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Abstract

A charged, massive Klein-Gordon field on a finite interval in 1 + 1 dimensions in a
static, external electric field was considered. A mode decomposition was performed
and the modes were calculated explicitly in first order perturbation theory. As a special
case, the charge density for the massless Klein-Gordon field was calculated in first order
perturbation theory for Dirichlet boundary conditions using Hadamard point-splitting.
It could be confirmed that this method yields qualitative different results to the ones
obtained by the summation of modes method given by Ambjørn and Wolfram [1],
similar to what was found for the Dirac field in [2]. Finally, the vacuum polarization
for the massive case was calculated numerically up to first order in the electric field for
Dirichlet and Neumann boundary conditions. The charge density was found to vanish
on the boundary of the interval for Dirichlet boundary conditions. It was further
found to screen the external field for both boundary conditions in contrast to the anti-
screening behaviour claimed in [1] for Neumann boundary conditions in the massless
limit.
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Chapter 1

Introduction

The free Klein-Gordon theory is probably the simplest field theory. The (real) Klein-
Gordon field φ obeys the free Klein-Gordon equation:

(∂2
t −∇2 +m2)φ(x) = 0 (1.1)

With just a few changes, the theory can be used to describe electromagnetic phe-
nomena: One passes to a complex or charged scalar field and the usual derivative is
replaced by the covariant derivative

Dµ = ∂µ + ieAµ . (1.2)

One then speaks about a minimal coupling between the scalar field φ and the elec-
tromagnetic field, described by the vector potential Aµ. The field responds to the
electromagnetic field by a re-distribution of charge and one speaks about a vacuum
polarization.1 In this work we will consider the complex Klein-Gordon field minimally
coupled with a static, external electric field on a finite interval in 1 + 1 dimensions,
which belongs to what is sometimes called scalar quantum electrodynamics (cf. [3]).
For textbooks on this topic and quantum field theory in general we further refer to
[4, 5, 3].

In Lagrangian field theory, one easily finds the following expression for the charge
density of a Klein-Gordon field:

ρ(x) = ie (φ∗(x) (D0φ(x))− (D0φ(x))∗ φ(x)) (1.3)

It is however not trivial to make sense of this expression after quantization of the fields,
as products of quantum fields evaluated at the same point are not well defined. One
method, which we will refer to as the summation of modes method, was employed by
Ambjørn and Wolfram in [1] to calculate the charge density of the Klein-Gordon field
due to a constant, external electric field on a finite interval in 1+1 dimensions. In this
method, a mode decomposition is first performed by seeking solutions to the Klein-
Gordon equation which have a harmonic time-dependence ∼ e−iΩnt. One then finds
modes with Ωn > 0, so-called positive-frequency modes, as well as negative frequency
modes with Ωn < 0. Subsequently, one tries to calculate the contribution to the charge
density from each mode separately, ρn, and then one pairs each positive frequency
mode with its corresponding negative frequency mode to form the so-called induced

1We will here also refer to this interchangeably as the charge density.
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charge density associated with each mode ρIn (cf. [1]). The total charge density is then
calculated by summing up all of these contributions according to:

ρ(x) =
∑
n

ρIn(x) (1.4)

It was however shown in [2] that the summation of modes method leads to incorrect
results for the Dirac field in an external electric field in 1+1 dimensions. There, the
charge density was calculated via a renormalization prescription which we shall refer
to as the Hadamard point-splitting procedure. One evaluates (1.3) by first calculating
the product of fields at different points via the so-called two-point function

ω2φφ
∗(x, y) := 〈0|φ(x)φ∗(y)|0〉 . (1.5)

The singular part of the two-point function is then subtracted by assuming that the
two-point function is of Hadamard form and the resulting function is used to calculate
the charge density by taking the coinciding-point limit y → x. The properties of such
Hadamard states on curved spacetimes have been investigated by many authors. In [6]
it was shown that if the two-point function is of Hadamard form in an open neighbour-
hood of a Cauchy surface, then it is of Hadamard form everywhere. Furthermore, it
was e.g. shown in [7] that the ground state of the Klein-Gordon field in a static electric
field is of Hadamard form if the external potential is not too strong. Radzikowski [8]
gave a mathematically useful definition of the Hadamard condition using micro-local
analysis. Further motivation for the use of Hadamard states in quantum field theory
on curved spacetimes was e.g. given in [9].

The aim of this work is to calculate the vacuum polarization of a Klein-Gordon field
on a finite interval in 1+1 dimensions via the Hadamard point-splitting procedure and
to compare the results to those published by Ambjørn and Wolfram for the massless
case (cf. [1]). They found that the vacuum polarization shows a screening behaviour
for Dirichlet boundary conditions, which is non-zero on the spatial boundary. For
Neumann boundary conditions, they found an anti-screening behaviour within the
external field approximation. As we will see, the Hadamard point-splitting procedure
yields a screening behaviour for both Dirichlet and Neumann boundary conditions and
that the vacuum polarization vanishes on the boundary of the interval for Dirichlet
boundary conditions.

