃ is the induced integration element on Σ(u, r ). To facilitate the interpretation of the
explicit Bondi mass formula, which we derive below, the following de�nition [17, 19, 36] is
advantageous. The Bondi news tensor is de�ned as

N = lim
r→∞

[
rd/2−2

(
Kд̃ − д̃

)]
. (6.44)

The Bondi news will turn out to be related to the mass changing over time which is due to
gravitational radiation. It is not obvious at all that the two expressions (6.43) and (6.44) are well
de�ned and that the limits exist. To see that this is the case we try to �nd an expression of these
quantities in Bondi coordinates just like in d = 4. The relations in Lemma 6.1 can be used to
show that the de�nitions 6.43 and 6.44 are meaningful and, furthermore, a relatively simple
expression in terms of Bondi coordinates can be found. This central result of this chapter is

Theorem 6.2. Assume that Lemma 6.1 holds. Then, the limit in (6.43) exists and in coordinates
the Bondi mass of Σ is given by

mΣ =
(d − 2)

8π

∫

Σ

(
1

8(d − 3)γ
(d−2)ABγ ′(d−2)

AB − α (2d−6)
) √

sdd−2x . (6.45)
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The limit in (6.44) exists, too, and in coordinates the only non-trivial component of the Bondi news
is

NAB = −γ ′(d−2)
AB . (6.46)

We have themass-loss formula

d

du
mΣ(u,0) |u=0 = − 1

32π

∫

Σ
〈N ,N 〉д̃ dSд̃ ≤ 0 . (6.47)

Eq. (6.47) shows that the change of the Bondi mass with time is determined by the Bondi
News tensor which is related to gravitational waves. Thus, one may view this as saying that the
mass of a system changes by emission of gravitational radiation, as might be expected. Therefore,
the �rst term in (6.45) corresponds to gravitational waves. The second term (containing α (2d−6))
can be shown to be equal to the parameter M in the usual Schwarzschild (see section 6.1.1) or
Myers-Perry [108, 109] metrics. To see this one has to look at the uu-component of the metric
in Bondi coordinates. In the Newtonian limit, this is also the term which corresponds to the
mass in the Newtonian potential.

Proof of Theorem 6.2

The theorem, and the proof, consist of three parts. First, we proof that the limit in (6.44) exists
and that the Bondi News in coordinates is (6.46). Thereafter, the same is shown for the Bondi
mass (6.43). Finally, the mass-loss formula (6.47) is derived. Note that we drop the factor of
1/8π appearing in (6.41) in the following proof.
Part 1. We write K̃i j and Ki j for the Schouten tensor corresponding to the unphysical and
physical metric, respectively. We have that the conformal transformation of the Schouten tensor
is

1
2K̃i j =

1
2Ki j − ∇i (Ω−1∂jΩ) + Ω

−1 (∂iΩ)Ω
−1 (∂jΩ) − 1

2дi jΩ
−1 (∂kΩ)Ω

−1∂kΩ

=
1
2Ki j + Ω

−2 (∂iΩ)∂jΩ − ∇i (Ω−1∂jΩ) − 1
2Ω2дi jд

ΩΩ

= Ω−2 (∂iΩ) (∂jΩ) − ∇i (Ω−1∂jΩ) − 1
2Ω2дi jд

ΩΩ .

In the last equality it was used that the vacuum Einstein equations Rab = 0 imply that Ki j = 0.
For the AB-component of the Bondi news tensor we need only the AB-component of the
Schouten tensor,

1
2K̃AB = −∇A (Ω−1∂BΩ) − 1

2Ω2дABд
ΩΩ = ΓCABΩ

−1∂CΩ − 1
2Ω2дABд

ΩΩ

= ΓΩABΩ
−1 − 1

2Ω2дABд
ΩΩ . (6.48)
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With Ω = 1/r we know that

r 2

2 дABд
r r =

r 2

2 r 2γABr
−4 (2α + βCβC ) =

1
2γAB (2α + β

CβC ).

The relevant Christo�el symbol is found to be

ΓrAB = −
1
r 2αγ̇AB +

2
r
αγAB − 1

2r 2 β
CβCγ̇AB +

1
r
βCβCγAB − 1

r
∂(AβB ) −

γ ′AB
2 .

Plugging this into (6.48) yields

1
2K̃AB = −1

r
αγ̇AB − ∂(AβB ) − r

2γ
′
AB −

1
2r β

CβCγ̇AB + γAB (βCβ
C + 2α ) − 1

2γAB (2α + β
CβC )

= −∂(AβB ) − r

2γ
′
AB +

1
2γAB (β

CβC + 2α ) − 1
2r γ̇AB (2α + βCβ

C )

= −∂(AβB ) − r

2γ
′
AB +

1
2

(
γAB − 1

r
γ̇AB

) (
βCβC + 2α

)
.

Hence, we have for the AB-component of the news tensor

NAB = lim
r→∞

[
rd/2−2

{
−2∂(AβB ) − rγ ′AB +

(
γAB − 1

r
γ̇AB

) (
βCβC + 2α

)
− γAB

}]
.

Substituting the asymptotic expansions and using the results from Lemma 6.1 we �nd

NAB = lim
r→∞ r

d/2−2
[
sAB − r−d/2+2γ ′(d−2)

AB − sAB + O (r−d/2+1)
]

= −γ ′(d−2)
AB (6.49)

In particular, one sees that all terms which are divergent in the limit r → ∞ are equal to zero or
cancel and thus the limit exists. All other components of Nab are found to be zero and (6.46)
holds.

Part 2. We start the treatment of the Bondi mass density by rewriting the de�nition

µд̃ =
1

d − 3Ω
−d+4



1
2 (K̃

ab − д̃ab )∇̃a∇̃bu
︸                    ︷︷                    ︸

(I )

− 1
Ω
C̃abcd (∇au) (∇bΩ) (∇cu)∇dΩ︸                                ︷︷                                ︸

(I I )



(6.50)

in coordinates which is done analogously to the treatment of Bondi news tensor above. That
is, explicit expressions of the Schouten and Weyl tensor in our coordinate system have to be
found. Then, the asymptotic expansion and the results from Lemma 6.1 are used to simply
the expressions and to show that the limit exists. The two terms in (6.50), (I ) and (I I ), will be
treated separately to simplify the expressions appearing in the following calculation. As will
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be argued below, they also correspond to two distinct physical processes, so the split is rather
natural. We know that

∇̃a∇̃bu = ∂a∂bu − Γ̃cab∂cu = −Γ̃uab =
1
2∂Ωд̃ab

and then we can rewrite (I) as

(I) = −1
4

(
[K̃AB − д̃AB]∂Ωд̃AB + [K̃uΩ − д̃uΩ]∂Ωд̃uΩ + [K̃ΩA − д̃ΩA]∂Ωд̃ΩA

)

= −1
4

(
[K̃AB − γAB]∂ΩγAB + K̃ΩA∂Ωд̃ΩA

)
. (6.51)

The term K̃AB − γAB appeared already in the treatment of the Bondi news above and the other
relevant component of the Schouten tensor is found to be

K̃ΩA = 2ΓΩΩAΩ
−1 = −∂ΩβA − 1

Ω
βA + Ωβ

B∂ΩγAB .

Now, the asymptotic expansion (5.14) and the relations from Lemma 6.1 are used and after a
short calculation one �nds

(I ) =
d − 2

8 r 4−dγ ′(d−2)
AB γAB (d−2) + O (r 3−d ) . (6.52)

We proceed similarly with term (II). We �rst need to compute the relevant components of
the Weyl tensor,

C̃uΩuΩ = д̃auд̃bΩд̃cuд̃uΩC̃abcd = д̃
Ωuд̃bΩд̃Ωuд̃uΩC̃ΩbΩd

= д̃Ωuд̃uΩд̃Ωu
[
д̃ΩΩC̃ΩuΩΩ + д̃

uΩC̃ΩuΩu + д̃
AΩC̃ΩuΩA

]

+ д̃Ωuд̃AΩд̃Ωu
[
д̃ΩΩC̃ΩAΩΩ + д̃

uΩC̃ΩAΩu + д̃
BΩC̃ΩAΩB

]

= C̃ΩuΩu + 2ΩβAC̃ΩuΩA + Ω2βAβBC̃ΩAΩB , (6.53)

where the symmetry C̃abcd = C̃cdab was used. Two of these three components of the Weyl
tensor have to be computed. The last term will not contribute in the end due to the factor βAβB

which is of such an order in r that it will vanish in the limit r → ∞ and we therefore omit this
term in the following. From the de�nition of the Weyl tensor we have

C̃ΩuΩu = R̃ΩuΩu +
1

d − 2 (2R̃Ωuд̃uΩ − R̃ΩΩд̃uu ) −
1

(d − 1) (d − 2) R̃д̃
2
Ωu

= R̃ΩuΩu + K̃Ωuд̃uΩ − 1
d − 2 R̃ΩΩд̃uu

= R̃ΩuΩu + K̃Ωu − 1
d − 2 R̃ΩΩд̃uu
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The unphysical Riemann tensor can be found from the usual de�nition in terms of Christo�el
symbols

R̃ΩuΩu = д̃Ωα R̃
α
uΩu = д̃Ωu R̃

u
uΩu = R̃uuΩu

= ∂Ω Γ̃
u
uu − ∂u Γ̃uΩu + Γ̃uΩe Γ̃euu − Γ̃uue Γ̃eΩu

= ∂Ω Γ̃
u
uu − ∂u Γ̃uΩu + Γ̃uΩΩ Γ̃Ωuu + Γ̃uΩA Γ̃Auu − Γ̃uuΩ Γ̃ΩΩu − Γ̃uuA Γ̃AΩu

= ∂Ω[2Ωα + Ω2∂Ωα] + 1
4 (β

AβA + Ω
2γAB (∂ΩβB ) (∂ΩβA) + 2ΩβA∂ΩβA)

= 2α + 4Ω∂Ωα + Ω2∂2
Ωα +

1
4 (β

AβA + Ω
2γAB (∂ΩβB ) (∂ΩβA) + 2ΩβA∂ΩβA) ,

where the Christo�el symbols

Γ̃uuu = 2Ωα + Ω2∂Ωα Γ̃uΩu = 0 Γ̃uΩA = 0

Γ̃AΩu = −
1
2 (β

A + ΩγAB∂ΩβB ) Γ̃uΩΩ = 0 Γ̃uuA =
1
2 (βA + Ω∂ΩβA)

were used. Together with

K̃Ωu = −2Ω∂Ωα − ΩβA∂ΩβA − 2α

and
R̃ΩΩ = −1

2γ
AB∂2

ΩγAB +
1
4γ

CAγDB (∂ΩγAB ) (∂ΩγCD )

we �nally arrive at

C̃ΩuΩu = 2Ω∂Ωα + Ω2∂2
Ωα +

1
4β

AβA +
Ω2

4 γAB (∂ΩβB ) (∂ΩβA) − Ω2 β
A∂ΩβA

+
Ω2α

d − 2

(
γAB∂2

ΩγAB −
1
2γ

CAγDB (∂ΩγAB ) (∂ΩγCD )
)
.

Substituting the asymptotic expansions, with Ω = 1/r , yields

Cruru =
∑

n

2 · n2 ·
α (n)

rn/2 + 2
(−n

2

)
· α

(n)

rn/2 +
n

2 ·
n + 2

2 · α
(n)

rn/2 + O (r−(d−2) )

=
∑

n

α (n)

rn/2

(
n

2 +
n2

4

)
+ O (r−(d−2) ) . (6.54)

For C̃ΩuΩA the relevant components of the Riemann and Ricci tensor have to be computed.
Since the calculation is very similar to the one for C̃ΩuΩu we skip the details and just state the
result:

C̃ΩuΩA =
1
2

(
2∂ΩβA + Ω∂2

ΩβA
)
+

1
4 (∂ΩγAB )

(
Ωγ BC∂ΩβC − βB

)
− 1
d − 2

(
ΩβAR̃ΩΩ + R̃ΩA

)
.

67



CHAPTER 6. EINSTEIN EQUATIONS AND BONDI MASS

Therefore, the term 2rβAC̃rurA appearing in (6.53) is of order O (r−(d−2) ) and will not contribute
in the end. We are thus left with only one term in (I I ) which will be relevant. We summarize
what we have found so far:

(I ) =
d − 2

8 r 4−dγ ′(d−2)
AB γAB (d−2) + O (r 3−d )

(I I ) =
∑

n

α (n)

rn/2

(
n

2 +
n2

4

)
+ O (r 2−d ) .

Plugging both terms into (6.43) leads to

µд̃ =
1

d − 3r
d−4



d − 2
8 r 4−dγ ′(d−2)

AB γAB (d−2) − r
∑

n

α (n)

rn/2

(
n

2 +
n2

4

)
+ O (r 3−d )


. (6.55)

With this expression at hand we can now go back to (6.43) and investigate whether taking the
limit leads to a meaningful expression for the Bondi mass. It is easy to see that the part from (I )

is well de�ned in the limit. To see that the same holds for (I I ) a closer inspection is necessary.
One sees that all terms with n > 2d − 6 are irrelevant since they vanish due to the limit. All
terms n < 2d − 6 diverge when taking the limit, but using the relation (6.18), i.e. α (n) ∝ DAβ (n)A ,
it is possible to write all of these terms as total divergencies which vanish under the integral. To
see this recall that, in general, for a Levi-Civita derivative ∇ of some diagonal metric h we have
∇avb = ∂avb − Γcabvc and d ?v = ∇ava

√|h |dnx . For the metric sAB with covariant derivative
DA this leads to

DAβA = ∂
AβA − sABΓCABβC

= ∂AβA − βCsCE∂AsAE + 1
2βCs

AB∂CsAB

and for the metric γAB , with covariant derivative DA,

DAβA = ∂
AβA − γAB Γ̄CABβC

= ∂AβA − βCγCE∂AγAE + 1
2βCγ

AB∂CγAB

Since, by Lemma 6.1,

γAB = sAB +
∑

k≥d−2

γ (k )
AB

rk/2

we have DAβ (k )A = DAβ (k )A for 0 ≤ k ≤ 2d − 5. Therefore, the terms
∫

Σ(r,0)
DAβ (k )A

√
γdd−2x ,
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with dSд̃ =
√
γdd−2x plugged in, vanish. Hence, the only term which does not vanish is the one

where n = 2d − 6.
Thus, we �nally arrive at the expression for the Bondi mass

mΣ = (d − 2)
∫ [

1
8(d − 3)γ

′(d−2)
AB γAB (d−2) − α (2d−6)

] √
sdd−2x (6.56)

where the measure is found by using that γ (n) = 0 for 1 ≤ n ≤ 2d − 5 and hence, after taking
the limit r → ∞,

dSд̃ =
√
γdd−2x ∼ √sdd−2x .

In particular, this shows that the limit in the de�nition ofmΣ exists.
Part 3. To proof the mass-loss formula, we look at the uu- and rr -components of the

Einstein equations. Together, they yield an expression which connects the integrand in the
Bondi mass to the Bondi news tensor. This yields the desired expression for the mass loss.
We start by taking the derivative ofmΣ:

d

du
mΣ = (d−2)

∫

Σ

[
1

8(d − 3)
(
γ ′(d−2)ABγ ′(d−2)

AB + γ (d−2)ABγ ′′(d−2)
AB

)
− α ′(2d−6)

] √
sdd−2x . (6.57)

To bring this into the claimed form we use the Einstein equations. At order r−N , where N = d−2,
we have

Ruu = −1
2

(
sABγ

′′(2N )
AB + γ (N )ABγ

′′(N )
AB

)
− 1

4γ
′(N )ABγ ′(N )

AB + (d − 2)α ′(2N−2) +DAw
A = 0 (6.58)

where wA = r−2DAα − r−1β ′A. From (6.20) we have

γ (2N ) =
10 − 3d
8(d − 3)γ

(N )ABγ (N )
AB

and thus
∂2
uγ

(2N ) ≡ sABγ
′′(2N )
AB =

10 − 3d
4(d − 3)

(
γ (N )ABγ ′′(N )

AB + γ ′(N )ABγ ′(N )
AB

)
(6.59)

Substituting (6.59) into (6.58) yields

3d − 10
4(d − 3)

(
γ (N )ABγ ′′(N )

AB + γ ′(N )ABγ ′(N )
AB

)
− γ (N )ABγ

′′(N )
AB − 1

2γ
′(N )ABγ ′(N )

AB + 2(d − 2)α ′(2N−2)

=
3d − 10 − 4(d − 3)

4(d − 3) γ (N )ABγ ′′(N )
AB +

3d − 10 − 2(d − 3)
4(d − 3) γ ′(N )ABγ ′(N )

AB + 2(d − 2)α ′(2N−2) = 0

We drop the total di�erential DAwA, which will vanish under the integral, in the following
computation for simplicity. We arrive at

(d − 4)γ ′(N )ABγ ′(N )
AB = (d − 2)γ (N )ABγ ′′(N )

AB − 8(d − 3) (d − 2)α ′(2N−2) ,
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Adding (d − 2)γ ′(N )ABγ ′(N )
AB on both sides and dividing by 8(d − 3) yields

(d − 3)
4(d − 3)γ

′(N )ABγ ′(N )
AB =

(d − 2)
8(d − 3)γ

(N )ABγ ′′(N )
AB +

(d − 2)
8(d − 3)γ

′(N )ABγ ′(N )
AB − (d − 2)α ′(2N−2) .