In chapter 2 we start by reviewing some important concepts, which are needed
for the further analysis. Readers who are familiar with those theoretical preliminaries
may want to skip this chapter. In chapter 3 we investigate some properties of the
massive Klein-Gordon field on a finite interval in 1 + 1 dimensions with Dirichlet and
Neumann boundary conditions, similar to the treatment given in [1] for the massless
field. For instance, the modes are found analytically and a Krein space description
of the problem is introduced. In chapter 4 the modes are calculated explicitly in first
order perturbation theory for Dirichlet and Neumann boundary conditions. In chapter
5 the charge density for the massless field subject to Dirichlet boundary conditions is
calculated explicitly using the summation of modes method and the Hadamard point-
splitting procedure. The charge density for the massive case is further calculated
numerically in first order perturbation theory. Finally, the results are summarised and
discussed in 6.
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1.1 Preface

This bachelor thesis was written as part of my studies at the International Physics
Studies Program at the University of Leipzig. During the preceding module ”Project-
Oriented Course” I verified some of the results presented by Ambjørn and Wolfram in
[1] for the massless case. During that time, parts of section 2.1 to 2.4, 3.4 and 5.1 were
considered, which are included here as they are required to understand the massive
case. These were, however, corrected, generalized or otherwise substantially modified.

I would like to thank Prof. Dr. Hollands for being my supervisor for this thesis
and Prof. Dr. Bordag for being the second referee. I would also like to thank Dr.
Zahn for all the helpful discussions and for giving me an insight into this topic.

1.2 Notations and Conventions

Throughout this thesis we set ~ = c = 1. The partial derivative with respect to a
variable x is denoted by ∂

∂x or ∂x. We work on flat Minkowski space, such that the
zeroth component is the time component and we use the signature2 (+1,−1,−1,−1).
Greek letters usually denote the components of vectors on the Minkowski space,
where as the indices i or j usually refer to the spatial components. We use the
summation convention that double appearing indices are summer over, such that i.e.

D2
µ = DµD

µ =
∑
µ,ν
ηµνD

µDν , where η is the metric tensor.

Further, the time component of a vector x is often denoted by x0 and the spatial
component by x1. The first argument of a function is usually denoted by x and the
second one by x′ or y, where e.g. x refers to a vector, if it is not clear from the context
that only the spatial component is meant.

2When in 1 + 1 dimensions we, of course, use (+1,−1).
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Chapter 2

Theoretical Preliminaries

2.1 The Euler-Lagrange Equations of Motion

We will here briefly discuss the Euler-Lagrange equations of motion in Lagrangian field
theory, which will be important in our further discussion of the Klein-Gordon field.
For a full derivation we refer to e.g. [3]. In Lagrangian mechanics, the action S is
related to the Lagrangian (denoted here by L′), by (cf. [3, p. 15-16])

S =

∫
L′dt . (2.1)

There, the Lagrangian is a function of generalized coordinates {qi}Ni=1 and their time
derivatives. In passing to a field theoretical description, one passes to a Lagrangian
density1 (here denoted by L), which depends on at least one field and its derivatives.
The action is then given by2

S =

∫
L(φ, ∂µφ)ddx (2.2)

As in classical mechanics, one here also employs the principle of least action, i.e. the
variation of the action should be stationary, δS = 0. By assuming no variations on the
boundary, one can rewrite this condition as a condition on the field and one obtains
the Euler-Lagrange equations of motion (cf. [3])

∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0 . (2.3)

2.2 Noether’s Theorem

Noether’s theorem shows how symmetries in the Lagrangian relates to conserved quan-
tities. We will later use this theorem to find an expression for the electromagnetic
current of the Klein-Gordon field.

The theorem may be stated in the following way:3 If, a transformation of the field4,

1We will, however, refer to L as the Lagrangian in our further discussions.
2cf. [3]. d stands for the dimension (including the time dimension) of the system.
3cf. [3, p.17-18]. Again, for readers who are interested in a full derivation we refer to textbooks

such as [3].
4The field is assumed to satisfy the Euler-Lagrange equations of motion.
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which infinitesimally may be written as

φ(x)→ φ(x) + αδφ(x) , (2.4)

only changes the Lagrangian up to a divergence term Jµ

L→ L+ α∂µJ
µ(x) , (2.5)

then the following relation holds:5

∂µ

(
∂L

∂(∂µφ)
δφ− Jµ

)
= 0 . (2.6)

The above expression in the parentheses is thus a conserved current. The spatial
integral of the zeroth component of this current is constant in time, and is sometimes
referred to as a conserved charge (cf. [3]).

2.3 Indefinite Inner Product Spaces and Krein Spaces

We will here introduce the concept of Krein spaces similar to the way it’s done in
[10]. But, before defining what a Krein space is, we will introduce some notations.
Consider the infinite-dimensional, complex vector space K equipped with a hermitian,
sesquilinear form

〈· | ·〉 : K ×K → C . (2.7)

That is, 〈· | ·〉 has the following properties:

∀x1, x2, y1, y2 ∈ K, a ∈ C
1. 〈x1 + x2 | y1 + y2〉 = 〈x1 | y1〉+ 〈x1 | y2〉+ 〈x2 | y1〉+ 〈x2 | y2〉
2. 〈x1 |x2〉 = 〈x2 |x1〉∗

3. 〈x1 | ax2〉 = a 〈x1 |x2〉 .

As in [10], we may categorize the elements x ∈ K after the value of the expression 〈x|x〉
in positive, neutral and negative elements. The set of all the neutral elements of K
we will denote by B0

〈.|.〉, which is thus given by B0
〈.|.〉 = {x ∈ K |〈x|x〉 = 0}. One may

similar define B00
〈.|.〉 to be given by all the neutral elements except the zero element, i.e.

B00
〈.|.〉 = B0

〈.|.〉\{0K}. The positive elements are denoted by B+
〈.|.〉 = {x ∈ K |〈x, x〉 > 0}.

However, as B+
〈.|.〉 is not a subspace of K (it does not contain the zero element), we

may define B++
〈.|.〉 = B+

〈.|.〉 ∪ {0K}. Sets B−〈.|.〉 and B−−〈.|.〉 are then defined analogously for
the negative elements. Of course, when it is clear which hermitian sesquilinear form
one is referring to, one might drop the subscripts 〈.|.〉.

We may now state what we mean with e.g. an indefinite inner product space: K
and its hermitian sesquilinear form 〈.|.〉 are called an indefinite inner product space, if
K has elements in both B+

〈.|.〉 and B−〈.|.〉 (cf. [10, p. 4]). One may then refer to 〈.|.〉 as
an indefinite inner product.

A Krein space is a special type of indefinite inner product space, which one might
call decomposable and non-degenerate (cf. [10, p. 100]). Precisely, we will call a vector

5cf. [3, p.17-18]. If the transformation changes multiple fields, then the first term in the parentheses
should be replaced by a sum over the appropriate fields.
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space K and a hermitian sesquilinear form 〈.|.〉 a Krein space (K, 〈.|.〉) if K can be
decomposed into intrinsically complete subspaces K+, K−, such that (cf. [10, p. 100])

K = K+ ⊕K− : K+ ⊂ B++,K− ⊂ B−− . (2.8)

The term intrinsically complete, means that K+ and K− should be complete with
respect to the norms ||x||± =

√
±〈x|x〉 respectively. This means that a Krein space

can be spanned by vectors which are not neutral, which is of crucial importance when
one wants to do perturbative calculations.

2.4 Perturbation Theory on Krein Spaces

Consider the operator H on the Krein space (K, 〈.|.〉), given by

H = H0 + λH1 , (2.9)

where H,H0, H1 are hermitian operators with respect to 〈· | ·〉, and λ ∈ (0,∞). We
shall think of λ as a small, positive, perturbation parameter. Assume that H0 has
a countable set6 of eigenvectors {Ψn}n∈I with non-degenerate eigenvalues Ωn, which
forms an orthogonal basis in K and that ∃f : I→ C \ {0}, such that Ψn can be chosen
to have the following normalization:

〈Ψn |Ψn〉 = f(n) . (2.10)

That is, all of the eigenvectors Ψn are not neutral. Having clarified the setup, we now
turn to the problem of finding approximate solutions to the eigenvalue problem

HΦ = ΩΦ , (2.11)

by considering λH1 to be a small perturbation of H0.7 For this reason we assume that
each Φn, and Ωn have a series expansion in λ

Φn =

∞∑
j=0

λjΦ(j)
n

Ωn =

∞∑
j=0

Ω(j)
n λj ,

(2.12)

where Φ
(0)
n = Ψn. We impose the normalization that Φn has the normalization f(n)

to first order in λ. Thus8,

〈Φn |Φn〉 =
〈

Φ(0)
n

∣∣∣Φ(0)
n

〉
+ λ

(〈
Φ(1)
n

∣∣∣Φ(0)
n

〉
+
〈

Φ(0)
n

∣∣∣Φ(1)
n

〉)
+O(λ2)

= f(n) + 2λRe
〈

Φ(0)
n

∣∣∣Φ(1)
n

〉
+O(λ2) ,

(2.13)

wherefore we require 〈
Φ(0)
n

∣∣∣Φ(1)
n

〉
= 0 . (2.14)

6The index set is here denoted by I.
7The derivation is very similar to the usual derivations of first order perturbation theory given in

textbooks on quantum mechanics (see [11]), only taking the special normalization into account.
8O(λ2) means terms that approach 0 as λ2 or faster as λ→ 0+
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Inserting the expansion, together with (2.9), into (2.11), and equating the terms of
zeroth and first order in λ, yields

H0Φ(0)
n = Ω(0)

n Φ(0)
n

H0Φ(1)
n +H1Φ(0)

n = Ω(0)
n Φ(1)

n + Ω(1)
n Φ(0)

n .
(2.15)

The first equation is simply the unperturbed equation. By taking the inner product

on both sides with Φ
(0)
n of the second equation one easily finds

Ω(1)
n =

1

f(n)

〈
Φ(0)
n

∣∣∣H1Φ(0)
n

〉
. (2.16)

Equation (2.16) gives the first order perturbative correction to the nth eigenvalue. We
proceed to find the first order corrections to the eigenvectors. In doing so we expand

Φ
(1)
n in terms of the basis

{
Φ

(0)
k

}
(cf. [11])

Φ(1)
n =

∑
m∈I\{n}

cmΦ(0)
m . (2.17)

The reason that we don’t sum over k = n is that Φ
(1)
n and Φ

(0)
n are orthogonal due

to our imposed normalization (Equation (2.14)). By plugging this into the second

equation in (2.15) and taking the inner product with Φ
(0)
k , k 6= n, one easily finds

ck =
1

f(k)

〈
Φ

(0)
k

∣∣∣H1Φ
(0)
n

〉
Ω

(0)
n − Ω

(0)
k

, (2.18)

by using the hermiticity of H0 and the orthogonality of the basis vectors. Note that

we could only divide by Ω
(0)
n −Ω

(0)
k because we assumed that the eigenvalues are non-

degenerate. Hence, we arrive at the final result for the first order correction to the
eigenvectors

Φ(1)
n =

∑
k∈I\{n}

1

〈Φ(0)
k |Φ

(0)
k 〉

〈
Φ

(0)
k

∣∣∣H1Φ
(0)
n

〉
Ω

(0)
n − Ω

(0)
k

Φ
(0)
k . (2.19)

One immediately recognizes that this can not be used if any of the basis vectors Φ
(0)
k

is neutral.