We can plug this into (6.57) and �nd

d

du
mΣ =

∫

Σ

1
4γ
′(N )ABγ ′(N )

AB

√
sdd−2x = −1

4

∫

Σ
NABNAB

√
sdd−2x ≤ 0 .

In the last step we raised the indices of NAB = −γ ′(d−2)
AB �nding

NAB = sACsBDNCD = −sACsBDγ ′(d−2)
CD = γ ′(d−2)AB (6.60)

where the general fact

∂aγ
AB = ∂a

(
γACγ BDγCD

)
= ∂a

(
γAC

)
γ BDγCD + γ

AC∂a
(
γ BD

)
γCD + γ

ACγ BD∂a (γCD )

= 2∂a
(
γAC

)
γ BDγCD︸   ︷︷   ︸

δ BC

+γACγ BD∂a (γCD ) = 2∂a
(
γAB

)
+ γACγ BD∂a (γCD )

⇒ ∂aγAB = −γACγ BD∂aγCD

was used. This shows that the change in mass is always negative so the mass can only decrease
or stay constant. This change is characterized by NAB and, in particular, dmΣ/du = 0 i�
NAB = 0. �

This concludes the proof of the main results of this chapter. In this chapter, we investigated
the asymptotic expansion of the metric coe�cients using the vacuum Einstein equations. The
main results are listed in Lemma 6.1. Using these results we found a generalization of the four
dimensional “Bondi formulas”, discussed in section 4.2, in odd dimensions, namely a coordinate
expression for the Bondi mass, (6.2), and an expression for the change of mass over time (6.47).
We will discuss these results further in section 8.1, where we also compare them to previous
results found by others. We now return to the issue of positivity and discuss in the next chapter
how a proof ofmΣ ≥ 0 can be established.
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Positivity of Bondi Mass

In this chapter we proof that the Bondi mass is non-negative, that is the Bondi mass is zero
for Minkowski spacetime and positive otherwise. This shows that there is a stable ground
state and that systems in higher dimensional general relativity are not inherently unstable. We
follow the idea of [14], who proofed positivity in d = 4, and [19, 110], who proofed positivity
in higher even dimensions. This method of proof requires that spinors exist on the manifold.
Thus, we start by stating the assumptions necessary to de�ne spinors. Then, we derive explicit
expressions for gamma matrices. This is then used to show that the Bondi mass is non-negative.
More precisely, we want to proof the following statement.

Assume that there is a Witten spinor on the hypersurface H =
{
u = 1

2r

}
near in�nity, that

there is a Killing spinor on (Σ, s ) and that the results from Lemma 6.1 hold. Then,mΣ ≥ 0.

7.1 Spin structure, Spinors, Tetrad and Gamma Matrices
In this section we adapt the general de�nitions from chapter 3 to our coordinate system to
facilitate and enable calculations in the subsequent sections. First, we state our assumptions
about the spin structure on M . Then, we choose an explicit tetrad system and de�ne gamma
matrices in this system. Thirdly, an explicit formula for the spin connection is derived and,
lastly, the Witten equation is stated.

7.1.1 Spin Manifold
Let M be a manifold with �xed spin structure. Consider the Cli�ord algebra Cld−1,1 (q,R

n )

where q = −x2
0 + x

2
1 + ... + x

2
d−1. There is an associated Cli�ord bundle Cl (TM ) and locally,

at point p ∈M , Cl (TpM ) is generated by the identity and elements {eµ1 , ...,eµn } subject to the
relations

eν · eµ + eµ · eµ = 2д(eµ , eν )I , (7.1)

where eµ , µ = 0, ...,d − 1, is a basis of TpM and I is the identity. The complexi�cation of
Cl (TM ) has its fundamental representation on a complex vector space and associated to this is
a complex vector bundle S (M ). Spinors are smooth sections of S (M ). Recall that on the
complexi�ed Cli�ord algebra there is a positive de�nite hermitian inner product 〈 , 〉 for spinors,
see section 3.3, such that

〈Ψ,Φ〉 B Ψ̄Φ , (7.2)
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where Φ ∈ Γ(S ) and Ψ̄ : S → C. With this we can de�ne the 2-form

Q (X ,Y ) B <
[
ψ̄Y · ∇Xψ − ψ̄X · ∇Yψ

]
(7.3)

on M , where X ,Y ∈ TM ,< is the real part and ∇ the spin connection.

7.1.2 Tetrad
Note that the unphysical Bondi metric is

д̃abdx
adxb = −2Ω2αdu2 − 2dudΩ − 2ΩβAdudxA + γABdxAdxB . (7.4)

We want to de�ne a tetrad with respect to д̃. That is we have a orthonormal basis of smooth
vector �elds {eµa } where lower case latin indices are spacetime indices taking values {r ,u,xA}
and lower case greek indices are tetrad indices taking values {+,−, I }1. The tetrad is de�ned by

д̃ab ẽ
µaẽνb = ẽ

µ
a ẽ

νa = λµν (7.5)

or, equivalently,
д̃ab = λµν ẽ

ν
a ẽ

µ
b , (7.6)

where

(λµν ) =
*...
,

0 1 0
1 0 0
0 0 δI J

+///
-

. (7.7)

Therefore, we have the following conditions for {ẽµa } which follow directly from (7.5):

д̃(ẽ+, ẽ−) = 1

д̃(ẽ+, ẽ+) = д̃(ẽ−, ẽ−) = д̃(ẽ+, ẽ I ) = д̃(ẽ−, ẽ I ) = 0

д̃(ẽ I , ẽ J ) = δ I J

(7.8)

As can easily be checked a choice consistent with these conditions is




ẽ+a = ∂aΩ

ẽ−a = Ω2α∂aΩ + ∂
a
u

ẽ I a = ΩβAl
IA∂aΩ + l

IA∂aA

(7.9)

1This unusual choice of indices will be explained in subsection (7.1.4).
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where l IA is de�ned by δI J l IAl JB B γAB . Lowering the spacetime indices with д̃ab yields




ẽ+a = dua

ẽ−a = dΩa − αΩ2dua − βAΩdxAa
ẽ Ia = l

I
Adx

A
a .

(7.10)

This choice for the tetrad {ẽµa } de�nes the “orthonormal” (see (7.8)) basis at each point of the
spacetime we will use. The advantage of using a tetrad system is that locally, at each point, we
can work in the tetrad system as if we were in �at space.

7.1.3 Gamma Matrices
Using this tetrad system the gamma matrices σa in the curved spacetime can be easily de�ned
as the Minkowski gamma matrices at each point in the tetrad system. It is not possible to de�ne
them in a coordinate independent ways but a choice of coordinates, in this case of the tetrad,
has to be made. Let {ẽµa } be a tetrad. At each point in spacetime the gamma matrices are de�ned
in the tetrad corresponding to the point, i.e.,

σ̃a B σµ ẽ
µa . (7.11)

where σµ are the gamma matrices in �at spacetime. Using (7.9), an explicit expression is easily
be found to be

σ̃a = σ+ẽ
+a + σ−ẽ−a + σI ẽ I a =

(
σ+ + Ω

2ασ− + ΩβAσ̃A
)
∂aΩ + σ−∂

a
u + σ̃

A∂aA , (7.12)

where σ̃A B l IAσI . Lowering the index with (7.4) yields

σ̃a = σ−dra +
(
σ+ − αΩ2σ−

)
dua + (−βAΩσ− + σ̃A) dxAa . (7.13)

These are the expressions for the gamma matrices we will work with in the following to discuss
the Witten equation which will be used, similarly to the Einstein equations above, to �nd some
structure in the spinors we will be discussing. For this it is helpful to look at the di�erent terms
in (7.12), that is

σ+ = σ̃
Ω − Ω2ασ̃u − ΩβAσ̃A , (7.14)

σ− = σ̃u , and (7.15)

σ̃A = l IAσI . (7.16)

In accordance with (7.1), we know that the gamma matrices in curved spacetime, σa , satisfy

{σa ,σb } = 2дab I , (7.17)
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which can also easily be seen from the corresponding well-known relation for gamma matrices
in �at spacetime

{σµ ,σν } = 2λµν I (7.18)

using {σa ,σb } = {σµ ,σν }eµaeνb and (7.6). This can be used to show that the commutation relations

[σA,σ±] = 2σAσ± , (7.19a)

and
[σA,σB] = −2σAσB + 2sABI . (7.19b)

hold. Furthermore, it is easy to check that

σaσa = d . (7.20)

7.1.4 Projectors
We now de�ne projectors on S (M ) and a matrix representation for these and for the gamma
matrices. The reason for introducing this will be explained in section 7.4. The elements

P± B
1
2σ± · σ∓ (7.21)

of Cl (TM ) are projectors since P2
+ = P+ and P2− = P− while P+P− = P−P+ = 0. The properties

of P± follow directly from the de�nition (7.21) and the properties of the gamma matrices.
The projectors decompose S ( ˜M ) into two invariant subspaces S±. Thus, we can apply the
projectors to the spinor and de�ne

ψ± B P±ψ . (7.22)

For the subsequent calculations it is advantageous to choose a representation of the gamma
matrices and the projectors. As can be checked, a choice consistent with the above de�nitions is

σ+=̇
√

2 *
,

0 I

0 0
+
-
, σ−=̇

√
2 *

,

0 0
I 0

+
-

and σA=̇ *
,

ΓA 0
0 −ΓA

+
-

(7.23)

for the gamma matrices, where {ΓA, ΓB } = 2sABIS± , and thus

P+=̇ *
,

I 0
0 0

+
-

and P−=̇ *
,

0 0
0 I

+
-

(7.24)

for the projectors. We have
ΓAΓA = d − 2 . (7.25)
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For the spinor we can write ψ = (ψ+,ψ−). We conclude this subsection by collecting some
relations we will need later, which can easily be veri�ed using the representation chosen:

P−σ−ψ = σ−P+ψ =
√

2 *
,

0
ψ+

+
-

(7.26a)

P+σAψ = *
,

0
ΓAψ+

+
-

(7.26b)

P+σ+ψ = σ+P−ψ =
√

2 *
,

ψ−
0

+
-

(7.26c)

P−σ+ = 0 = P+σ− (7.26d)

Note that applying P− toψ yieldsψ− while applying it to σ−ψ givesψ+.

7.1.5 Spinor Connection
We adapt the spinor connection de�ned in Def. 3.30 to the present tetrad, where we follow
[111], and derive the conformal transformation formula. For a vector �eld vµ the covariant
derivative is

∇avb = ∂avb + Γbacvc . (7.27)

Writing the vector in some tetrad, vµ (x ) = e
µ
a (x )v

a (x ), and applying the covariant derivative
yields

∇avµ = ∂avµ + ωµaνvν (7.28)

whereωaµν B
1
8e

b
µ∇aeνb is a new connection similar to the Christo�el symbols in the Levi-Civita

derivative. These two expressions for the covariant derivative have to be equal, i.e.,

∇avµ = eµb∇avb , (7.29)

which will be the case if the spin connection is de�ned such that the covariant derivative of the
tetrad is zero,

∇aeµb = ∂ae
µ
b − Γcabe

µ
c + ω

µ
aνe

ν
b = 0 . (7.30)

In this case, ∇a and eµb commute and we obviously have (7.29). There is enough information
in (7.30) to uniquely determine the Christo�el symbols (leading to the usual formula) and the
spin connection ωµνa . Note that we still have ∇aдbc = 0. The spinor �eldψ (x ) is in the spinor
representation of the Lorentz group so let Sµν B [σµ ,σν ] be the generator of the Lorentz group
in the spinor representation. Letψ be a spinor and ωa ≡ ωµνa Sµν . The covariant derivative of
the spinor is

∇aψ B ∂aψ + ωaψ . (7.31)
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Figure 7.1: Sketch of the hypersurfaceH de�ned in (7.35). The (d − 2)-dimensional surface Σ
of constant (u, r ) is represented by a point in this sketch. Here, H is sketched on the whole
spacetime but we will consider it only close to in�nity.

With this de�nition we �nd that under a change of the tetrad by Λ(x ) the covariant derivative
transforms as ∇aψ (x ) → Λ(x )∇aψ (x ) if we require that ψ (x ) → Λ(x )ψ (x ). Therefore, the
physics does not change under Lorentz transformations as desired. The commutator of spin
derivatives is [81]

[∇a ,∇b ]ψ = −1
2RabcdS

cdψ . (7.32)

We now turn to the conformal transformation of the spin derivative. The spin structure on
( ˜M , д̃) is de�ned analogously to the one on (M ,д) and on ˜M the unphysical spinor ψ̃ is a
section in S̃ . The physical and unphysical quantities are related by

ψ̃ = Ω1/2ψ and σ̃a = Ωσa . (7.33)

Therefore, as shown in appendix B, the physical and unphysical derivative are related by

∇̃aψ̃ = r−1/2∇aψ − 1
2r σ̃aσ̃

rψ̃ . (7.34)

7.1.6 Witten Equation
Letψ be a spinor. Consider the hypersurface de�ned by

H =
{
u =

1
2r

}
(7.35)

near future null in�nity, see Fig. 7.1. We assume thatψ ful�ls the pair of equations

0 =
d−1∑

i=1
ei · ∇eiψ (7.36a)

0 = ∇e0ψ . (7.36b)
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onH . Here, e0 is the unit future timelike normal atH and {e1, .., ed−1} is a positively oriented
orthonormal basis of TH at each point. (7.36a) is called Witten equation. Note the similarity
to the Dirac equation (3.31). Essentially, we split (3.31) up into a spacelike part, (7.36a), and a
timelike part, (7.36b). The latter describes howψ is extended o�H (due to e0 being the normal
onH ) while the Witten equation restricts the spinor onH . A spinorψ which is a solution to
the equations (7.36) will be called Witten spinor.

7.2 Outline of Proof

We have now all tools at hand we need to proof the positivity. More precisely, we will now
proof

Theorem 7.1. Assume that there is a Witten spinor on the hypersurface H =
{
u = 1

2r

}
near

in�nity, that there is a Killing spinor on (Σ, s ) and that the results from Lemma 6.1 hold. Then,
mΣ ≥ 0.

The calculations to establish the proof are rather lengthy and will take up the remainder
of this chapter. However, the idea of the proof is relatively straightforward and similar the
the one in four dimensions, see section 4.3. We start by showing that an integral at in�nity
over Q , de�ned in (7.3), is positive. The argument establishing this result is essentially the
same as in four dimensions and we will only sketch the proof. It then remains to show that the
integral over Q is equal to the Bondi mass. Finding this relation turns out to be signi�cantly
more di�cult in higher dimensions than in four dimensions and the necessary calculations
are the main part of the proof. The reason for this is again that the relevant terms of in the
spinor expansion not of leading order (as in four dimensions) but “hidden” inside the asymptotic
expansion. The remaining steps of the proof are as follows. First, the relation of Q and ψ at
a given order of r is investigated by assuming an asymptotic expansion of both. The result
is that, to relate Q to mΣ, we need to �nd out more about the coe�cients in the asymptotic
expansion ofψ . This is a situation similar to the one in section 6.1 where we investigated the
coe�cients in the expansion of the metric coe�cients. We also proceed similarly. Instead of the
Einstein equations we now use the Witten equation to derive recursion relations. The results
are summarized in Lemma 7.3 in section 7.4. This can be seen as an analogue of Lemma 6.1 in
section 6.1. We proof Lemma 7.3 in the sections 7.5-7.8. The last step of the proof is the to use
the results in Lemma 6.1 to show that the integral over Q is asymptotically equal to the Bondi
mass. This is done in section 7.9 and shows that the Bondi mass is non-negative.
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7.3 Positivity of Integral over Q
From the de�nition of Q we �nd

Qµν = 2<
{
ψ̄σ[ν∇µ]ψ

}
. (7.37)

In the end, we want to show that an integral of Q over the boundary of H , written ∂H , is
positive. However,H is non-compact which complicates the discussion, so we �rst look at the
compact subset C ⊂ H and afterwards consider how the extension to all ofH works. Q is a
2-form and dimH = dim C = d − 1 and thus dim ∂C = d − 2, so we can integrate

∫

C
d ?Q =

∫

∂C
?Q , (7.38)

where Stokes theorem was used. Thus, we want to show

Theorem 7.2. (7.38) is positive if the dominant energy condition holds and if the spinorψ used in
the de�nition of Q ful�ls the Witten equation.

Sketch of Proof The proof of this statement is due to [14, 81] and we only sketch the idea
here. For this, note that

Qµν = 2<
{
ψ̄σ[ν∇µ]ψ

}
= ∇[νwµ] (7.39)

holds, where
wλ B ψ̄σ λψ (7.40)

is a non-spacelike vector as can be seen by computing wνwν . We takeψ to be a spinor ful�lling
the Witten equation which means in particular that wν is divergence free, ∇νwν = 0. Thus, we
�nd for the divergence of Q the equation

∇µQµν = ∇µ∇µwν + 2
[
∇ν ,∇µ

]
w µ (7.41)

Using the commutator relation (7.32), the second term can be seen to give a contribution
' Gνλwλ in the integral (7.38), where Gµν is the Einstein tensor. Since w µ is non-spacelike, this
term provides a non-negative contribution if the Einstein equation holds and the dominant
energy condition is ful�lled. Using some basic spinor identities it can be shown that the �rst
term yields a positive contribution in the integral as well, one �nds

0 ≤
∫

C
d ?Q . (7.42)

See, e.g., [81, 83, 112] for details of the arguments we sketched. �
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It remains to be shown that the non-negativity holds not only for the compact hypersurface
C but also for the hypersurfaceH we are actually interested in. For this, we follow the argument
of [19]. The problem with replacingC by the non-compactH in (7.38) is that the integral might
become divergent. To see that this is not the case we choose a r0 such that r ≤ r0 < ∞ and
consider a subsetH (r0) ⊆ H de�ned by ∂H (r0) = Σ(r0) ≡ Σ( 1

2r0, r0), where Σ(u, r ) is de�ned
as in chapter 5. Hence, we know

0 ≤
∫

Σ(r0)
?Q (7.43)

and we only need to show that taking the limit r → ∞ does not lead to a divergent integral,
that is we want to show

lim
r→∞ r

d−2
∫

Σ(r )
Q

(
ẽ+, ẽ−

)
dSд̃ (7.44)

exists. Here, we evaluated ?Q and chose the tetrad (7.9). dSд̃ is the induced integration element
on Σ. If there are future apparent horizons with boundaries Hi in the spacetime they are also
part of the boundary ∂H (r0) = Σ(r0) ∪ (∪iHi ). Imposing on each Hi the boundary condition

(e1 ∧ e0) ·ψ = 2ψ , (7.45)

where e1 ∈ TH is the normal of Hi pointing outward, the contribution of each future apparent
horizon to the integral over Q vanishes and we do not have to take it into account in the
following [19, 87]. Therefore, we are at a point similar to theorem 6.2, where we had an integral
which, upon taking the limit r → ∞, is potentially divergent. The solution to the problem will
also be similar. We will assume that there is an asymptotic expansion

Q ∼
∑

n∈N
Q (n)r−n/2 (7.46)

and then show that all terms of order < d − 2 are total derivatives which vanish under the
integral while terms of order > d − 2 are falling o� fast enough and will not contribute in the
limit anyway. The crucial point is that the term Q (2d−4) is the only that does not vanish and, in
fact, yields the Bondi mass which will then proof that the Bondi mass is non-negative. Hence,
to conclude the proof it remains to be shown that the terms Q (n) have indeed this form. For
this, we �rst take a closer look at the spinorψ and, in particular, the additional structure we
can �nd due to it being a solution of the Witten equation. This is done in the next section and
is, by far, the longest part of the proof. The result can be used to �nd an explicit expression for
the coe�cients Q (n) thereby showing that the structure just described indeed exists and that
the integral (7.46) converges with the limit being the Bondi mass.
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7.4 Spinor Recursion Relation
In this section we assume that the spinorψ , which is a solution to the Witten equation, has an
asymptotic expansion. Then, recursively, we show that a lot of coe�cients in the series vanish,
similar to the results in Lemma 6.1. Recall that there is the relation ψ̃ = r 1/2ψ between the
physical and unphysical spinor. The ansatz we make for the asymptotic expansion onH is

ψ ∼ r−
1
2
∑

n∈N
ψ (n) (r ,u,xA) r−n/2 , (7.47)

where we assume that eachψ (n) is smooth and satis�es

∇̃Ωψ (n) = 0 (7.48)

near null in�nity. We will discuss this assumptions/condition at the end of section 7.5. The
lemma we want to proof is

Lemma 7.3. Let ψ be a smooth Witten spinor with asymptotic expansion (7.47). Assume that
ψ (0)
+ = ϵ is a Killing spinor on Σ and thatψ (0)

− = 0. Then, for 1 ≤ n ≤ 2d − 3 and n , d :

ψ (n)
− =

√
2

d − n
{
ΓADAψ

(n−2)
+ +

1
2γ

(n−2)
AB ΓBDAψ (0)

+ +
n − 4d

16 β (n−2)
A ΓAψ (0)

+

+
1
4Γ

A
[
DBγ (n−2)

AB − DAγ
(n−2)

]
ψ (0)
+ +

n − 2√
2
γ (n−2)ψ (2)

−

}
(7.49)

ψ (n)
+ =

−1√
2n

{
10 − n − 2d

16 β (n−4)
A ΓAψ (2)

− −
6 − d − n√

2
α (0)ψ (n−4)

+ + β (n−4)
A ΓAψ (2)

− − βA(n−4)√2DAψ
(0)
+

+ ΓADAψ
(n−2)
− − 1√

2
βA(n−4)DAψ

(0)
+ +

1
2Γ

Cγ (n−4)
BC DBψ (2)

− +
1
4

[
DBγ (n−4)

AB − DAγ
(n−4)

]
ΓAψ (2)

−

+
1

2
√

2
γ ′(n−2)ψ (0)

+ +
1√
2
α (0)n − 4

n − 2γ
(n−4)ψ (0)

+ +
1

2
√

2
DAβ

(n−4)
B ΓAΓBψ (0)

+

+

(
1 − d

2

) √
2α (n−4)ψ (0)

+

}
. (7.50)

For n = d only the second equation holds while the �rst equation does not hold and the expression
in the bracket has to vanish. For n = 2d − 2, both equations still hold but there are additional terms;
the terms

+
n − 2

4 γAB (n/2−1)β (n/2−1)
B

√
2DAψ

(0)
+ −

1
4s

DCγ ′(n/2−1)
AC γ (n/2−1)

BD ΓAΓB
√

2ψ (0)
+ +

d − 2
4 ΓBβA(d−2)γ (d−2)

AB ψ (0)
− ,

(7.51)
have to be added in the bracket on the right-hand side of (7.49) and the terms

+
1
4γ

(d−2)
BC γAC (d−2)ΓBDAψ

(0)
+ +

30d − 23d2

64(d − 2) β
C (d−2)γ (d−2)

BC ΓBψ (0)
+ +

n − 2
16
√

2
γ (n/2−1)
AB γ (n/2−1)ABψ (2)

−
(7.52)
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have to be added in the bracket on the right-hand side of (7.50).

The proof of the lemma is rather lengthy and we split it up into several sections. First, in
section 7.5, we �nd an explicit expression of the Witten equation using the tetrad (7.9). Second,
some auxiliary calculations are collected in section 7.6 for future reference. Third, we write
down the Witten equation at a given order r−n/2 in section 7.7 This is then, in the fourth and
last step in section 7.8, used to derive the equations stated in Lemma 7.3.

7.5 Proof Lemma 7.3— Step 1: Witten Equation
To �nd an explicit form of (7.36a), it is advantageous to �rst look at (7.36b) and use this equation
to �nd an expression for ∇̃u in terms of ∇̃r and ∇̃A. In this and the following section indices are
raised/lowered by γAB .

7.5.1 Equation (7.36b)
De�ne

f = −u + 1
2r (7.53)

such that the hypersurface (7.35) is de�ned by the condition f = 0. The normal na to this
surface can be found with the standard formula na B ∂a f . Raising the index we �nd

nΩ = дΩΩnΩ + д
Ωunu =

Ω4

2
(
2α + βAβA

)
− Ω2

nu = дuΩnΩ =
Ω2

2

nA = дAΩnΩ =
Ω3

2 βA

(7.54)

Now take the e0 appearing in (7.36b) to be this na . Then after performing the conformal
transformation of ∇a (c.f. (7.34)) the equation (7.36b) reads

∇n = na∇a = na∇̃a − r

2n
aσ̃aσ̃

b ∇̃br−1 = na∇̃a − r

2n
aσ̃aσ̃

Ω (7.55)

whereψ was dropped for the moment. This equation of di�erential operators holds once it acts
onψ from the left. Using the expressions for the gamma matrices in the chosen tetrad we found
in (7.12) and (7.13) we have the relations

nΩσ̃Ωσ̃
Ω =

[
Ω4

2
(
2α + βAβA

)
− Ω2

] [
σ−σ+ +

1
r
βAσ−σ̃A

]
, (7.56a)

nu σ̃u σ̃
Ω =

Ω2

2
[
Ω2ασ+σ− + ΩβAσ+σ̃A − αΩ2σ−σ+ − αΩ3βAσ−σ̃A

]
, (7.56b)
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and

nAσ̃Aσ̃
Ω =

Ω3

2 βA
[
−ΩβAσ−σ+ − Ω2βAβBσ−σ̃B + σ̃Aσ+ + Ω

2ασ̃Aσ− + ΩβBσ̃Aσ̃B
]
. (7.56c)

Adding the equations (7.56) together yields

naσ̃aσ̃
Ω = σ−σ+

[
−Ω2 +

1
2αΩ

4
]
+
Ω4

2 ασ+σ− + σ−σ̃A
[
Ω5

2 αβA − Ω3βA

]

+
Ω5

2 αβAσ̃Aσ− +
Ω3

2 βAσ+σ̃
A +

Ω3

2 βAσ̃Aσ+ +
Ω4

2 βAβBσ̃Aσ̃
B . (7.57)

Using the (anti)commutation relations, see (7.18) and (7.19), this simpli�es to

naσ̃aσ̃
Ω = Ω4α − Ω2σ−σ+ − Ω3βAσ−σ̃A +

Ω4

2 βAβA . (7.58)

This can be plugged into (7.55) and, after some small manipulations, we �nd

σ−∇̃uψ̃ = (2 − 2Ω2α − Ω2βAβ
A)∇̃Ωψ̃ − ΩβAσ−∇̃Aψ̃ +

(
Ω2α +

1
2Ω

2βAβ
A
)
σ−ψ̃ . (7.59)

Hence, we have an expression which will be used to replace all ∇̃u occurring in the Witten
equation we will turn to now.

7.5.2 Rewriting the Witten Equation
An explicit expression of the Witten equation (7.36a) is derived now by using the tetrad system
and corresponding gamma matrices introduced above. Using the relation σ̃a = Ωσa relating
physical and unphysical gamma matrices and the conformal transformation of ∇bψ , see (7.34),
we have

0 = σb∇bψ = r−1σ̃b∇bψ = r−1/2σ̃b
[
∇̃bψ̃ − 1

2r σ̃b σ̃a
(
∇̃ar−1

)
ψ̃

]
(7.60)

and therefore the Witten equation takes the form

0 = σ̃b ∇̃bψ̃ + d

2r σ̃
rψ̃ . (7.61)

Substituting (7.12) yields

0 =
(
σ+ + Ω

2ασ− + ΩβAσ̃A
)
∇̃Ωψ̃ + σ−∇̃uψ̃ + σ̃A∇̃Aψ + d

2r σ̃
Ωψ̃ (7.62)

and now we can use (7.59) to replace ∇̃u , i.e.,

0 =
(
σ+ + Ω

2ασ− + ΩβAσ̃A
)
∇̃Ωψ̃ +

[
2 − 2Ω2α − Ω2βAβA

]
σ−∇̃Ωψ̃ − ΩβAσ−∇̃Aψ̃

+ Ω2ασ−ψ̃ + σ̃A∇̃Aψ + d

2r
(
σ+ + Ω

2ασ− + ΩβAσ̃A
)
ψ̃ . (7.63)
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Hence, an explicit form of the Witten equation is

0 = Ωσ+∇̃Ωψ̃ +
(
2 − Ω2α − Ω2βAβ

A
)
σ−Ω∇̃Ωψ̃ − Ω2βAσ̃

A∇̃Ωψ̃ − Ω2βAσ−∇̃Aψ̃ + Ωσ̃A∇̃Aψ̃

− d

2σ+ψ̃ +
(2 − d )Ω2α

2 σ−ψ̃ − d

2ΩβAσ̃
Aψ̃ . (7.64)

This is the equation we will work with for the remainder of the proof. Our goal is to treat this
equation similarly to the Einstein equations in the previous chapter. That is, we substitute the
asymptotic expansion of ψ , i.e. (7.47), into (7.64) and try to solve the equation recursively at
each order of r . However, we see that a problem/di�erence to the case of the Einstein equations
occurs. Namely, the coe�cients ψ (k ) (r ,u,xA) in the asymptotic expansion of the spinor still
depend on r and are not independent of it as was the case for the asymptotic expansion of the
metric coe�cients in (5.14). In particular, the series is not unique. We can only assume that
∇̃Ωψ (k ) = 0 which contains information about the parallel transport of the coe�cientsψ (k ) in
r -direction near null in�nity. This has the following consequence. We cannot simply plug in
the asymptotic expansion into the Witten equation and read o� the equation corresponding
to a given order of r since there will always be factors of r hidden inside ψ (k ) . What will be
done instead is applying the covariant derivative n-times to (7.64). In particular, the derivatives
will act on ψ (k ) and then we can use (7.48) such that these terms vanish. This ensures that
powers of r hidden insideψ (k ) are taken into account appropriately. Unfortunately, the gamma
matrices also depend on r (since the tetrad does) and thus the derivatives also acts non-trivially
on them and, additionally, ∇̃Ω and ∇̃A do not commute. This means that after applying the
covariant derivative to (7.64), we cannot directly apply (7.48) but we �rst have to consider the
action of the derivative on the gamma matrices (which are always to the left of the spinor in
(7.64)) and the commutator of ∇̃Ω and ∇̃A. This complicates the computation considerably since
the expressions arising are rather lengthy. Thus, we will do all auxiliary calculations in the
following section and collect all expressions (derivative of gamma matrices, commutator, ...)
that are needed later there. Afterwards we return to the Witten equation and, using the results
of the next section, apply the covariant derivative.

7.6 Proof Lemma 7.3— Step 2: Auxiliary Calculations

To �nd the Witten equation at a give order we need the nth derivative of the gamma matrices
as well as the commutator of ∇̃nΩ and ∇̃A, we begin with the latter.
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7.6.1 Commutator [∇̃nΩ, ∇̃A]
The general formula for the commutator of the derivative is

ϕµν B ∇µ∇ν − ∇ν∇µ = 1
8Rµνα β [σα ,σ β ] . (7.65)

This is the only commutator we need to compute since, by induction, one can easily show that
the commutator of the nth derivative with respect to Ω is

∇̃nΩ∇̃Aψ = ∇̃A∇̃nΩψ +
n∑

k=1

(
n

k

) (
∇̃n−kΩ ψ

) (
∇̃k−1
Ω ϕΩA

)
. (7.66)

The proof is simply by induction. Thus, we want to compute

8ϕΩA = д̃ΩλR̃λAα β [σ̃α , σ̃ β ]

= 2дΩλ
(
R̃λAΩu [σ̃Ω, σ̃u ] + R̃λAΩB[σ̃Ω, σ̃B] + R̃λAuB[σ̃u , σ̃B]

)
+ дΩλR̃

λ
ABC [σ̃B , σ̃C ] . (7.67)

The commutators of the gamma matrices we need are

[σ̃Ω, σ̃u ] = [σ+ + Ω2ασ− + ΩβAσ̃A,σ−] = [σ+,σ−] + ΩβA[σ̃A,σ−] ,

[σ̃Ω, σ̃B] = [σ+, σ̃B] + Ω2α[σ−, σ̃B] + ΩβA[σ̃A, σ̃B] , and (7.68)

[σ̃u , σ̃B] = [σ−, σ̃B] .

Additionally, we have to compute

д̃ΩλR̃
λ
AΩu = д̃Ωu R̃

u
AΩu = R̃uAΩu ,

д̃ΩλR̃
λ
AΩB = R̃uAΩB ,

д̃ΩλR̃
λ
AuB = R̃uAuB , and

д̃ΩλR̃
λ
ABC = R̃uABC ,

so four components of the Riemann tensor are needed. From the Christo�el symbols one �nds
by explicit calculation

R̃uAΩu = −
1
4∂Ω (ΩβB )γ

BC∂ΩγAC +
1
2∂

2
Ω (ΩβA) , (7.69a)

R̃uArB = −
1
2∂

2
Ω (γAB ) +

1
4γ

CD∂Ω (γAC )∂Ω (γBD ) , (7.69b)

R̃uAuB = −
1
2∂u∂Ω (γAB ) −

1
2∂A∂Ω (ΩβB ) −

1
2∂Ω (Ω

2α )∂ΩγAB +
1
4∂Ω (ΩβC )·(

2ΓCAB − ΩβC∂ΩγAB
)
− 1

4∂Ω (ΩβA)∂Ω (ΩβB ) +
1
4∂Ω (γBD )·(

γDC∂uγAC − ΩβD∂Ω (ΩβA)
)
, (7.69c)
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and

R̃uABC = ∂[B∂|Ω |γC]A +
1
2∂Ω (Ωβ[C )∂|Ω |γB]A + ∂Ω (γD[B )Γ

D
C]A , (7.69d)

where ΓABC =
1
2γ

AD (∂BγCD + ∂CγBD − ∂DγBC ) was used to keep the expressions shorter.
Now, we have all terms needed to calculate (7.67). Simply substituting the results for the

coe�cients of the Riemann tensor and the commutators of the gamma matrices yields

8ϕΩA =
{
−1

2∂Ω (ΩβB )γ
BC∂ΩγAC + ∂

2
Ω (ΩβA)

}
·

{
[σ+,σ−] + ΩβA[σ̃A,σ−]

}

+

{
−∂2

Ω (γAB ) +
1
2γ

CD∂Ω (γAC )∂Ω (γBD )
}
·

{
[σ+, σ̃B] + Ω2α[σ−, σ̃B] + ΩβA[σ̃A, σ̃B]

}

+

{
−∂u∂Ω (γAB ) − ∂A∂Ω (ΩβB ) − ∂Ω (Ω2α )∂ΩγAB +

1
2∂Ω (ΩβC )

(
2ΓCAB − ΩβC∂ΩγAB

)

−1
2∂Ω (ΩβA)∂Ω (ΩβB ) +

1
2∂Ω (γBD )

(
γDC∂uγAC − ΩβD∂Ω (ΩβA)

)}
· [σ−, σ̃B]

+

{
∂[B∂|Ω |γC]A +

1
2∂Ω (Ωβ[C )∂|Ω |γB]A + ∂Ω (γD[B )Γ

D
C]A

}
· [σ̃B , σ̃C ] .