2.5 The Hadamard Condition

When calculating the vacuum polarization we will assume that the two-point function
has a singularity of Hadamard form.9 The precise singularity structure of such func-
tions depend on the dimension.10 In 1 + 1 dimensions, we will say that a function f
has a singularity structure of Hadamard form, if (cf. [6, 2, 14])

f(x, x′) = lim
ε→0+

[
u(x, x′)

(x− x′)2
ε

+ v(x, x′) ln
(
−(x− x′)2

ε

)
+ w(x, x′)

]
≡ lim

ε→0+

[
hε + w(x, x′)

]
,

(2.20)

9Hadamard studied such functions when seeking solutions of second order partial differential equa-
tions [6, 12].

10See [13] for a treatment of Hadamard expansions in quantum field theory in different dimensions.
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where (x−x′)2
ε = (x−x′)2−iε(x−x′)0. u, v and w should further be smooth functions

and v(x, x′) and w(x, x′) should possess series expansions in (x − x′)2, such that (cf.
[6])

v(x, x′) =
∑
n

vn(x, x′)(x− x′)2n

w(x, x′) =
∑
n

wn(x, x′)(x− x′)2n .

(2.21)

If one now requires f(x, x′) to be a solution of some differential equation (i.e. the
Klein-Gordon equation if f is the two-point function) one may determine u and vn by
the Hadamard recursion relations (cf. [6, 12]), which we will, however, not discuss any
further here. The term hε in (2.20) specifies the singular form of f in the coinciding-
point limit and will here be referred to as the parametrix. The third term, w(x, x′), is
the smooth part of f .

The reason that the Hadamard form is of interest in quantum field theory in ex-
ternal potentials is that the two-point functions of many states have this form, e.g. it
was shown in [7] that the ground state of the Klein-Gordon field is a Hadamard state
for sufficiently weak external potentials.

The properties of two-point functions of Hadamard form have further been studied
by Radzikowski in [8]. Two important conditions11 on the two-point function are that
it should satisfy the Klein-Gordon equation and that (cf. [8])

ω2φφ
∗(x, y)− ω2φ

∗φ(x, y) = i∆ . (2.22)

Here ∆ = ∆+−∆−, where ∆± are the advanced/retarded fundamental solutions of the
Klein-Gordon operator. These solve the inhomogeneous Klein-Gordon equation (with
the δ-function as inhomogeneity) and are non-zero only in the casual future/past (cf.
[7, 6]).

2.6 Parametrix of the Two-point Function

To find the parametrix of the Klein-Gordon operator, one can proceed analogously to
[2], where the parametrix of the Dirac operator was constructed.

An operator is said to be normally hyperbolic if its principal symbol is given by the
metric, that is, a normally hyperbolic operator P takes on the form (cf. [15, 7])

P = ∂µ∂
µ +Aµ(x)∂µ +B(x) , (2.23)

where Aµ(x) and B(x) are smooth functions. We especially note that the Klein-Gordon
operator D2

µ + m2 is a normally hyperbolic operator. The fundamental solutions of
normally hyperbolic operators can be constructed formally and uniquely out of the so-
called advanced and retarded Riesz distributions12 R±j (x, x′). As in [15], one formally
makes the ansatz

∆±(x, x′) =

∞∑
k=0

Vk(x, x
′)R±2+2k . (2.24)

11Further conditions are given by Radzikowski in terms of micro-local analysis, which will not be
discussed any further here.

12See [15] for an extensive treatment of this subject.
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By applying the operator P onto the ansatz and using the properties of the Riesz
distributions one can derive the transport equation (cf. [2, 15]):

(x− x′)µDµVk(x, x
′) + kVk(x, x

′) = −kPVk−1(x, x′) (2.25)

The transport equation imposes a condition on the coefficients Vk, in order for (2.24) to
be a fundamental solution. The coefficients Vk are sometimes referred to as Hadamard
coefficients (see [15]). V0 will be of special importance to us, which we will refer to
as the parallel transport. With the transport equation, one especially finds that the
Hadamard coefficients are the same for both the advanced and the retarded solutions
(cf. [15]). The transport equation allows one to recursively determine the Hadamard
coefficients. By putting k = 0 in (2.25) and using the condition V0(x, x) = 1 one can
derive the formula (cf. [2]):

V0(x, x′) = exp

−ie 1∫
0

Aµ(x′ + t(x− x′))(x− x′)µdt

 (2.26)

This formula will be of crucial importance when calculating the charge density using
the Hadamard point-splitting procedure, as we will see later.

The parametrix for the Klein-Gordon operator can now be constructed as (cf. [2]):

h±(x, x′) =
1

2π

∞∑
k=0

Vk(x, x
′)T±2+2k(x, x

′) , (2.27)

where Tj are distributions that are depending on the dimension.13 In 1+1 dimensions,
they are given by (cf. [2])

T±2k(x, x
′) =

−1

22k−1(k − 1)!
(x− x′)2(k−1) log

−(x− x′)2
±ε

Λ2
, (2.28)

where Λ ∈ R+ can be thought of as a length scale. One can show that (2.27) satisfy the
appropriate conditions set up by Radzikowski (cf. [2, 8]). What one needs to do in order
to find the explicit form of the parametrix is to determine the Hadamard coefficients Vk.
Fortunately, one does not need to calculate all of them, as the Tj ’s vanish increasingly
fast in the coinciding point limit as one can see by inspecting (2.28). In our case, as
the expression for the charge density of the Klein-Gordon field only contains first-order
derivatives, only the parallel transport V0 is needed to calculate the parametrix, since
the derivative of higher order terms vanish in the coinciding point limit.