7.6.2 Derivative of Gamma Matrices
Now, the �nal ingredient needed is the action of ∇̃nΩ on the gamma matrices. The �rst derivatives
with respect to Ω are as follows. For the r -component we �nd

∇̃Ωσ̃Ω = ∇̃Ω
(
σ̃bdΩb

)
= σ̃b

(
∂ΩdΩb − Γ̃cΩbdΩc

)
= −σ̃b Γ̃ΩΩb = −σ̃Ω Γ̃ΩΩΩ − σ̃u Γ̃ΩΩu − σ̃A Γ̃ΩΩA

=
1
2

[
2∂Ω (Ω2α ) + ΩβA∂Ω (ΩβA)

]
σ̃u +

1
2

[
βA + Ω(∂ΩβA − βB∂ΩγAB )

]
σ̃A (7.70a)

while the u-component vanishes since

∇̃Ωσ̃u = −σ̃b Γ̃uΩb = 0 . (7.70b)

The derivative of the A-component is again non-trivial,

∇̃Ωσ̃A = −σ̃b Γ̃AΩb =
1
2γ

AB∂Ω (ΩβB )σ̃
u − 1

2γ
AC∂ΩγBC σ̃

B . (7.70c)

Using this we can �nd the derivative of σ+ which is the component that actually appears in the
Witten equation. We have

∇̃Ωσ+ = ∇̃Ω
(
σ̃Ω − Ω2ασ̃u − ΩβAσ̃A

)
= ∇̃Ωσ̃Ω − ∇̃Ω (Ω2α )σ̃u − ∇̃Ω (ΩβAσ̃A)

= −1
2∂Ω (ΩβA) σ̃

A . (7.70d)

The derivative of σ− is trivial since σ− = σ̃u . This concludes this section collecting the results
of auxiliary calculations we will need when investigating the Witten equation which we will do
now.
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7.7 Proof Lemma 7.3— Step 3: Witten Equation at Order
r−n/2

Now, we can go back to the Witten equation (7.64) which, neglecting the irrelevant term with
βAβ

A, reads

0 = Ωσ+∇̃Ωψ̃ +
(
2Ω − Ω3α

)
σ−∇̃Ωψ̃ + Ω2βAσ̃

A∇̃Ωψ̃ − Ω2βAσ−∇̃Aψ̃ + Ωσ̃A∇̃Aψ̃

− d

2σ+ψ̃ +
(2 − d )Ω2α

2 σ−ψ̃ − d

2ΩβAσ̃
Aψ̃ . (7.71)

We assumed that the physical spinor has asymptotic expansion (7.47) and thus the unphysical
spinor ψ̃ = r 1/2ψ has asymptotic expansion

ψ̃ ∼
∑

n∈N
ψ (n)r−n/2 . (7.72)

This can be plugged into the Witten equation. Then we look at the equation at each order of r
by applying ∇̃Ξ, where Ξ =

√
Ω, n times where we assume that 0 ≤ n ≤ 2d − 2. Additionally,

we will now use the results in Lemma 6.1. Since the calculations are rather lengthy we will look
at each term individually. The �rst term is

I B
n∑

k=0

(
n

k

)
∇̃kΞ (σ+) ∇̃n−kΞ

(
Ω∇̃Ωψ̃

)
.

We have
X B Ω∇̃Ωψ̃ =

∑

i ∈N
− i2Ω

i/2ψ (i ) + Ωi/2∇̃rψ (i ) (7.73)

where we substituted the asymptotic expansion for ψ̃ . Thus, using ∇̃Ξσ+ = 2Ξ∇̃Ωσ+ and the
relevant expression derived above, that is

∇̃Ωσ+ = −1
2∂Ω (ΩβA) ,

we �nd

I = σ+∇̃nΞX +
n∑

k=1

(
n

k

)
∇̃kΞ (σ+) ∇̃n−kΞ X

= σ+∇̃nΞX +
n∑

k=1

(
n

k

)
∇̃k−1
Ξ

[
−Ξ∂Ω (ΩβA) σ̃

A
]
∇̃n−kΞ X

= σ+∇̃nΞX −
n∑

k=1

(
n

k

)
∇̃k−1
Ξ [Ξ∂Ω (ΩβA)] σ̃A∇̃n−kΞ X + O (higher order terms) , (7.74)
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where "higher order terms" refers to terms including factors of βA∂Ω (ΩβA) or βB∂ΩγAB . Now,
we only need to substitute the asymptotic expansion (5.14) of the metric coe�cients, take r → ∞
(by which the higher order terms vanish) and use ∇̃Ωψ (i ) = 0. Doing this leads to

I|r→∞ '
n

2n!σ+ψ (n) − n!σ̃A
n∑

k=1

n − k
4 β (k−2)

A ψ (n−k ) . (7.75)

The next term is

II B
n∑

k=0

(
n

k

)
∂kΞ (2 − Ω2α )σ−∇̃n−kΞ (Ω∇̃Ωψ̃ ) = 2∇̃nΞ (Ω∇̃Ωψ̃ ) −

n∑

k=0

(
n

k

)
∂kΞ (Ω

2α )σ−∇̃n−kΞ (Ω∇̃Ωψ̃ ) ,

where we again used that all derivatives of σ̃− vanish. Substituting the asymptotic expansions
of the spinor and α , taking the limit r → ∞ this is

II|r→∞ ' nn!σ−ψ (n) − n!σ−
n−4∑

k=1

k

2α
(n−4−k )ψ (k ) . (7.76)

Continuing with

III B
n∑

k=0

(
n

k

)
∇̃kΞ

(
βAσ̃

A
)
∇̃n−kΞ (Ω2∇̃Ωψ̃ )

we need to use (7.70c) for the derivatives acting on σ̃A but all terms which enter this way will
vanish in the end since their order is too high, as can easily been seen, so keeping only relevant
terms yields

III '
n∑

k=0

(
n

k

)
∂kΞ (βA) σ̃

A∇̃n−kΞ (Ω2∇̃Ωψ̃ ) .

The same steps as before lead to

III|r→∞ ' n!
n−3∑

m=0

n −m − 2
2 β (m)

A σ̃Aψ (n−m−2) . (7.77)

The fourth term is

IV B −
n∑

k=0

(
n

k

)
∇̃kΞ

(
Ω2βAσ−

)
∇̃n−kΞ ∇̃Aψ̃ .

and we �nd

IV|r→∞ ' −n!
n−4∑

m=0
βA(n−4−m)σ−DAψ

(m) . (7.78)

with an additional term +n−2
4 n!γAB (n/2−1)β (n/2−1)

B σ−DAψ
(0) if n = 2d − 2 The �fth term reads

V B ∇̃nΞ
(
Ωσ̃A∇̃Aψ̃

)
.
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Since

V =
n∑

k=0

(
n

k

)
∇̃kΞ

(
Ωσ̃A

)
∇̃n−kΞ ∇̃Aψ̃

=

n∑

k=0

(
n

k

)
∇̃kΞ

(
Ωσ̃A

)
∇̃A∇̃n−kΞ ψ̃

︸                               ︷︷                               ︸
V.a

+

n∑

k=0

n−k∑

i=1

(
n

k

) (
n − k
i

)
∇̃kΞ

(
Ωσ̃A

) (
∇̃n−k−iΞ ψ̃

)
∇̃i−1
Ξ ϕΞA

︸                                                             ︷︷                                                             ︸
V.b

we need to use derivatives of the commutator ϕΩA, that is, we need the relevant terms of (7.66)
to evaluate V.b. The relevant terms of V.a are found by analyzing ∇̃kΞ

(
Ωσ̃A

)
. We have

∇̃kΞ
(
Ωσ̃A

)
= 2

(
k

k − 2

)
∇̃k−3
Ξ

(
ΞsABσ−∂Ω (ΩβB ) − ΞsAC∂ΩγBC σ̃B

)
(7.79)

which, after a short calculation, yields

V.a|r→∞ ' n!σ̃ADAψ
(n−2) − 1

2n!sABσ−
n−4∑

m=0
β (m)
B DAψ

(n−4−m)

+
1
2n!sABσ̃C

n−2∑

m=1
γ (m)
BC DAψ

(n−2−m) (7.80)

and if n = 2d − 2 there is additionally the term

+
1
4n!γ (d−2)

BC γAC (d−2)σ̃BDAψ
(0) . (7.81)

The term V.b is more complicated. Using 2ΞϕΩA = ϕΞA we have

V.b = 2
n∑

k=0

n−k∑

i=1

(
n

k

) (
n − k
i

)
∇̃kΞ

(
Ωσ̃A

) (
∇̃n−k−iΞ ψ̃

)
∇̃i−1
Ξ (ΞϕΩA) . (7.82)

and de�ne the abbreviation

C (X ) B 2
n∑

k=0

n−k∑

i=1

(
n

k

) (
n − k
i

)
∇̃kΞ

(
Ωσ̃A

) (
∇̃n−k−iΞ ψ̃

)
∇̃i−1
Ξ (ΞX ) . (7.83)

We now look at the terms appearing in ϕΩA and the relevant contributions are as follows. We
have

∇̃i−1
Ξ (Ξ∂2

Ω (ΩβA)) = β
(i )
A
i!
4 (i + 2) + O (Ξ) (7.84a)

and plugging this in we �nd

C
(
∂2
Ω (ΩβA)[σ+,σ−]

) ���r→∞ ' n!
n−2∑

i=1

i + 2
2 β (i )A σ̃A[σ+,σ−]ψ (n−2−i )

+
d

8n!βC (d−2)γ (d−2)
BC σ̃B[σ+,σ−]ψ (0) . (7.84b)
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where the second term is only for n = 2d − 2. Next, there is the term

∇̃i−1
Ξ (Ξ∂u∂ΩγAB ) = ∂uγ

(i )
AB

i!
2 + O (Ξ) (7.85a)

which yields

C
(
2Ξ∂u∂Ω (γAB )σ̃Bσ−

) ���r→∞ ' 2n!
n−2∑

i=1
γ ′(i )AB σ̃

Aσ̃Bσ−ψ (n−2−i )−3
2n!sDCγ ′(n/2−1)

AC γ (n/2−1)
BD σ̃Aσ̃Bσ−ψ (0) .

(7.85b)
with the second term again appearing only if n = 2d − 2. The term

∇̃i−1
Ξ (Ξ∂Ω (Ω

2α )∂ΩγAB ) = α
(0)γ (i−2)

AB
i − 2
i

i! + O (Ξ) (7.86a)

gives only

C
(
2Ξ∂Ω (Ω2α )∂ΩγABσ̃

Bσ−
) ���r→∞ ' n!

n−2∑

i=1
4α (0) i − 2

i
γ (i−2)
AB σ̃Aσ̃Bσ−ψ (n−2−i ) . (7.86b)

Using
∇̃i−1
Ξ (Ξ∂A∂Ω (ΩβB )) = ∂Aβ

(i−2)
B

i!
2 + O (Ξ) (7.87a)

one �nds

C
(
2Ξ∂A∂Ω (ΩβB )σ̃Bσ−

) ���r→∞ ' n!
n−2∑

i=1
2DAβ

(i−2)
B σ̃Aσ̃Bσ−ψ (n−2−i ) . (7.87b)

The contribution from

∇̃i−1
Ξ (Ξ∂[B∂|Ω |γC]A) = ∂[Bγ

(i )
C]A

i!
2 + O (Ξ) (7.88a)

is

C
(
Ξ∂[B∂|Ω |γC]A)[σ̃B , σ̃C ]

) ���r→∞ ' n!
n−2∑

i=1
2D[Bγ

(i )
C]Aσ̃

Aσ̃Bσ̃Cψ (n−2−i ) . (7.88b)

The second-to-last term reads

∇̃i−1
Ξ (Ξ∂ΩγBFγ

FC∂uγAC ) =
∑

l ∈N

i − l
2 sFCγ (i−l )

BF ∂uγ
(l )
AC (i − 1)! + O (Ξ) (7.89a)

and contributes

C
(
−Ξ∂ΩγBFγ FC∂uγAC σ̃Bσ−

) ���r→∞ ' −
n!
2 sCDγ ′(n/2−1)

AC γ (n/2−1)
BD σ̃Aσ̃Bσ−ψ (0) . (7.89b)

if n = 2d − 2 and its contribution vanishes otherwise. Finally, we have the term

∇̃i−1
Ξ (Ξ∂2

ΩγAB ) = γ
(i+2)
AB

(i + 2)
4 i! + O (Ξ) (7.90a)
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with corresponding contribution

C
(
2Ξ∂2

ΩγABσ̃
Bσ+

) ���r→∞ ' n!
n−2∑

i=1
2(i+2)γ (i+2)

AB σ̃Aσ̃Bσ+ψ
(n−2−i )−n!

2
∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BD σ̃

Aσ̃Bσ+ψ
(i ) .

(7.90b)
with d−2

2 n!σ−σ̃Bσ+β
B (d−2)γ (d−2)

AB ψ (0) as a third term if n = 2d − 2. All the other terms appearing
in ϕΩA give only vanishing contributions in the end and we do not write their explicit form
here. Taking the prefactor 1

8 appearing in ϕΩA into account we can sum all the contributions up
thereby obtaining

V.b|r→∞ '
n!
8 σ̃

A
n−2∑

i=1

[ i + 2
2 β (i )A [σ+,σ−] + 2γ ′(i )AB σ̃

Bσ− + 4α (0) i − 2
i
γ (i−2)
AB σ̃Bσ− + 2DAβ

(i−2)
B σ̃Bσ−

+ 2D[Bγ
(i )
C]Aσ̃

Bσ̃C + 2(i + 2)γ (i+2)
AB σ̃Bσ+

]
ψ (n−2−i ) − n!

16
∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BD σ̃

Aσ̃Bσ+ψ
(i )

+

{
− 3

16n!sDCγ ′(n/2−1)
AC γ (n/2−1)

BD σ̃Aσ̃Bσ−ψ (0) − n!
16s

CDγ ′(n/2−1)
AC γ (n/2−1)

BD σ̃Aσ̃Bσ−ψ (0)

+
d

64n!βC (d−2)γ (d−2)
BC σ̃B[σ+,σ−]ψ (0) +

d − 2
2 n!σ−σ̃Bσ+β

A(d−2)γ (d−2)
AB ψ (0)

}

if n=2d−2
.

(7.91)

where the terms in the curly bracket are there only if n = 2d − 2. Using the identities

γABσ
AσB =

1
2γABσ

AσB +
1
2γBAσ

BσA =
1
2γAB

{
σA,σB

}
= γABs

AB , and

D[BγC]Aσ
AσBσC =

[
DBγAB − DAγ

]
σA

we can rewrite this to

V.b|r→∞ '
n!
8 σ̃

A
n−2∑

i=1

{ i + 2
2 β (i )A [σ+,σ−] + 2γ ′(i )AB σ̃

Bσ− + 4α (0) i − 2
i
γ (i−2)
AB σ̃Bσ− + 2DAβ

(i−2)
B σ̃Bσ−

+2
[
DBγ (i )

AB − DAγ
(i )

]
+ 2(i + 2)γ (i+2)

AB σ̃Bσ+
}
ψ (n−2−i ) − n!

16
∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BD σ̃

Aσ̃Bσ+ψ
(i )

+

{
−n!

4 sDCγ ′(n/2−1)
AC γ (n/2−1)

BD σ̃Aσ̃Bσ−ψ (0) +
d

64n!βC (d−2)γ (d−2)
BC σ̃B[σ+,σ−]ψ (0)

+
d − 2

2 n!σ−σ̃Bσ+β
A(d−2)γ (d−2)

AB ψ (0)
}

if n=2d−2
. (7.92)

where for the terms in the curly bracket holds the same as above. Now, adding (7.80) and (7.92)
yields the full expression for V. The sixth term of the Witten equation is

VI B −d2
n∑

k=0

(
n

k

)
∇̃kΞσ+∇̃n−kΞ ψ̃
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and, after taking the limit, we �nd

VI|r→∞ ' −
d

2n!σ+ψ (n) +
d

4n!
n∑

m=2
β (m−2)
A σ̃Aψ (n−m) . (7.93)

with an additional term −d8n! d
d−2β

C (d−2)γ (d−2)
AC σ̃Aψ (0) if n = 2d − 2. The second-to-last term is

VII B
(
1 − d

2

) n∑

k=0

(
n

k

)
∇̃kΞ (ασ−) ∇̃n−kΞ (Ω2ψ̃ ) .

It can be rewritten as

VII =
(
1 − d

2

) n∑

k=0

(
n

k

) (
∂kΞα

)
σ−∇̃n−kΞ (Ω2ψ̃ )

and thus

VII|r→∞ '
(
1 − d

2

)
n!σ−

n−4∑

m=0
α (m)ψ (n−4−m) . (7.94)

Finally, the eighth and last term is

VIII B −d2
n∑

k=0

(
n

k

)
∇̃kΞ

(
ΩβAσ̃

A
)
∇̃n−kΞ ψ̃

which is equal to

VIII = −d2
n∑

k=0

(
n

k

) k∑

j=0

(
k

j

)
∂
j
Ξ (ΩβA)

(
∇̃k−jΞ σ̃A

)
∇̃n−kΞ ψ̃ .

Therefore, the result for the last term is

VIII|r→∞ ' −
d

2n!
n−2∑

m=0
β (m)
A σ̃Aψ (n−2−m) (7.95)
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and if n = 2d − 2 one has to add the term −d4n!βB (d−2)γ (d−2)
AB σ̃Aψ (0) . Now we have found all

contributing terms. Adding the eight terms together and dividing by n! yields

0 = n

2 σ+ψ
(n) − σ̃A

n∑

k=1

n − k
4 β (k−2)

A ψ (n−k ) + nσ−ψ (n) − σ−
n−4∑

k=1

k

2α
(n−4−k )ψ (k )

+

n−3∑

m=0

n −m − 2
2 β (m)

A σ̃Aψ (n−m−2) −
n−4∑

m=0
βA(n−4−m)σ−DAψ

(m)

+ σ̃ADAψ
(n−2) − 1

2s
ABσ−

n−4∑

m=0
β (m)
B DAψ

(n−4−m) +
1
2s

ABσ̃C
n−2∑

m=1
γ (m)
BC DAψ

(n−2−m)

+
1
8 σ̃

A
n−2∑

i=1

{ i + 2
2 β (i )A [σ+,σ−] + 2γ ′(i )AB σ̃

Bσ− + 4α (0) i − 2
i
γ (i−2)
AB σ̃Bσ− + 2DAβ

(i−2)
B σ̃Bσ−

+2
[
DBγ (i )

AB − DAγ
(i )

]
+ 2(i + 2)γ (i+2)

AB σ̃Bσ+
}
ψ (n−2−i ) − 1

16
∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BD σ̃

Aσ̃Bσ+ψ
(i )

− d

2σ+ψ
(n) +

d

4

n∑

m=2
β (m−2)
A σ̃Aψ (n−m) +

(
1 − d

2

)
σ−

n−4∑

m=0
α (m)ψ (n−4−m) − d

2

n−2∑

m=0
β (m)
A σ̃Aψ (n−2−m)

(7.96)

for 1 ≤ n < 2d − 2 and if n = 2d − 2 there are the following terms added to the right-hand side.

n − 2
4 γAB (n/2−1)β (n/2−1)

B σ−DAψ
(0) +

1
4γ

(d−2)
BC γAC (d−2)σ̃BDAψ

(0) +
d

64β
C (d−2)γ (d−2)

BC σ̃B[σ+,σ−]ψ (0)

− 1
4s

DCγ ′(n/2−1)
AC γ (n/2−1)

BD σ̃Aσ̃Bσ−ψ (0) − d

8
d

d − 2β
C (d−2)γ (d−2)

AC σ̃Aψ (0) − d

4 β
B (d−2)γ (d−2)

AB σ̃Aψ (0)

+
d − 2

2 σ−σ̃Bσ+β
A(d−2)γ (d−2)

AB ψ (0) (7.97)

This is the explicit expression of the Witten equation at order r−n/2 we wanted to �nd.
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7.8 Proof Lemma 7.3— Step 4: Recursion Formula Spinor
We know apply the projectors P± to the Witten equation to �nd recursion relations for the
componentsψ+ andψ−. Applying P+ =

1
2σ+ · σ− to (7.96) yields for 1 ≤ n < 2d − 2

0 = n

2
√

2ψ (n)
− − ΓA

n∑

k=1

n − k
4 β (k−2)

A ψ (n−k )
+ +

n−3∑

m=0

n −m − 2
2 β (m)

A ΓAψ (n−m−2)
+

+ ΓADAψ
(n−2)
+ +

1
2s

ABΓC
n−2∑

m=1
γ (m)
BC DAψ

(n−2−m)
+ − d

2

n−2∑

m=0
β (m)
A ΓAψ (n−2−m)

+

+
1
8Γ

A
n−2∑

i=1

{ i + 2
2 β (i )A ψ (n−2−i )

+ + 2
[
DBγ (i )

AB − DAγ
(i )

]
ψ (n−2−i )
+ + 2(i + 2)γ (i+2)

AB ΓB
√

2ψ (n−2−i )
−

}

− 1
16

∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BDΓ

AΓB
√

2ψ (i )
− −

d

2
√

2ψ (n)
− +

d

4

n∑

m=2
β (m−2)
A ΓAψ (n−m)

+ (7.98)

where the relations in (7.26) were used. This can be solved forψ (n)
− such that

ψ (n)
− =

√
2

d − n


−ΓA

n∑

k=1

n − k
4 β (k−2)

A ψ (n−k )
+ +

n−3∑

m=0

n −m − 2
2 β (m)

A ΓAψ (n−m−2)
+

+ ΓADAψ
(n−2)
+ +

1
2s

ABΓC
n−2∑

m=1
γ (m)
BC DAψ

(n−2−m)
+

+
1
8Γ

A
n−2∑

i=1

{ i + 2
2 β (i )A ψ (n−2−i )

+ + 2
[
DBγ (i )

AB − DAγ
(i )

]
ψ (n−2−i )
+ + 2(i + 2)γ (i+2)

AB ΓB
√

2ψ (n−2−i )
−

}

− 1
16

∑

i+j+k=n

sCD j γ (j )
ACγ

(k )
BDΓ

AΓB
√

2ψ (i )
− +

d

4

n∑

m=2
β (m−2)
A ΓAψ (n−m)

+ − d

2

n−2∑

m=0
β (m)
A ΓAψ (n−2−m)

+



.

(7.99)

Assuming thatψ (0)
+ = ϵ andψ (0)

− = 0 we immediately see that

ψ (1)
− = 0 (7.100)

and
ψ (2)
− =

√
2

(d − 2) Γ
ADAψ

(0)
+ (7.101)

For n = 2d − 2 are additionally the terms
√

2
d − n

{
1
4γ

(d−2)
BC γAC (d−2)ΓBDAψ

(0)
+ +

d

64β
C (d−2)γ (d−2)

BC ΓBψ (0)
+

−d8
d

d − 2β
C (d−2)γ (d−2)

AC ΓAψ (0)
+ −

d

4 β
B (d−2)γ (d−2)

AB ΓAψ (0)
+

}
(7.102)
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which have to be added on the right-hand side.
Applying instead P− to (7.96) gives

0 = −1
2β

(n−4)
A ΓAψ (2)

− + n
√

2ψ (n)
+ −

√
2n − 4

2 α (0)ψ (n−4)
+ + β (n−4)

A ΓAψ (2)
− − βA(n−4)√2DAψ

(0)
+

+ ΓADAψ
(n−2)
− − 1

2
√

2βA(n−4)DAψ
(0)
+ +

1
2Γ

Cγ (n−4)
BC DBψ (2)

−

+
1
8Γ

A
{
−n − 2

2 β (n−4)
A ψ (2)

− + 2γ ′(n−2)
AB ΓB

√
2ψ (0)
+ + 4α (0)n − 4

n − 2γ
(n−4)
AB ΓB

√
2ψ (0)
+ + 2DAβ

(n−4)
B ΓB

√
2ψ (0)
+

+2
[
DBγ (n−4)

AB − DAγ
(n−4)

]
ψ (2)
−

}
+
d

4 β
(n−4)
A ΓAψ (2)

−

+

(
1 − d

2

) √
2α (n−4)ψ (0)

+ +

(
1 − d

2

) √
2α (0)ψ (n−4)

+ − d

2 β
(n−4)
A ΓAψ (2)

− (7.103)

where again there are additional terms, namely

+
n − 2

4 γAB (n/2−1)β (n/2−1)
B

√
2DAψ

(0)
+ −

1
4s

DCγ ′(n/2−1)
AC γ (n/2−1)

BD ΓAΓB
√

2ψ (0)
+ +

d − 2
4 ΓBβA(d−2)γ (d−2)

AB ψ (0)
− ,

(7.104)
if n = 2d − 2. We thus �nd forψ (n)

− the expression

ψ (n)
− =

√
2

d − n
{
ΓADAψ

(n−2)
+ +

1
2γ

(n−2)
AB ΓBDAψ (0)

+ +
n − 4d

16 β (n−2)
A ΓAψ (0)

+

+
1
4Γ

A
[
DBγ (n−2)

AB − DAγ
(n−2)

]
ψ (0)
+ +

n − 2√
2
γ (n−2)ψ (2)

−

}
. (7.105)

for 1 ≤ n < 2d − 2 while for n = 2d − 2 there are also the terms

+
1
4γ

(d−2)
BC γAC (d−2)ΓBDAψ

(0)
+ +

30d − 23d2

64(d − 2) β
C (d−2)γ (d−2)

BC ΓBψ (0)
+ +

n − 2
16
√

2
γ (n/2−1)
AB γ (n/2−1)ABψ (2)

− .

(7.106)
Forψ (n)

+ we �nd for 1 ≤ n < 2d − 2

ψ (n)
+ =

−1√
2n

{
10 − n − 2d

16 β (n−4)
A ΓAψ (2)

− −
6 − d − n√

2
α (0)ψ (n−4)

+ + β (n−4)
A ΓAψ (2)

− − βA(n−4)√2DAψ
(0)
+

+ ΓADAψ
(n−2)
− − 1√

2
βA(n−4)DAψ

(0)
+ +

1
2Γ

Cγ (n−4)
BC DBψ (2)

− +
1
4

[
DBγ (n−4)

AB − DAγ
(n−4)

]
ΓAψ (2)

−

+
1

2
√

2
γ ′(n−2)ψ (0)

+ +
1√
2
α (0)n − 4

n − 2γ
(n−4)ψ (0)

+ +
1

2
√

2
DAβ

(n−4)
B ΓAΓBψ (0)

+

+

(
1 − d

2

) √
2α (n−4)ψ (0)

+

}
(7.107)

and for n = 2d − 2 the terms

+
n − 2
2
√

2
γAB (n/2−1)β (n/2−1)

B DAψ
(0)
+ −

1
2
√

2
γ ′(n/2−1)
AB γAB (n/2−1)ψ (0)

+ +
d − 2

4 ΓBβA(d−2)γ (d−2)
AB ψ (0)

−
(7.108)

are added. This yields the expressions stated in 7.3. �
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7.9 Existence of Integral
We can now go back to the integral (7.46) and show that the limit exists by deriving an expression
for the coe�cients Q (n) of the asymptotic expansion of Q . We have

Q (ẽ+, ẽ−) = <
(
ψ̄ ẽ− · ∇ẽ+ψ − ψ̄ ẽ+ · ∇ẽ−ψ

)
= <

(
ψ̄ ẽ−b σ̃

b ẽ+a∇aψ − ψ̄ ẽ+b σ̃b ẽ−a∇aψ
)

= <
(
ψ̄ ẽ−Ωσ̃

Ωẽ+Ω∇Ωψ + ψ̄ ẽ−u σ̃u ẽ+Ω∇Ωψ + ψ̄ ẽ−Aσ̃Aẽ+Ω∇Ωψ − ψ̄ ẽ+u σ̃u ẽ−Ω∇Ωψ − ψ̄ ẽ+u σ̃u ẽ−u∇uψ
)
.

Substituting the components of the tetrad we chose, i.e., (7.9) and (7.10), yields

Q (ẽ+, ẽ−) = <
(
ψ̄ σ̃Ω∇Ωψ − 2ψ̄Ω2ασ̃u∇Ωψ − ΩβAψ̄ σ̃A∇Ωψ − ψ̄ σ̃u∇uψ

)
. (7.109)

Replacing σ̃Ω and σ̃u with the corresponding components in (7.12) and using the physical
version of (7.59) to replace ∇u , found by repeating the calculation leading to (7.59) for ∇u , gives

Q (ẽ+, ẽ−) = <
(
ψ̄

[
σ+ + Ω

2ασ− + ΩβAσ̃A
]
∇Ωψ − 2ψ̄αΩ2σ−∇Ωψ − ΩβAψ̄ σ̃A∇Ωψ

−ψ̄σ−
[(
−2Ω2α + 2 − Ω2βAβA

)
∇Ω − 2ΩβA∇A

]
ψ
)

= <
(
ψ̄σ+∇Ωψ + ψ̄σ−

[(
Ω2α − 2 + Ω2βAβA

)
∇Ω + 2ΩβA∇A

]
ψ − ΩβAψ̄ σ̃A∇Ωψ

)

' <
(
ψ̄σ+∇Ωψ + ψ̄σ−

(
Ω2α − 2

)
∇Ωψ

)
.

Looking at the nth order we �nd

Q (n) (ẽ+, ẽ−) =
√

2<
(n

2
〈
ψ (2)
− ,ψ

(n)
−

〉
− (n + 2)

〈
ψ (0)
+ ,ψ

(n+2)
+

〉
+
n − 2

2 α (0)
〈
ψ (0)
+ ,ψ

(n−2)
+

〉)
.

(7.110)
To bring this into a more suitable form we use the Killing-spinor equation

DXϵ =
iλ

2 X · ϵ ⇔ X aDaϵ =
iλ

2 X aΓaϵ . (7.111)

Thus, we have

ΓADAϵ =
iλ

2 (d − 2)ϵ

and multiplying this by ΓBDB yields

ΓBDBΓ
ADAϵ =

iλ

2 (d − 2)ΓBDBϵ = − (d − 2)2λ2

4 ϵ = −1
2 (d − 2)2α (0)ψ (0)

+ ,

and hence
ΓAΓBDADBϵ = −1

2 (d − 2)2α (0)ψ (0)
+ . (7.112)
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This can be used to rewrite the last term in (7.110), where ϵ = ψ (0)
+ by assumption, as

α (0)
〈
ψ (0)
+ ,ψ

(n−2)
+

〉
=

〈
α (0)ψ (0)

+ ,ψ
(n−2)
+

〉
=

〈
− 2
(d − 2)2 Γ

AΓBDADBϵ,ψ
(n−2)
+

〉

= − 2
(d − 2)2

〈
ΓAΓBDADBϵ,ψ

(n−2)
+

〉
. (7.113)

Therefore,

Q (n) (ẽ+, ẽ−) =
√

2<
(
n

2
〈
ψ (2)
− ,ψ

(n)
−

〉
− (n + 2)

〈
ψ (0)
+ ,ψ

(n+2)
+

〉
− n − 2

(d − 2)2
〈
ΓAΓBDADBϵ,ψ

(n−2)
+

〉)
.

(7.114)
Withψ (2)

− = iλ/(
√

2)ϵ this is

Q (n) (ẽ+, ẽ−) =
√

2<
(
iλn

2
√

2

〈
ϵ,ψ (n)

−
〉
− (n + 2)

〈
ϵ,ψ (n+2)
+

〉
− n − 2

(d − 2)2
〈
ΓAΓBDADBϵ,ψ

(n−2)
+

〉)
.

(7.115)
In the last term, we can move one derivative to the second factor which produces a total
derivative,

Q (n) =
√

2<
*.....
,

iλn

2
√

2

〈
ϵ,ψ (n)

−
〉

︸          ︷︷          ︸
I

− (n + 2)
〈
ϵ,ψ (n+2)
+

〉
︸                ︷︷                ︸

II

− n − 2
(d − 2)2 Γ

AΓB
〈
DBϵ,DAψ

(n−2)
+

〉

︸                                    ︷︷                                    ︸
III

+DAω
A

+/////
-

,

(7.116)
where ωA is some function. It turns out that, in the end, ωA vanishes independently of its
precise form so we do not explicitly write it here to keep the expressions shorter. It is only
important that DAω

A is a total derivative. Note that in the following calculations many total
derivatives will appear and we will always add them to DAω

A without explicitly mentioning it
every time and hence the exact form of ωA might change from line to line.

Let 〈ϵ, ϵ〉 = |ϵ |2 ∈ R, 1 ≤ n < 2d − 4, and recall thatψ (0)
+ = ϵ andψ (2)

− = iλ/(
√

2)ϵ . We will
now use the recursion relations in Lemma 7.3 to show that (7.116) can be brought in a form
such that the integral (7.46) exists and is equal to the Bondi mass. Since the expressions are
again rather lengthy we consider the three terms I-III of (7.116) independently. For the term I
we need
d − n√

2

〈
ϵ,ψ (n)

−
〉
=

{
ΓA

〈
ϵ,DAψ

(n−2)
+

〉
+
n − 4d

16 β (n−2)
A ΓA |ϵ |2 + 1

4 (D
Bγ (n−2)

AB − DAγ
(n−2) )ΓA |ϵ |2

+
1
2γ

(n−2)
AB ΓB

〈
ϵ,DAψ (0)

+

〉}

Since only the real part of term I will enter we only have one relevant term that potentially
could be of importance,

<
{

iλn

2(d − n)
〈
ϵ,ψ (n)

−
〉}
= <

{
iλn

2(d − n) Γ
A
〈
ϵ,DAψ

(n−2)
+

〉}
. (7.117)
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A similar argument can be used to signi�cantly reduce the length of the third term. For this
note that, since ϵ is a Killing spinor, we have

ΓADAϵ =
iλ(d − 2)

2 ϵ (7.118)

and thus all terms of the form
〈
ϵ, ΓADAϵ

〉
are purely imaginary, thus not contributing to Q (n) ,

while terms 〈
ΓADAϵ, Γ

BDBϵ
〉
= − (d − 2)2λ2

4 |ϵ |2 (7.119)

are real and matter. Thus we have,

−(n − 2)<
{
ΓAΓB

〈
DBϵ,DAψ

(n−2)
+

〉}
=

1√
2
ΓAΓBΓC<

〈
DBϵ,DADCψ

(n−4)
−

〉
− 8 − d − n

2 α (0)ΓAΓB<
〈
DBϵ,DAψ

(n−6)
+

〉

− (d − 2)2λ2

16 γ ′(n−4) |ϵ |2 − (d − 2)2λ2 (n − 6)
8(n − 4) α (0)γ (n−6) |ϵ |2 + (d − 2)3λ2

8 α (n−6) |ϵ |2

− (d − 2)2λ2

16 ΓAΓBDAβ
(n−6)
B |ϵ |2 + O (total derivatives) .