13Especially, they satisfy T+
j − T

−
j = 2πi

(
R+
j −R

−
j

)
, j ∈ N0 (cf. [2]).

14



Chapter 3

Properties of the Klein-Gordon
Field Minimally Coupled with an
Electromagnetic Potential

3.1 Equations of Motion and Definition of the Current in
Lagrangian Field Theory

The Lagrangian for a Klein-Gordon field minimally coupled with an electromagnetic
field is given by1

L = |Dµφ|2 −m2|φ|2 − 1

4
F 2
µν − jextµ Aµ , (3.1)

where Dµ denotes the covariant derivative and Fµν the electromagnetic field strength
tensor

Dµ = ∂µ + ieAµ

Fµν = ∂µAν − ∂νAµ .
(3.2)

jextµ denotes an external electromagnetic current. The notation F 2
µν means a contrac-

tion over both indices with itself, i.e. F 2
µν = FµνF

µν .
The Euler-Lagrange equations of motion for φ, φ∗ and Aµ can be straightforwardly

computed according to (2.3) and one finds

(DµD
µ +m2)φ = 0

∂µF
µν = jνext + ie (φ∗Dµφ− φ (Dµφ)∗) .

(3.3)

The first equation is simply the Klein-Gordon equation. The equation for φ similarly
yields the complex conjugate of the Klein-Gordon equation. The second equation is
related to the electromagnetic current. By noting that the Lagrangian is invariant
under global phase transformations

φ→ eiαφ , (3.4)

one can easily derive using Noether’s theorem (2.6) a conserved current:

jµ = i (φ (Dµφ)∗ − φ∗Dµφ) (3.5)

1cf. [1]. We take this Lagrangian as a starting point. The aim of this section is merely to use this
Lagrangian to define an expression for the electromagnetic current.
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By comparing this result to the above Euler-Lagrange equation for Aµ we identify the
conserved electromagnetic current as (cf. [1])

Jµ = −ejµ = ie (φ∗Dµφ− φ (Dµφ)∗) . (3.6)

By introducing the conjugate momentum π to the field

π :=
∂L

∂ (∂0φ)
=
(
∂0φ∗ − ieA0φ∗

)
= (D0φ)∗ , (3.7)

one may especially define the charge density as (cf. [1])

ρ(x) = J0 = ie (φ∗(x)π∗(x− φ(x)π(x)) . (3.8)

3.2 Explicit Solution of the Klein-Gordon Equation on a
Finite Interval

We are now considering a massive Klein-Gordon field coupled with a static electric field
E on the finite interval [0, a] in 1+1 dimensions. The spatial coordinate is denoted by
Z. We start with the general equations of motion2 (3.3)(

d

dt
+ ieA0

)2

φ− d2

dZ2
φ+m2φ = 0 (3.9)

As in [1], we make the mode ansatz

φ(Z, t) = φn(Z)e−iΩnt , (3.10)

such that (3.9) may be written as(
(Ωn − eA0)2 −m2 +

d2

dZ2

)
φ(Z) = 0 . (3.11)

We now introduce the following definitions3:

z =
Z

a
λ = eEa2

A0 = −Ea
(
z − 1

2
+ α

)
ωn = aΩn + λα ,

(3.12)

It should be noted that z, λ and ωn are dimensionless quantities in 1+1 dimensions.
α is a gauge parameter. The dimensionless coordinate z thus ranges from 0 to 1. ωn
was chosen such that it is a dimensionless, gauge invariant parameter. We also see
that the electromagnetic potential A indeed corresponds to a static electric field of

2A1 is chosen to be 0.
3These are the same as Ambjørn and Wolfram use, except that their definition of A0 contains an

extra factor Ea (cf. [1]). It was chosen not to include it here, such that dA0
dZ

= −E
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strength E. Upon doing a change of variables from Z to z the derivative transforms
in the following way

d

dZ
=
dz

dZ

d

dz
=

1

a

d

dz
.

If we use this transformation law and plug in our definitions (Eq. (3.12)), we get[(
ωn + λ

(
z − 1

2

))2

− a2m2 +
d2

dz2

]
φn(z) = 0 . (3.13)

Equation (3.13) is thus the equation of motion for the modes of a massive Klein-Gordon
field minimally coupled with a static electric field. To solve this equation analytically
we introduce the variable ξ defined by:

ξ = C

(
ωn + λ

(
z − 1

2

))
,

d

dz
= Cλ

d

dξ

C is a constant yet to be chosen. Thus:

ξ2

C2
φn − a2m2φn + C2λ2 d2

dξ2
φn = 0

d2

dξ2
φn −

(
−4

λ2C4

)
ξ2

4
φn −

a2m2

C2λ2
φn = 0

Choosing C = 1+i√
λ

, this can be written as:

d2

dξ2
φn +

[(
i
a2m2

2λ
− 1

2

)
+

1

2
− ξ2

4

]
φn = 0 (3.14)

This is a Weber4 differential equation of order ia
2m2

2λ −
1
2 . The solution is given in

terms of the parabolic cylinder functions

φn(z) = anD im2a2

2λ
− 1

2

(ξ(z)) + bnD− im2a2

2λ
− 1

2

(iξ(z)) , (3.15)

where

ξ(z) =
1 + i√
λ

(
ωn + λ

(
z − 1

2

))
. (3.16)

an, bn and ωn are to be found from the boundary conditions and the imposed nor-
malization. We will here only consider Dirichlet (φ (0) = φ (1) = 0) and Neumann

(∂φ(0)
∂z = ∂φ(1)

∂z = 0) boundary conditions.
As a special case, one can now easily find the modes in the massless limit m→ 0,

namely:
φn,m=0(z) = anD− 1

2
(ξ(z)) + bnD− 1

2
(iξ(z)) , (3.17)

It should be noted that this solution differs slightly from the one presented by Ambjørn
and Wolfram (cf. [1])

φn = anD− 1
2

(
(1 + i)

√
2
√
λ

(
ωn +

(
z − 1

2

)))
+ bnD− 1

2

(
−(1− i)

√
2
√
λ

(
ωn +

(
z − 1

2

)))
.

(3.18)

4The Weber differential equation d2f(z)

dz2
+ (n+ 1

2
− 1

4
z2)f(z) = 0 has the two linearly independent

solutions f1(z) = Dn(z) and f2(z) = D−n−1(iz), where Dn(z) are the parabolic cylinder functions (cf.
[16, p. 347]).
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Of course, there is an infinite number of choices for the two basis functions that span
the solution space, but as the two expressions have different functional dependence on
the parameter λ, one may conclude that the solutions are indeed different. This seems
to be a mistake of Ambjørn and Wolfram.

3.3 The Krein Space Description

We wish to be able to apply perturbation theory to the equations of motions in a weak,
static external electromagnetic field. To do this we will, analogous to Ambjørn and
Wolfram, introduce an indefinite inner product 〈·|·〉 and reformulate the problem on
a Krein space. The formalism presented in this section will be applicable to a finite
volume in d dimensions.

We start by introducing the operator H,5 which acts on the space L2 ⊕ L2

H =

(
eA0 0

0 eA0

)
+ i

(
0 1

−(−D2
i +m2) 0

)
.

The operator H enables us to write the equations of motion in a Hamiltonian-like
form6 (cf. [1])

i
∂

∂t
Ψ(z, t) = HΨ(z, t)

∂µFµν = −eΨ∗(z, t)σ2Ψ(z, t) ,
(3.19)

where

Ψ(z, t) =

(
φ(z, t)
π∗(z, t)

)
σ2 =

(
0 −i
i 0

)
.

After a mode decomposition

Ψn(z, t) = Ψn(z)e−iΩnt . (3.20)

one finds the following equation as a straightforward consequence:

HΨn(z) = ΩnΨn(z) (3.21)

The above statements are shown by first calculating HΨ:

HΨ =

(
eA0 0

0 eA0

)(
φ
π∗

)
+ i

(
0 1

−(−D2
i +m2) 0

)(
φ
π∗

)
=

(
eA0φ+ iπ∗

eA0π
∗ − i(−D2

i +m2)φ

)
,

and comparing this to the left-hand side of (3.19)

i
∂

∂t
Ψ = i

(
∂
∂tφ
∂
∂tπ
∗

)
.

5cf. [1]. Note that there is a minus sign missing in the paper by Ambjørn and Wolfram. There,

the operator was stated as H =

(
eA0 0

0 eA0

)
+ i

(
0 1

−D2
i +m2 0

)
6An alternative way of doing this was presented in [7].
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The first component yields after some rearranging π = (D0φ)∗, which agrees with our
previous calculation of the momentum (3.7). Turning to the second component one
finds (by using the first equation)

(
DµD

µ +m2
)
φ = 0, which is just the Klein-Gordon

equation. Further, ∂µFµν = −eΨ∗σ2Ψ is straightforward to show by calculating the
right-hand side and using equation (3.3).

Furthermore, H is hermitian under Dirichlet and Neumann boundary conditions7

with respect to the indefinite inner product8

〈Ψ1|Ψ2〉 = −
∫

ddxΨ∗1σ2Ψ2 = i

∫
ddx (φ∗1π

∗
2 − π1φ2) . (3.22)

The hermiticity of H is shown by calculating

〈Ψ1|HΨ2〉 − 〈HΨ1|Ψ2〉 =

∫ [
φ2

(
D2
i φ1

)∗ − φ∗1D2
i φ2

]
ddx , (3.23)

and using the divergence theorem and the boundary conditions. For Dirichlet and
Neumann boundary conditions in 1 + 1 dimensions this reduces to performing partial
integration. (L2 ⊕ L2, 〈·|·〉) and H thus satisfy the conditions in section 2.4 and may
be used for perturbation theory.

3.4 Quantization of the Klein-Gordon Field

We will here present a quantization procedure, which was also used by Ambjørn and
Wolfram in [1]. We start by writing the quantum field as a linear combination of the
positive and negative frequency modes with operator-valued coefficients9

φ(x, t) =
∑
m,+

amφ
(+)
m (x)e−iΩ

(+)
m t +

∑
m,−

b†mφ
(−)
m (x)e−iΩ

(−)
m t . (3.24)

From the relation π = (D0φ)∗, we find

π(x, t) =
∑
m,+

a†m(iΩ(+)
m − ieA0)(φ(+)

m (x))∗e+iΩ
(+)
m t

+
∑
m,−

bm(iΩ(−)
m − ieA0)(φ(−)

m (x))∗e+iΩ
(−)
m t .