We now consider term II which includes the scalar product

−(n + 2)<
〈
ϵ,ψ (n+2)
+

〉
=

1√
2
ΓA<

〈
ϵ,DAψ

(n)
−

〉
− 4 − d − n

2 α (0)<
〈
ϵ,ψ (n−2)
+

〉
+

1
4DBβ

(n−2)
A ΓAΓB |ϵ |2

+
1
4γ
′(n) |ϵ |2 + 2 − d

2 α (n−2) |ϵ |2 + 4n − 8 − √2n
4
√

2n
α (0)γ (n−2) |ϵ |2 .

We can now add all three terms together. Using the results of Lemma 6.1 and including all total
derivatives in DAω (n)

A , we see that, for 1 ≤ n < 2d − 4, we have

Q (n) = DAω (n)
A . (7.120)

Thus, for this range of n, Q (n) is equal to a total derivative and will therefore vanish in the
integral. Now consider n = 2d − 4. The above results for the terms I-III can be copied except
that there is now an additional term, the radiation term γ (d−2)ABγ ′(d−2)

AB , in the componentψ (n)
+ .

Additionally, some terms which vanished before due to Lemma 6.1 are now non-zero. Taking
these small modi�cations into account we �nd

Q (2d−4) =
1√
2

[
−1

2γ
′(2d−4) − (d − 2)α (2d−6) +

1
2γ

(d−2)ABγ ′(d−2)
AB

]
|ϵ |2 +DAωA . (7.121)

Substituting (6.20), i.e.,

γ (2d−4) =
3d − 10
8(d − 3)γ

AB (d−2)γ (d−2)
AB ,

97
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, this is equal to

Q (2d−4) =
1√
2

[
d − 2

8(d − 3)γ
(d−2)
AB γ ′(d−2)AB − (d − 2)α (2d−6)

]
|ϵ |2 .

Choosing the normalization |ϵ |2 = √2/8π we therefore have

Q (2d−4) =
1

8π

[
d − 2

8(d − 3)γ
(d−2)
AB γ ′(d−2)AB − (d − 2)α (2d−6)

]
. (7.122)

Now, with (7.120) and (7.122) at hand, we can use this result to evaluate the integral (7.46). We
immediately see that the integral does indeed exist since

lim
r→∞

[
rd−2

∫

Σ
Q (ẽ+, ẽ−)dSд̃

]
=

∫

Σ
Q (2d−4)√sdd−2x . (7.123)

Here it was crucial that terms Q (n) with n < 2d − 4 are total derivatives since this are the terms
which would be divergent in the limit r → ∞. But, by being total derivatives they, luckily,
vanish under the integral and (7.123) exists. Recall that we already showed in section 7.3 that

lim
r→∞

[
rd−2

∫

Σ
Q (ẽ+, ẽ−)dSд̃

]
≥ 0 . (7.124)

If we compare the expression for the Bondi massmΣ of Σ in (6.45) and (7.122) we see that
∫

Σ
Q (d−2)√sdd−2x =mΣ . (7.125)

Therefore, we �nd
mΣ ≥ 0 , (7.126)

the Bondi mass cannot become negative in odd dimensions d ≥ 5. This concludes the proof and
establishes the main result of this thesis. �

In this chapter, we proofed that, if there exists a Witten spinor near in�nity, the Bondi mass
is positive in odd dimensions. We discuss the result in the following chapter.
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CHAPTER 8

Discussion

This chapter contains a discussion of our main results and we compare them to the results of
other authors. Since the results in the chapters 6 and 7 are relatively independent we discuss
them separately.

8.1 Discussion of Chapter 6
The asymptotic expansion of the metric components (5.14) we chose are similar to the ones
used by Tanabe et al. [105]. However, more assumptions were made in [105]. For example, it
was assumed by them that (in our notation)

γ (n)
AB = 0 1 ≤ n ≤ d − 3 , (8.1)

whereas we did not assume this but derived it in Lemma 6.1 from the vacuum Einstein equations.
The assumptions we made were basically all necessary for a Killing spinor to exist near in�nity
which is crucial for our positivity proof and we do not think that they are very restrictive. In
particular, they include a spacetime which is asymptotically Minkowski as a special case. Our
computations and results are analogues to the ones by Hollands and Thorne [19, 110] who
considered the case of even dimensions. In particular, the Bondi mass takes the form (6.45)
in both cases. Our expression for the Bondi mass and the mass-loss formula is also found by
[105], albeit by a di�erent method with more assumptions and less explicit, see also [106]. This
and the reasonable physical interpretation indicate that, although (6.41) was derived assuming
even dimensions, it is possible to use the result in odd dimensions, too. Since the same �nal
result, (6.45), was found in even dimensions in [19] it can be taken as a satisfying expression
for the Bondi mass in all dimensions d ≥ 4. Setting NAB = 0 one arrives at the ADM mass.
Looking at the results the reason for the di�culties which appear in higher dimension but not
in four dimensions becomes apparent. The physically relevant components of the asymptotic
expansion were found to be the Coulomb term α (2d−6) , at order r 3−d , and γ (d−2)

AB , at order r 1−d/2,
which appears in the radiational term. However, for d = 4 both terms are of the same order and
they are terms of sub-leading order in the asymptotic expansion. Thus, the terms which were
problematic by contributing potentially divergent terms to the integral de�ning the Bondi mass
are non-existent in four dimensions. Additionally, the results in Lemma (6.1) are largely trivial
in this case. In contrast, in higher dimensions there are potentially divergent terms which, as
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we showed in chapter 6, vanish, but this result is non-trivial since the physically relevant terms
are a priori “hidden” deep inside the asymptotic expansion and only the results of Lemma 6.1
show that terms of higher order are vanishing or “irrelevant” (under the integral). However, in
the end, the �nal results may be viewed as saying that the physics is the same in all dimensions
meaning that a Coulomb term and a radiation term contribute to the Bondi mass and these terms
are the “relevant sub-leading order terms” (under the integral) in the respective asymptotic
expansion.

8.2 Discussion of Chapter 7
To show positivity of the Bondi mass we made two crucial assumptions. First, that there exists
a (d − 2)-dimensional, i.e., odd dimensional, spin manifold Σ admitting a (real) Killing spinor ϵ .
Second, that near in�nity a Witten spinor exists. As mentioned, assuming that there exists a
Killing spinor on Σ implies some restrictions on the possible geometries of Σ. The reason and
theory behind this statement is brie�y discussed in appendix (D). The result is that, if ϵ is not
a parallel spinor, Σ can only be the standard sphere if d , 4m + 1, 4m + 3, where m ≥ 1 is an
integer [113]. In this case the manifold is Minkowski near in�nity. If d = 4m + 1, 4m + 3 there
are many more possibilities for the geometry of Σ. We only give a few examples, see appendix
(D) and the references mentioned there for more examples and further discussion. If d = 7, Σ
can be S2 × S3. For d = 9, it can, for example, be SO (5)/SO (3), Sp (2)/Sp (1) or the Alo�-Wallach
manifolds Nk,l = SU (3)/S1, (k, l ) , (1, 1) integers, where the inclusion S1 → SU (3) is given by

z 7→
*...
,

zk 0 0
0 zl 0
0 0 z−l−k

+///
-

[113]. Examples of possible geometries if Σ admits a parallel Killing spinor are given in [114],
see also appendix (D).

A Witten spinor exists near in�nity if there exists a solution of (7.36) there. Note that we
did not proof that a solution of this elliptic di�erential equation exits. Thus, our proof of the
positivity rests on the assumption that such a spinor exists but a proof of the existence remains
to be found.

The di�culties of the positivity proof in higher dimensions are the same we discussed in
the previous section. Namely, there are coe�cients in the asymptotic expansion of the Witten
spinor which are potentially divergent. As discussed in section 7.3, showing the positivity of
the Witten-Nester 2-form is rather straightforward in four dimensions and not substantially
altered in higher dimensions. The di�erence between the dimensions only occurs in the step
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showing that the integral over Q is asymptotically equal to the Bondi mass. Thus, the main
part of chapter 7 was to establish Lemma (7.3), which was then used to show that the a priori
divergent terms in Q all vanish in the limit r → ∞. In four dimensions these di�culties do
not occur and establishing that the Witten-Nester 2-form is asymptotically equal to the Bondi
mass is a result obtained relatively easily, but in higher dimensions this result is obtained only
after lengthy calculations. The modi�cations of the Witten’s proof [14] in four dimensions, see
section 4.3, necessary in higher dimensions due to the complications mentioned above were �rst
made by Hollands and Thorne [19] who proofed that the Bondi mass is positive in higher even
dimensions. Since they used the framework of conformal null in�nity the result did not hold
for odd dimensions [18]. We adopted their arguments to odd dimensions essentially showing
that the results are not di�erent in even and odd dimensions which is a non-trivial result since
it is not clear at all that this is always the case as can, for example, be seen from the existence
of smooth null in�nity in all even dimensions but not in odd dimensions [18], or the discussion
of black holes in higher dimensions [108]. However, in the present case the results are very
similar in both cases. A crucial di�erence might be establishing the existence of a Witten spinor
since the proof in [19] does not carry over to odd dimensions.

101



CHAPTER 9

Summary and Outlook

In chapter 3 we motivated and introduced the concept of Cli�ord algebras and some related
notions, most importantly how to construct a spinor �eld on an arbitrary spin manifold, in
particular on curved spacetimes, and the de�nition of a Killing spinor. In section 4.1, Bondi
coordinates were introduced and used to de�ne asymptotically �at spacetimes. It was discussed
why using the conformal framework is not desirable in odd dimensions. Section 4.2 contains a
discussion of why de�ning mass in general relativity is an issue and reviews the most important
de�nitions of mass in four dimensions, with the focus being on the Bondi mass. A brief discus-
sion of the numerous paper which established that the Bondi mass is positive in four dimensions
in section 4.3 concluded the �rst part. In the second part we derived a coordinate expression for
the Bondi mass and established its positivity in odd dimensions d ≥ 5. Our assumptions and
general setup is summarized in chapter 5. Section 5.1 contains a brief discussion of gravitational
waves in odd dimensions and shows that the leading order component of the linear perturbation
is of half-integer order in r . This is as a motivation for our ansatz for the asymptotic expansion
of the metric coe�cients in Bondi coordinates. This ansatz was used in section 6.1 to investigate
closer Bondi coordinates in odd dimensions in spacetimes where the vacuum Einstein equations
hold. With this, a coordinate expression of the Bondi mass was found in section 6.2. Finally, in
chapter 7 we showed that the Bondi mass is positive in odd dimensions under some rather loose
assumptions. This establishes the most important result of this thesis which was discussed in
chapter 8.

The most crucial open issue concerns the Witten spinor. We think that a rigoros proof of
the existence of such a spinor ought to be possible but it was not investigated in this work. This
result is necessary to complete the proof of positivity. Further investigation and justi�cation of
the asymptotic expansion (7.47) of the Witten spinor might also be interesting, for example, a
consistency check in the manner described in chapter 6. Furthermore, considering the case of
angular momentum, which is closely related to the mass, more closely might be insightful, some
results were already obtained by [105]. Additionally, an analysis of the Hamiltonian framework
and the derivation of a geometric expression for the Bondi mass in odd dimensions is potentially
interesting. Finally, the relation of our results to supergravity was not considered in much detail.
As mentioned, the original motivation for Witten’s positivity proof came from supergravity
and the existence of Killing spinors and the geometry of Σ is closely related to this topic. A
discussion of this topic might be nice to see.

102



Part III
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APPENDIX A

Components of Riemann Tensor

Here, we collect the components of the Ricci tensor, adapted from [37]. Indices in this chapter
are raised/lowered by γAB , DA is the covariant derivative of γAB .

RrA = r
d − 2

2 βA + r
2

[
1
4βAγ

BCγ̇BC − d − 2
2 β̇A +

d − 1
2 βAγ̇AB − γ BCD[Aγ̇ |C |B]

]

+ r 3
[
−1

2 β̈A +
1
2∂r

(
γ BCβC ˙γAB

)
− 1

4γ
CDγ̇CD β̇A +

1
4γ

CDγ̇CDβ
Bγ̇AB

]
(A.1)

Rr r = −r 3γABγ̇AB − r 4

4
[
2γABγ̈AB − γCAγDBγ̇ABγ̇CD

]
(A.2)

RAB = −1
r
βCβCγAB + RAB − 1

2βAβB + (d − 1)D (BβA) − 2(d − 3)αγAB

− γABβCβC − 1
2β

CDDγCDγAB +
1
2γ

CDD (EβC )γAB

+ r

[
d − 2

2 γ ′AB +
1
2γABγ

CDγ ′CD +
1
2DC

(
γCDβDγ̇AB

)
+

1
2γ

CDγ̇CDD (AβB )

+γ EF βEβF γ̇AB + ∂r (D (AβB ) ) + β (Aβ̇B ) − βCβ (Aγ̇B )C − (DCβ (A)γ̇B )C − (d − 2)αγ̇AB

−d − 2
2 βCβCγ̇AB − γABαγCDγ̇CD − 1

2γABβ
CβCγ̇DEγ̇

DE − 2γABα̇ + γABβCβDγ̇CD

−2βEβEγ̇AB
]
+ r 2

[
γ̇ ′AB − γCDγ̇D (Aγ

′
B )C +

1
4γ

CDγ ′CDγ̇AB +
1
4γ

CDγ ′ABγ̇CD

−αγ̈AB − 1
4γ

CDγ̇CDβ
EβEγ̇AB − 1

2γ
CDγ̇CDαγ̇AB − α̇γ̇AB − 1

2∂r (γ
EF βEβF )γ̇AB

−1
2β

EβEγ̈AB − 1
2 β̇Aβ̇B −

1
2β

EβF γ̇AEγ̇BF + β
C β̇ (Aγ̇B )C +

1
2γ

CDβEβEγ̇CAγ̇DB

+αγCDγ̇CAγ̇DB

]
(A.3)

Rur = −1
r

d − 2
2 βAβA +

d − 2
2 βAβA +

1
2γ

CED (EβC ) − γABγABβCβC

+ r
[
γABγ ′AB + γ

ABγ̇ABα +
1
4γ

ABγ̇ABβ
CβC + 2βAβ̇A +

1
2γ̇

ABβAβB +
1
2D

Aβ̇A − (d − 2)α̇

−αγABγ̇AB − 1
2β

CβCγ̇ABγ
AB +

1
2β

AβBγ̇AB

]

+ r 2
[
−1

4γ
CAγDBγ ′CDγ̇AB +

1
2γ

ABγ̇ ′AB − α̈ −
1
2γ

ABγ̇ABα̇ − 1
4γ

ABγ̇ABβ
C β̇C − 1

2∂r (β
Aβ̇A)

]

(A.4)
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RuA =
1
r

[ 1
2βAβ

CβC − 2βBD[AβB] +
1
2γ

BCDB (βCβA) − DCD[AβC] − 1
2β

CDCβA

+(d − 3)DAα − βAα − 1
2β

CβCβA − βAγCED (EβC ) + 2αβAγCDγCD + γCDγCDβBβBβA

+2(d − 2)βA + (d − 2)βAβCβC
]
− DAα +

1
2β
′
A +

1
4βAγ

BCγ ′BC − (D[Aγ
′
|C |B])γ

BC

− 1
2βA∂r (γ

BCβBβC ) − 1
2β

CβC β̇A − 1
2γ

CDγ ′CDβA + DAα̇ + ∂r (β
DD[AβD]) − 1

4βAγ
BCγ̇BCβ

EβE

− 1
2αγ

BCγ̇BC +
1
2γ

BCγ̇BCDAα +
1
2γ

BCγ̇BCβ
ED[AβE] − 1

2DB (γ
BCβC β̇A) +

1
2β

Cγ̇CAβ
EβE

+ βCαγ̇CA − 1
2β

CβCβ
Eγ̇CA +

1
2 β̇

BDCβA +
1
2 β̇

BβBβA − 2αβCγ̇CA − γ̇CADCα

− γ̇CAβDγ BCD[BβD] + αβAγ
CDγ̇CB +

1
2β

CβCγ̇DEγ
DEβA + α̇βA − 1

2βAβ
BβCγ̇BC + βAβ

C β̇C

+
d − 2

2 βCβC β̇A + r
[
−1

4γ
BCγ ′BC β̇A −

1
2 β̇
′
A −

1
2∂r (γ

BCβBγ
′
CA) −

1
4γ

BCγ̇BCβ
Eγ ′EA +

1
2 β̇

Cγ ′CA

+
1
2γ

BCγ̇CAβ
′
B − 2(d − 2)αβ̇A +

1
2 β̇A∂r (γ

BCβBβC ) +
1
4γ

BCγ̇BCβ
EβE β̇A +

1
2γ

BCγ̇BCαβ̇A

−1
2 β̇

BβEβEγ̇CA − β̇Cαγ̇CA − 1
2 β̇

CβC β̇A +
1
2 β̇

CβCβ
Eγ̇EA + β

Cγ̇CAα̇
]
− r 2 (d − 2)αβ̈A (A.5)

Ruu =
1
r 2

[
2αDAβA + 3βADAα + D

ADAα + 11αβAβA + 2βAβBD[AβB] − γ̇ABβAβ ′B − (d − 2)βADAα

−2αβAβA − 2αγCED (EβC ) + 4α2γABγAB + 2γABγABβCβC − 4(d − 2)α2 − (d − 2)2αβAβA
]

+
1
r

[
−DAβ ′A − βAβ ′A + (d − 2)α ′ + (d − 2)βAβ ′A − 4αα̇ − 1

2β
D (DDα )γ

ABγ̇AB − DA (βAα̇ )

−1
2β

B β̇Bβ
EβE − 2αβ̇BβB − 1

2 β̇
BβBβ

EβE + 2β̇BDBα − 2β̇BβAD[AβB] − α∂r (βAβA) − 4α̇βAβA

+βAβAβ
C β̇C − 2βAβAα̇ − 4βAβ̇Aα − ∂r (βADAα ) − ∂r (βAβA) + 2(d − 2)αα̇ + 2α2γABγ̇AB

]

+ βCβCγ̇ABγ
ABα + 2αα̇ + 2αβAβ̇A − αβAβBγ̇AB − 1

2γ
ABγ ′′AB +

1
4γ
′ABγ ′AB −

1
2 α̇γ

ABγ ′AB

+
1
2γ

ABγ̇ABα
′ +

1
2β

Cβ ′Cγ
ABγ̇AB − α̇βCβCγABγ̇AB − 2αα̇γABγ̇AB − 2α̇βAβA

+ βAβ̇ ′A + 2βAβAα̇ +
1
2 β̇

B β̇Bβ
EβE + αβ̇

B β̇B + α̇∂r (β
AβA) − 1

2β
Aβ̇Aβ

C β̇C + 2α̇βAβ̇A

+ r
[
−4α̇βAβA + 2αα̈ + βAβAα̈

]
+ r 2

[
−βCβC α̇γABγ̇AB − 2αα̇γABγ̇AB

]

− r 3
[
−1

2β
CβC α̈γ

ABγ̇AB − αα̈γABγ̇AB
]

(A.6)
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APPENDIX B

Physical and Unphysical Derivative of Spinor

We want to derive (7.34), i.e., an expression relating

∇aψ = ∂aψ + ωaψ and ∇̃aψ̃ = ∂̃aψ + ω̃aψ . (B.1)

If we subtract the second equation from the �rst this yields

(∇a − ∇̃a )ψ = (ωa − ω̃a )ψ (B.2)

since ∂a = ∂̃a . Thus, we would like an explicit expression for

ωa − ω̃a =
1
8

{
r−1ẽµb∇a

(
rẽνb

)
− ẽµb ∇̃aẽνb

}
[σµ ,σν ]

where ωµνa = 1
8e
µb∇aeνb and eνb = rẽ

ν
b used. Using λµν = eaµeνa this can be rewritten as

ωa − ω̃a =
1
8

{
r−1λµν∇ar + ẽµb (∇a − ∇̃a )ẽνb

}
[σµ ,σν ] .

To further simplify this, we use the formula for conformal transformation of the covariant
derivative and �nd

∇aẽνb = ∇̃aẽνb −
1
2r
−2д̃cd

(
∇̃a (r 2д̃bd ) + ∇̃b (r 2д̃ad ) − ∇̃d (r 2д̃ab )

)
ẽνc

= ∇̃aẽνb − r−1
(
δcb ∇̃ar + δca∇̃br − д̃ab ∇̃cr

)
ẽνc .

Hence,

ωa − ω̃a =
1
8

{
r−1λµν∇ar − r−1ẽµb

(
δcb ∇̃ar + δca∇̃br − д̃ab ∇̃cr

)
ẽνc

}
[σµ ,σν ] . (B.3)

The �rst two terms on the right side cancel and the remaining expression can be written as

ωa − ω̃a = − 1
8r ẽ

µ
b ẽ

ν
c

{
δca∇̃br − д̃ba ∇̃cr

}
[σµ ,σν ]

=
1
4r ẽ

[µ
a ẽν ]

b

{
∇̃br

}
[σµ ,σν ]

= − 1
4r ẽ

[µ
a ẽν ]

b

{
∇̃br

}
({σν ,σµ } − 2σµσν )

= − 1
2r

(
д̃ab ∇̃br − σ̃aσ̃b ∇̃br

)
(B.4)

and therefore (B.2) can be written as

∇aψ = ∇̃aψ − 1
2r

{(
∇̃ar

)
− σ̃aσ̃b

(
∇̃br

)}
ψ . (B.5)
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Substituting
∇̃aψ = ∇̃a (r 1/2ψ̃ ) = r 1/2∇̃aψ̃ + 1

2r
−1/2 (∇̃ar )ψ̃ (B.6)

one �nds
∇aψ = r 1/2

(
∇̃aψ̃ + 1

2r σ̃aσ̃b (∇̃
br )

)
ψ̃ . (B.7)

This is equation (7.34).
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APPENDIX C

Local Symmetries and Conserved Quantities

In this chapter we sketch the construction behind the Hamiltonian formalism, which is used
to derive the geometric expression for the Bondi mass. As a motivation we show how the
symplectic structure of classical mechanics leads to the familiar equations that are usually
derived without reference to the underlying manifold structure, see e.g. [22, 115, 116]. Then,
we review how to derive conserved quantities and, in particular, the Bondi mass in higher
dimensions. We skip many details, such as convergence issues, uniqueness etc., and refer to the
references [17, 56, 117], which we follow closely in the following.

C.1 Hamiltonian Mechanics and Symplectic Manifolds
As a motivation we consider the symplectic structure present in classical mechanics without
much rigor and the Hamiltonian to be de�ned is time-independent. Let M be a smooth manifold
andT?M its cotangent bundle called phase space. Locally, we have a chart onT?Rn ' Rn ×Rn
with coordinates ((x i ), (pj )). There is a unique 1-form on T?M and in coordinates the 1-form is

θ = pidx
i . (C.1)

It is called canonical 1-form, Poincaré 1-form, Liouville 1-form or symplectic potential. The
latter name is due to the fact that the symplectic form can be de�ned as

ω2 = dθ = dpi ∧ dqi . (C.2)

This is a symplectic form since dω2 = 0 and ω2 is nondegenerate, that is

∀ξ , 0 ∃η : ω2 (ξ ,η) , 0 (C.3)

where ξ ,η ∈ TM (in local coordinates detωi j , 0) and thus (T?M,ω2) is a symplectic manifold.
Due to this structure, to each vector ξ tangent to the symplectic manifold at point x there is an
associated 1-form ω1

ξ on TxM given by the formula ω1
ξ (η) = ω

2 (η, ξ ) for all η ∈ TxM . Since ωab

is non-degenerate there is an inverseωab ofωab , i.e. ωabωbc = δ
a
c , and this induces a (�berwise)

isomorphism I : T ∗xM → TxM . In coordinates, the isomorphism reads ξ a = ωab (ω1
ξ )b . That is,

if we have a 1-form there is a corresponding vector �eld. In this sense, the symplectic form
acts like a metric. We will now use this to make a connection with the usual Hamiltonian
equation of motions. Let H : M → R be a function. Then at each point there is a tangent vector
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I (dH ), associated to dH , which de�nes a vector �eld I (dH ) ≡ XH on M where ω2 (XH ,−) =
ω1
XH

(−) = dH (−) or, equivalently, (XH )
a = ωab (dHξ )b . H is called Hamiltonian and the

associated vector �eld XH is called Hamiltonian vector �eld if there is a 1-parameter group of
di�eomorphisms дt : M → M induced by XH such that

d

dt

�����t=0
дt · x = XH (x ) . (C.4)

This preserves the symplectic structure (дt )
∗ω2 = ω2. An equivalent condition is LXHω

2 = 0
and for d = 1 this is just Liouville’s theorem. дt is called Hamiltonian �ow. To summarize, we
have the following maps

C (M ) 3 H (dH )b ∈ T?M (I (dH ))a = (XH )
a ∈ TM .d I

Now, solutions to the equations of motion are trajectories γ : R → M which satisfy (dH )b =

ωabγ̇
a . In classical mechanics, where γ (t ) = (p (t ),q(t )) is some trajectory in phase space, this

yields the well known Hamilton equations

γ̇ = XH (x ) ⇔ ṗ = −∂H
∂q

and q̇ =
∂H

∂p
, (C.5)

i.e., γ is an integral curve of the Hamiltonian vector �eld if and only if it solves the equations
on the right side. Using the usual de�nition H = q̇ipi − L one can also derive these equations
from computing δH using pi = ∂L/∂q̇i and ṗi = ∂L/∂qi , thus δH = q̇iδpi − ṗiδqi which gives
the same equations.

The Poisson bracket {−,−} of functions F and H is

{F ,H } = ω2 (XH ,XF ) = LXFH (C.6)

and if {F ,H } = 0 then F is constant along the integral curves of H and vice versa (essentially
Noether’s theorem).

C.2 Covariant Phase Space
In this section we de�ne some general concepts generalizing the de�nitions in C.1 to theories
other than classical mechanics. In particular, the de�nitions are applicable to general relativity.
We follow [117] closely. There are not many references to general relativity in this section and
we will discuss the application of this general construction and its use in general relativity in
the subsequent sections.

We consider a d-dimensional spacetime M with topology R × T where M is a globally
hyperbolic d-dimensional spacetime and each slice Tt of the foliation of R × T is a (d − 1)-
dimensional compact submanifold without boundary. ϕ : M → M is a �eld and the manifold F
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is the set of all �eld con�gurations, i.e., ϕ is represented by a point in F . In general relativity,
the �eld variable is the spacetime metric. There is an action S which is a functional on F ,
i.e. S : F → R, and it is de�ned by S[ϕ] =

∫
M L where L is the n-form Lagrangian density.

The boldface implies that there is an implicit volume form, i.e. L = Lϵa1 ...ad with L the scalar
Lagrangian density. Thus, L is an example of a scalar density, which can be integrated over M . A
vector densityvb is de�ned similarly,vb = vbϵa1 ...ad and this can be made into an (d −1)−form
by contracting with the �rst index, i.e. v = vbϵba2 ...ad . Thus, there is no notational di�erence
between d−forms, (d − 1)−forms etc., but it should be clear from the context what is meant by
a given boldface letter.

Let there be a smooth one-parameter family ϕ (λ) : M → M . The �rst variation of the
Lagrangian density about the �eld con�guration ϕ0 = ϕ (0) is

δL ≡ d

dλ
L

�����λ=0
= E (ϕ)δϕ + dθ (ϕ,δϕ) (C.7)

Here, δϕa (x ) is a tangent to the curve c (λ) = ϕ (λ,x ) (with x �xed) in M at the point λ = 0.
Thus, δϕa (x ) may be viewed as a vector in the tangent space to M at the point ϕ0 (x ). θ µ is
called symplectic potential current density (which will be justi�ed later). Since the action
at �eld con�guration ϕ0 is stationary (dS/dλ = 0) for all variations δϕa if and only if Eaδϕa = 0
at ϕ0, the equation E = 0 is the equation of motion for ϕ. We saw that the �eld variation δϕa

may be viewed as a vector in the tangent space to M at the point ϕ0 (x ). A di�erent point of
view is possible and often preferable. This perspective is to look at the variation δϕa as a vector
in the tangent space to F at the point ϕ. Using an abstract index notation with capital roman
letters for tensor �elds on F , we can write (δϕ)A when we view �eld variations in this manner.

Now, take the equation (C.7) as de�ning for θ and de�ne the functional

θ[ϕa ,δϕa] ≡
∫

T
θ , (C.8)

where the orientation is chosen to be nα1ϵα1 ...αd with na future-directed and timelike. The so
de�ned θ depends on T and is called presymplectic potential . Assuming that θ is continuous
it de�nes a dual vector �eld on F , denoted θA, and given by θA (δϕ)A = θ [ϕa ,δϕa] for all (δϕ)A.
Let d denote the exterior derivative on F (it should always be clear from context if d is the
dimension or the derivative). Then there is a 2-form ωAB = ω[AB] on F de�ned by

ωAB = (dθ )AB . (C.9)

(On the level of densities this isωa = δ1θa2 − δ2θa1 .) By de�nition it is exact (and in particular
closed) and called presymplectic form because it has all properties of a symplectic form
except that it is degenerate (any δϕa with support away from T gives rise to degeneracy
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direction (δϕ)A for ωAB ). This equation also justi�es the name “presymplectic potential” for
θ . Thus, (F ,ω) is a presymplectic space. There is a so-called reduction procedure, which is
used to create a symplectic space from the presymplectic space. The idea is to “divide out”
the degeneracies by de�ning an equivalence relation on F by ϕ1 ' ϕ2 if and only if ϕ1 and
ϕ2 lie on the same integral submanifold of degeneracy vectors. A integral submanifold is a
higher-dimensional version of integral curves. Like integral curves, integral submanifolds are
also generated by/associated to a vector �eld and foliate M . In the present case one looks at
the integral submanifold corresponding to the degeneracy vectors; see [117] for the precise
argument.

Let Γ denote set of equivalence classes of F and π : F → Γ the map, which maps each �eld
onto its equivalence class. Assuming that Γ has a manifold structure, it results in F having
the structure of a �ber bundle over Γ with projection π and the �bers being all the �elds in
an equivalence class. Note that the procedure described is very similar to the construction of
principle G−bundles. We use the same index notation for tensors on Γ as for tensors on F .
Lastly, de�ne the 2-form ΩAB on Γ by

ωAB = π
?ΩAB . (C.10)

ΩAB is closed (by construction) but does not need to be exact. Since we divided out the
degeneracies in this construction, we now have the symplectic manifold (Γ,ΩAB ). Note that
it depends on T , as the de�nition of ω does. We have the following chain of relations

θ θ ω Ω .

∫
T d π

So far we have worked only with the second term in the variation of the Lagrange density
(C.7). Recall that the �rst term corresponds to the equation of motion of the �eld ϕ, i.e., this
is the part where the dynamics (and physics) is “hidden”. Thus, to describe a physical system
we have to also make use of this equation. This leads to the physical phase space, the route
being as follows. Let F̄ be the submanifold of F which consists of all solutions of the equation
of motion Ea = 0. By restricting the above reduction procedure to F̄ we de�ne Γ̄ = π [F̄ ]
which is a submanifold of Γ called constraint submanifold. De�ning a symplectic form on Γ̄
in the obvious way, namely ω̄AB = π̄

?Ω̄AB , we have the physical symplectic manifold (Γ̄, Ω̄AB )

which, in many physical theories, is equal to the phase space. In particular, it can be shown that
the de�nition of (Γ̄, Ω̄AB ) is independent of T . One may view Γ as the set of all kinematically
possible states while Γ̄ consists of all dynamically possible states. That is, if both are not equal,
i.e. if Γ̄ is a true subset of Γ, then there are (physical) constrains.

So far we only discussed Lagrangians and, to make a connection with classical mechanics and
conserved quantities (an example being the Bondi mass), we would like to de�ne a Hamiltonian.
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Figure C.1: Projection from space of all states F and space of all solutions F̄ onto phase space
Γ and constrained phase space Γ̄, respectively.

It is constructed as follows. Let ta be a complete vector �eld on M such that the di�eomorphisms
Λ(t ) generated by ta map Cauchy surfaces into Cauchy surfaces. ta is called time translation,
although it does not have to be timelike. There is a 1-parameter family of �eld con�gurations
ϕ (t ) = ϕ ◦Λ(t ) (“time evolution”) and the associated variation is denoted δtϕa . Assume that for
each solution ϕ ∈ F̄ we have (δtϕ)

A ≡ τA such that τA is a tangent vector �eld on F̄ . This
vector �eld represents time evolution on F̄ induced by ta and Lτ ω̄AB = 0, since ϕ ∈ F̄ and
thus ω is independent of T . Now, assume that τA is such that it has a well-de�ned projection
to a vector �eld TA on Γ̄. If this is possible and TA exists it represents time evolution on Γ̄ and
LT Ω̄AB = 0. Then, there exists a function H on Γ such that, evaluated on Γ̄, we have

(dH )A = ΩABT
B ↔ TA = ΩAB (dH )B , (C.11)

which are Hamilton’s equations of motion. Such a Hamiltonian exists only if the projection of
the time translation vector �eld to Γ̄ is possible, see [117] for details.