(3.25)

We proceed by postulating the equal-time commutation relations10 (cf. [1])

[φ(x, t), π(y, t)] = iδ(x− y)

[φ(x, t), φ†(y, t)] = 0

[π(x, t), π†(y, t)] = 0 .

(3.26)

7It is actually hermitian with respect to the more general boundary conditions (niDi + χ)φ = 0,
where χ is a function which is defined on the boundary and ni an outward normal to the boundary
(cf. [1]). χ = 0,∞ correspond to Dirichlet and Neumann boundary conditions, respectively.

8cf. [1]. Here,
∫

ddx means integration over the finite, d-dimensional spatial volume under interest.
9cf. [1]. The notation

∑
m,+

,
∑
m,−

means that the index m sums over the positive frequency modes in

the first sum and negative frequency modes in the second one.
10[a, b] := ab− ba
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We want to show that these commutation relations imply

[am, a
†
n] = δm,n

[bm, b
†
n] = δm,n .

(3.27)

To show this we turn to the Krein space description.11 This yields

Ψ(x, t) =
∑
m,+

amΨ(+)
m (x)e−iΩ

(+)
m t +

∑
m,−

b†mΨ(−)
m (x)e−iΩ

(−)
m t . (3.28)

We assume that the modes are orthogonal with respect to each other with respect to

〈·|·〉 and that they have normalization ±1. Taking the inner product with Ψ
(+)
m (x) and

Ψ
(+)
n (x), we can solve for a and a†:12

〈Ψm(x)|Ψ(x, t)〉 = ame
−iΩmt

〈Ψ(x, t) |Ψn(x)〉 = a†ne
iΩnt

(3.29)

Hence,
[am, a

†
n] = eit(Ωm−Ωn)[〈Ψm|Ψ〉 , 〈Ψ|Ψn〉] . (3.30)

Using the definition of the inner product (Eq. (3.22)), it follows

〈Ψm|Ψ〉 〈Ψ|Ψn〉 = −
∫

dx dy

[
φ∗m(x)π†(x, t)φ†(y, t)π∗n(y, t)− φ∗m(x)π†(x, t)π(y, t)φn(y)

− πm(x)φ(x, t)φ†(y, t)πn(y) + πm(x)φ(x, t)π(y, t)φn(y)

]
.

Using the commutation relations (3.27), one finds

[am, a
†
n] = −eit(Ωm−Ωn)

∫
dx dy

[
φ∗m(x)π∗n(y)[φ(y, t), π(x, t)]† + πm(x)φn(y)[φ(x, t), π(y, t)]

]
= ieit(Ωm−Ωn)

∫
dx

[
φ∗m(x)π∗n(x)− πm(x)φn(x)

]
= eit(Ωm−Ωn) 〈Ψm|Ψn〉
= δm,n ,

which is what we wanted to prove. As Ambjørn and Wolfram we can then naturally
define the vacuum state, |0〉, to have the property

an |0〉 = bn |0〉 = 0 ∀n . (3.31)

11Remember that Ψ(x, t) =

(
φ(x, t)

(π(x, t))∗

)
. Similarly, Ψ

(+)
m (x) =

(
φ
(+)
m (x)

(π
(+)
m (x))∗

)
12The superscript (+) is omitted in the following. The commutation relations for b and b† are shown

similarly by taking the inner product with Ψ
(−)
m (x) and Ψ

(−)
n (x).
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3.5 Vacuum Polarization according to the Summation of
Modes Method

Ambjørn and Wolfram define the charge density in the vacuum state as (cf. [1])

ρ(x) = 〈0|ρ̂(x)|0〉

ρ̂(x) =
ie

2
[φ†(x)π†(x) + π†(x)φ†(x)− φ(x)π(x)− π(x)φ(x)] .

(3.32)

By using the commutation relations found above (3.27) one easily shows that

〈0|ama†n|0〉 = 〈0|bmb†n|0〉 = δm,n .

The charge density in the vacuum state is then straightforwardly found to be:

ρ(x) =
1

2

∑
n

(
2e(Ω(+)

n − eA0)|φ(+)
n |2 + 2e(Ω(−)

n − eA0)|φ(−)
n |2

)
. (3.33)

From equation (3.25) one may make the following identification

π(±)
n = i(Ω(±)

n − eA0)(φ(±)
n )∗ ,

and in analogy to the definition of the charge density in Lagrangian field theory (3.8),
we may then define13

ρ(±)
n := ie

(
(φ(±)
n )∗(π(±)

n )∗ − φ(±)
n π(±)

n

)
= 2e(Ω(±)

n − eA0)|φ(±)
n |2 . (3.34)

The charge density according to the summation of modes method may then be written
as (cf. [1])

ρ(x) =
1

2

∑
n

(
ρ(+)
n (x) + ρ(−)

n (x)
)

. (3.35)

This is the formula which Ambjørn and Wolfram used to evaluate the charge density.
It can be seen (Equation (3.32)) that this method explicitly contains the product of
the field φ with its conjugate momentum π at coinciding points. We will see later,
that the Hadamard point-splitting procedure, which explicitly takes the singular part
of such expressions into account, yields qualitatively different results for the charge
density.