C.3 Symmetries at In�nity
We now follow mostly [56]. Our goal is to de�ne the Bondi mass. We have seen in the last
two sections that a Hamiltonian, which is related to a conserved quantity, can be associated
to a vector �eld. In the following sections we will show how this can be used to de�ne the
Bondi mass, but �rst we have to describe more precisely the vector �elds to be used. Let B be
a boundary of M such that M ∪ B is a d-dimensional manifold with boundary. We consider
slices T in the physical spacetime, M , which extend smoothly to B in the unphysical spacetime,
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M ∪ B, such that the extended hypersurface intersects B smooth in a (d − 2)-dimensional
submanifold, denoted ∂T and called cross section of B. T ∪ ∂T is assumed to be compact.
An in�nitesimal asymptotic symmetry ξ a is a complete vector �eld on M ∪ B such that ξ a

is tangent to B on B. ξ a is a representation of an in�nitesimal asymptotic symmetry if its
associated one-parameter group of di�eomorphisms maps F̄ into itself. Equivalently, ξ a is a
representation, if the �eld variation Lξϕ with ϕ ∈ F̄ is a vector tangent to F̄ . In this way, the
vector �eld gives rise to the variations of the �eld ϕ, which is the connection to the previous
section. Two representations ξ a and ξ ′a are equivalent if they coincide on B and give rise to
the “same transformation” (see [56] for details). The equivalence classes of representatives of
in�nitesimal asymptotic symmetries are the in�nitesimal asymptotic symmetries of the theory.
δξϕ = Lξϕ may be viewed as the dynamical evolution vector �eld corresponding to the notion
of “translations” generated by ξ a . De�ne the Noether current (d − 1)-form (a vector density)
associated with ξ a by

j = θ (ϕ,Lξϕ) − ξ · L = dQ (C.12)

Here, ξ · L denotes the contraction of ξ with L and we have the Noether charge

Q =

∫

T
jµnµ (C.13)

that is independent of T only if ϕ ∈ F̄ , since j is conserved in this case. If the time evolution
vector �eld induced by ξ a on Γ̄ preserves the symplectic form Ω̄AB the time evolution will be
generated by a Hamiltonian Hξ . In this way we can introduce the notion of a Hamiltonian Hξ

conjugate to the vector �eld ξ a (note the similarity to classical mechanics in section C.1).

C.4 Hamiltonian associated with Symmetry
We now make the notion of a Hamiltonian Hξ : F̄ → R associated to the vector �eld ξ a at time
T more precise. However, as shown by [56], a Hamiltonian Hξ corresponding to a conserved
quantity exists in general only if the extension ofω to B has vanishing pullback to B. This is
the case at spatial in�nity but not at null in�nity. Therefore, a de�nition of ADM mass is easier
than one of Bondi mass (especially in higher dimensions). We consider in the following only
the case of null in�nity and show how an analog of Hξ can be de�ned. We use the notationHξ

for the “Hamiltonian-like” function to distinguish it from the true Hamiltonian Hξ .
On B let Θ be the symplectic potential for the (at null in�nity non-vanishing) pullback ω̄ of

the extension of the symplectic current form ω to B. We require Θ to be independent of the
the conformal factor. On B we have

ω̄ (ϕ,δ1ϕ,δ2ϕ) = δ1Θ(ϕ,δ2ϕ) − δ2Θ(ϕ,δ1ϕ) , (C.14)
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for all ϕ ∈ F̄ and δ1ϕ, δ2ϕ tangent to F̄ . Now, letHξ satisfy

δHξ =

∫

∂T
δQ − ξ · θ +

∫

∂T
ξ · Θ . (C.15)

This de�nes a “conserved quantity” up to a constant, which is �xed by requiring that Hξ

vanishes for a reference solution (Minkowski spacetime). Note thatHξ is in general not truly
conserved because there is a nonzero �ux Fξ on B associated with the “conserved quantity”.
The �ux is due to radiation. If we make the reasonable demand that the �ux and Θ vanish if
there is no radiation, thus in particular for Minkowski spacetime, one �nds

Fξ = Θ(ϕ,Lξϕ) . (C.16)

This shows that Θ is directly related to the radiation present in the spacetime and the reason
why it has to occur inHξ in the way it does. Note that, additionally, the �ux vanishes whenever
ξ a is an exact symmetry, i.e. Lξϕ = 0, even if radiation is present.

C.5 BMS symmetry and Bondi Mass in 4 dimensions
Now, we can consider a spacetime which is asymptotically �at at future null in�nity I +. We
take д̃ = Ω2д, where Ω = 0 on I +, and F consists of д. Now, explicit formulas for all forms
and quantities de�ned above can be calculated, e.g., there is the Noether charge

Qab [ξ ] = − 1
16π ϵabcd∇

cξd . (C.17)

While it is straightforward to write down the expressions forω etc. on the physical spacetime, the
crucial issue is whether it is possible to extent the presymplectic current 3-form ω continuously
to I +. It turns out that this is indeed possible and it is in general non-vanishing on I +. Thus,
a true Hamiltonian does not exist. Since the in�nitesimal asymptotic symmetries are given by
the in�nitesimal BMS symmetries we want to �nd the “conserved quantity”Hξ for each BMS
generator ξ a and each cross section ∂T of I +. Assuming that the vacuum Einstein equations
Rab = 0 hold, one can de�ne the Bondi news tensor Nab on I + and the symplectic potential
satis�es

Θ = −ΩNabδд
abϵ (3) (C.18)

which de�nes Θ uniquely and ϵ (3) is the volume form of dimension 3. Since the representative
of the BMS group is not relevant we can choose the Geroch-Winicour gauge ∇aξa = 0 and thus
the “conserved quantity” is

δHξ =

∫

∂T
(δQ − ξ · θ ) + Ω

32π

∫

T
Nabδд

abξ · ϵ (3) , (C.19)

114



C.6. BMS SYMMETRY AND BONDI MASS IN HIGHER DIMENSIONS

which is unique if the Minkowski spacetime is chosen as a reference whereHξ = 0 to �x the
constant. The �ux formula is

Fξ = Θ(дab ,Lξдab ) = − Ω

32π NabLξдabϵ (3) . (C.20)

To �nd the “conserved quantity”Hξ (and not just its variation) which has the desired properties,
[56] compare their results to the classical results of [58, 60, 62] and show that the Hξ found
by them has to be the solution in the current case, too. This shows that the procedure is in
agreement with previous results for d = 4.

C.6 BMS symmetry and Bondi Mass in Higher Dimensions
Now, we �nally come to the Bondi mass in higher dimensions. The idea of de�ning asymptotic
�atness and null in�nity is similar to d = 4, see [17] for details. The derivation of δHξ is also
similar. As before, the crucial issue is to proof that a symplectic current has a �nite restriction
to I + and that there exists a potential Θ for the pullback of symplectic current density to I +.
Again, it is shown that this is possible. The news tensor is de�ned as follows. Let na = ∇aΩ,
choose any smooth covector �eld la on M such that lala = 0 and nala = 1 at I + and set

qab = дab + 2n (alb ) . (C.21)

For d > 4 the news tensor on I + is de�ned by

Nab = ζ
?(Ω(d−4)/2qma q

n
bSmn ) , (C.22)

where ζ? is the pullback to I +. This de�nition does not hold for d = 4. Similarly to d = 4, the
symplectic potential is de�ned as

Θ =
1

32πG τ
cdNcdϵ

(d−1) , (C.23)

τab = Ω
−(d−6)/2δд̃ab . The variation ofHξ is

δHξ =

∫

∂T
(δQ − ξ · θ ) + 1

32π

∫

T
Ncdτ

cdξ · ϵ (d−1) (C.24)

which is the same as in d = 4, if the correct de�nition for Nab is used. The �ux associated with
ξ a through a segment S of I + is

Fξ =
1

32πG

∫

S
χcdNcdϵ

(d−1) . (C.25)
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where χab = Ω−(d−6)/2Lξ д̃ab . Again, the �ux vanishes, if the news vanishes. So far, the
derivation was basically the same.

Now, consider the special case of “translational” asymptotic symmetries ξ a = αna − Ω∇aα
for some function α . One can show that this is an asymptotic symmetry only if α has the
following properties. In the case d = 4, α can be any arbitrary function on a given cross section
of I + which is propagated along the null generator to other cross sections. The corresponding
symmetry is called supertranslations (this leads back to the BMS group). However, in d > 4 there
are only d linearly independent functions α allowed and the associated translational asymptotic
symmetries associated with these correspond to the d translational Killing �elds in Minkowski
spacetime. Thus, there are no additional symmetries due to the asymptotic structure of the
spacetime, i.e., there is no analog of the angle-dependent translations in higher dimensions. If
α ≥ 0 the asymptotic translations correspond to the future directed timelike or null translational
Killing �elds of Minkowski. In this case (α ≥ 0), the �ux formula can be written as

Fξ = − 1
32πG

∫

S
αN cdNcdϵ

d−1 ≤ 0 . (C.26)

Thus, the energy radiated away is always positive.
Since the goal is to derive an expression forHξ one cannot simply compare δHξ to other

results (the linkage formalism does not seem to carry over to higher dimensions). Hence, the
above equation is not useful anymore and some additional steps are necessary to �ndHξ . Take
α = const., simply to make the expressions shorter, i.e., ξ a = αna . The idea is to extend the
(d − 1)−form Θ, thus far de�ned only at I +, to the entire unphysical spacetime, and then
de�ne a new (d − 2)−form µ that is related to Θ (but not simply equal to it, dµ , Θ). Since Θ

essentially determines the �ux this can be used to rewrite down a di�erent expression for the
�ux. Then, it is shown that

Hξ (B) =
∫

B
µ (C.27)

for any cross section B of I +. Substituting the de�nition of µ this means that the Bondi mass
has been found, the result is

Hξ =
1

8(d − 3)πG

∫

B
αΩ−(d−4)

( 1
d − 2Rabq

acqbd (∇cld )nel f − Ω−1l [eCf ]bcdnblcnd

)
ϵef a1 ...ad−2 ,

(C.28)
which does not depend on choice of la , and where Cabcd is the Weyl tensor. Note, that the
formula is not correct for d = 4. Thus, the Bondi mass is the “conserved quantity” associated to
the asymptotic time translation ξ a = αna . the integrand of (C.28) is equal to (6.41).

116



APPENDIX D

Holonomy

We �rst de�ne some special Riemannian manifolds. Again, we are not very rigorous. Then, after
de�ning the holonomy group, we brie�y describe how to characterize Riemannian manifolds in
terms of their holonomy group. This can be used to classify all Riemannian manifolds admitting
parallel spinors. We state the result in the third section and give some examples.

D.1 Kähler, Calabi, Yau, Sasaki and Einstein
Let (M,д) be a complex Riemannian manifold. A complex manifold “looks locally like” Cn

similarly to how a real manifold “looks locally like” Rn . Let (M,д) be a real manifold then
(M, J ,д) is a complex manifold where J is globally de�ned and �berwise (on each tangent
space of the manifold) a linear map J : TM → TM with J 2 = −1, see [20, 113] for a rigorous
introduction to complex manifolds and for a discussion of the following de�nitions. If a smooth
manifold M admits a complex structure it must be even-dimensional. If at each point p ∈ M we
have

дp (JpX , JpY ) = дp (X ,Y ) (D.1)

for all X ,Y ∈ TpM then д is called Hermitian metric and (M,д) a Hermitian manifold. Given
such a metric, we can de�ne the anti-symmetric 2-form

Ωp (X ,Y ) B дp (JpX ,Y ) (D.2)

which is called Kähler form. A Kählermanifold is a Hermitian manifold (M,д) whose Kähler
form is closed, dΩ = 0. Then д is called Kähler metric. By de�nition, the Kähler manifold is a
symplectic manifold. If (M,д) is a compact Kähler manifold with Ricci �at metric than it is called
Calabi-Yau manifold. A Kähler-Einstein metric is a Riemannian metric that is a Kähler
metric and an Einstein metric. The corresponding Kähler-Einstein manifold has constant Ricci
curvature (by de�nition of Einstein metrics) and thus Calabi-Yau manifolds are an example.

For the last notion we want to de�ne we need the following construction. Let (M,д) be a
Riemannian metric. Then, the Riemannian cone is de�ned as the manifold M ×R>0 with metric
t2д + dt2 where t ∈ R>0 is a positive real number. Now, let there be a 1-form θ on M . If the
2-form t2dθ +2tθ on the cone is a Kähler form and if this makes the cone a Kähler manifold then
M is called Sasakian manifold. If the cone is additionally Ricci-�at then the manifold is called
Sasaki-Einstein. If the cone is hyperkähler (see below) then M is called 3-Sasakian. Since
Kähler manifolds are always even dimensional, Sasakian manifolds are always odd dimensional.
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Figure D.1: A loop on M at p lifts to a curve on TM and parallel transport of a vector around
the loop is possible. The vector is initially X but after transport along the loop it is Xc and this
induces a linear transformation on TpM .

D.2 Holonomy Group
A Holonomy group can be de�ned very generally for a connection on a principal G−bundle,
but we will only consider the case of a tangent space and the Levi-Civita connection. The idea
is to capture some aspects of the curvature/geometry of the manifold in a group (via parallel
transport) thereby enabling the use of group theory to describe the geometry.

Let (M,д) be an n−dimensional Riemannian manifold with Levi-Civita connection ∇. Let
p be a point in (M,д), let {c (t ) |0 ≤ t ≤ 1, c (0) = c (1) = p} be the set of closed loops at p and
let X ∈ TpM . By parallel transporting X once along c (t ) we have a new vector Xc ∈ TpM , see
Fig. D.1. Thus, parallel transport along c (t ) with connection ∇ induce a linear transformation
Πc : TpM → TpM . The set of these transformations is called holonomy group at p, denoted
by H (p), since it can be shown that there is a group structure on this space. See also [20, 26]. If
M is connected (as we always assume) the holonomy groups of two points p,q of M are related
by conjugation and are thus isomorphic. Hence, it is not necessary to specify the base point
and we simply write H . Since the parallel transport preserves the length of a vector, that is
д(X ,X ) = д(ΠcX ,ΠcX ), H is a subgroup of SO (n) (since we assume that M is orientable). It is
then possible to reduce the classi�cation of Riemannian holonomy groups to representation
theory on TpM . The classi�cation was largely done by Berger [118]. The result is that if a
Riemannian manifold is irreducible (the universal cover is not a Riemannian product) and locally
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non-symmetric (∇R , 0)1 then the identity component of H must be one of the following ([26])

dim M H Geometry
n SO (n) Generic

2m U (m) Kähler
2m SU (m) Calabi-Yau
4m Sp (m) hyperkähler
4m Sp (m) · Sp (1) = Sp1 × Spm/Z2 quaternionic Kähler
7 G2 exceptional
8 Spin(7) exceptional

Here, Sp (m) · Sp (1) is the image of Sp1 × Spm ∈ Spin(4m) under the map Spin(4m) → SO (4m).
G2 is a Lie group which can be de�ned as the automorphism group of the octonions. A quater-
nionic Kähler manifold is a special kind of Kähler manifold, de�ned by this holonomy group,
and a hyperkähler manifold is a Ricci-�at quaternionic Kähler manifold and thus a special
kind of a Calabi-Yau manifold. To explain why those are the holonomy groups of the correspond-
ing geometry one can look at the additional structure de�ned in each case listed in “Geometry”
and see that the holonomy group is exactly such that it leaves the de�ning structure invariant.
For example, the holonomy group of a Kähler manifold is contained in U (m), because this
group is the subgroup of O (n) which preserves J under parallel transport and thus the de�ning
structure of a Kähler manifold is preserved by U (m).

D.3 Manifolds Admitting Parallel or Killing Spinors
Assuming that a spin manifold admits a Killing spinor yields rather strong restrictions on the
possible geometries of the manifold. They can be classi�ed using the corresponding holonomy
group. First, we look at the case of parallel spinors and afterwards at Killing spinors with
λ , 0. A spin manifold admits parallel spinors only if it is Ricci �at. [33] showed that an
irreducible, simply-connected Riemannian spin manifold spin manifolds admits a (non-trivial)
parallel spinor only if its holonomy group appears in the following table

dim M H Geometry
2m SU (m) ⊂ SO (2m) Calabi-Yau
4m Sp (m) ⊂ SO (2m) hyperkähler
7 G2 ⊂ SO (7) exceptional
8 Spin(7) ⊂ SO (8) exceptional

1The classi�cation of locally symmetric spaces is due to É. Cartan but we will not need this case.
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wherem ≥ 2 and N is the dimension of the space of parallel spinors. See section 5 in [114] for
examples of manifolds which have these holonomies. We will now turn to Killing spinors. It
can be shown that the case of Killing spinors on M can be reduced to the case of parallel spinors
on the cone over M , see e.g. [Theorem 14.2.1 in 113]. This was used by Bär in [34] to show
that a complete simply-connected Riemannian spin manifold (M,д) admits non-trivial Killing
spinors if and only if one of the following possibilities is present

dim M H (д̄) Geometry
n id Sphere

4m + 1 SU (2m + 1) Sasaki-Einstein
4m + 3 SU (2m + 2) Sasaki-Einstein
4m + 3 Sp (m + 1) 3-Sasakian

7 Spin(7) exceptional
6 G2 exceptional

where m ≥ 1, n > 1, and д̄ is the metric on the Riemannian cone (which is necessarily
Ricci �at since the cone admits parallel spinors). S2 × S3 is an example of an Sasaki-Einstein
manifold in 5 dimensions. Examples of the 6-dimensional case are given in [Theorem 14.3.12
in 113], they are SU (2) × SU (2), SU (3)/T 2 and CP3. For a discussion of the 7−dimensional
case see [113], there are hundreds of examples and the classi�cation is not yet complete. Some
examples are ([34]) SO (5)/SO (3), the squashed 7−sphere and Alo�-Wallach manifolds Nk,l =

SU (3)/S1 where (k, l ) , (1, 1) and the inclusion S1 → SU (3) is given by z → diag
(
zk , zl , z−l−k

)
.

Furthermore, examples of 3-Sasakian 7−dimensional spaces are ([Theorem 13.4.6 in 113])
Sp (2)/Sp (1), Sp (2)/(Sp (1) × Z2), SU (3)/(SU (1) × U (1)). Some examples of Sasaki-Einstein
7−dimensional spaces are given in [Proposition 11.7.2 in 113].
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