3.6 Vacuum Polarization from the Two-point Function

The charge density is from Lagrangian field theory given by (Eq. (3.8)):

ρ(x) = ie [φ∗(x) (D0φ(x))− (D0φ(x))∗ φ(x)]

In quantum field theory, the product of the fields is not well-defined at coinciding
points, wherefore an alternative definition of the charge density should be used. Here
we will use a method which we will refer to as the Hadamard point-splitting procedure.

13Ambjørn and Wolfram defined ρn to be the ”charge density associated with each mode” (cf. [1]),
which presumably means the same equation, but an exact definition was not given.
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This method uses the two-point function to calculate the charge density. We will here
define the two-point functions in the following way:

ω2φφ
∗(x, y) := 〈0|φ(x)φ∗(y)|0〉 =

∑
n,+

φn(x1)
(
φn(y1)

)∗
e−iΩn(x0−y0)

ω2φ
∗φ(x, y) := 〈0|φ∗(y)φ(x)|0〉 =

∑
n,−

φn(x1)
(
φn(y1)

)∗
e−iΩn(x0−y0)

(3.36)

In this procedure, one assumes that the two-point function has singularities of Hadamard
form and subtracts these before the charge density is computed. For the Klein-Gordon
field, we may explicitly define the charge density with this method as

ρ(x) = lim
y→x

ie
(
Dx

0

[
ω2φ

∗φ(x, y)− h−
]
− (Dy

0)∗
[
ω2φφ

∗(x, y)− h+
])

. (3.37)

When calculating the charge density explicitly, one must therefore calculate the two-
point functions and the parametrix h+ and h− separately and then subtract these. We
will do this explicitly later.
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Chapter 4

A Perturbative Solution to the
Klein-Gordon Field on a Finite
Interval

4.1 The Unperturbed State

We would now like to find a perturbative solution for small electric fields. For this
reason the Hamiltonian is written as (see section 3.3)

H = H0 +H1

H0 = i

(
0 1

−
(
−D2

i +m2
)

0

)
, H1 =

(
eA0 0

0 eA0

)
,

(4.1)

where H1 is considered to be a small perturbation. In 1+1 dimensions the unperturbed
problem reads:

i

(
0 1

∂2
Z −m2 0

)
Ψn = EnΨn (4.2)

With the notation Ψn =

(
φn
π∗n

)
we get the following system of equations:

iπ∗n = Ωnφn

i
(
∂2
Z −m2

)
φn = Ωnπ

∗
n

(4.3)

It is however rather easily solved by putting the first equation into the second:

∂2
Zφn = −(Ω2

n −m2)φn (4.4)

For Dirichlet boundary conditions (φ(Z = 0) = φ(Z = a) = 0), the solution is given
by:

Ψn = Cn

(
sin(nπz)

−i sgn(n)
√(

nπ
a

)2
+m2 sin(nπz)

)
, n ∈ Z \ {0}

Ωn = sgn(n)

√(nπ
a

)2
+m2 , n ∈ Z \ {0}

(4.5)
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where Cn is a normalization constant and z = Z
a . For Neumann boundary conditions

(∂Zφ(Z = 0) = ∂Zφ(Z = a) = 0) one similarly obtains:

Ψn = Cn

(
cos(nπz)

−i sgn(n)
√(

nπ
a

)2
+m2 cos(nπz)

)
, n ∈ Z \ {0}

Ωn = sgn(n)

√(nπ
a

)2
+m2 , n ∈ Z \ {0}

Ψ±0 = C±0

(
1
∓im

)
Ω±0 = ±m

(4.6)

One should note that there are two zero modes, one with positive frequency and one
with negative frequency.

We go on by calculating the normalization of the eigenvectors with respect to the
indefinite inner product 〈·|·〉 (Eq. (3.22))

〈Ψ1|Ψ2〉 = i

a∫
0

dZ (φ∗1π
∗
2 − π1φ2) .

Choosing the normalization1 +1 for the positive frequency modes and −1 for the
negative frequency modes, one gets:

Cn =
1

4
√

(nπ)2 + (am)2

C±0 =
1√

2am

(4.7)

Note that the value for Cn applies to both Dirichlet and Neumann boundary conditions.
The normalized unperturbed eigenvectors are therefore given by:

Ψn =
1

4
√

(nπ)2 + (am)2

(
sin(nπz)

−i sgn(n)
√(

nπ
a

)2
+m2 sin(nπz)

)
(Dirichlet)

Ψn =
1

4
√

(nπ)2 + (am)2

(
cos(nπz)

−i sgn(n)
√(

nπ
a

)2
+m2 cos(nπz)

)
(Neumann)

Ψ±0 =
1√

2am

(
1
∓im

)
(Neumann)

(4.8)

The energies are for both cases given by Ωn = sgn(n)
√(

nπ
a

)2
+m2. We further note

that all the eigenvectors are not neutral, such that the eigenvectors of the massive
Klein-Gordon equation with Dirichlet and Neumann boundary conditions can be used
for the perturbation theory described in section 2.4.

1This corresponds to choosing the normalization 1 with respect to the intrinsic (positive-definite)

norms |x|± =
√
±〈x|x〉± on the subspaces K±.
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4.2 First Order Correction of the Energies

We are now in a position to start finding perturbative corrections to the modes for
small electric fields. From section 2.4, the first order correction to the eigenvalues is
given by equation (2.16)

Ω(1)
n = sgn(n)

〈
Ψ(0)
n

∣∣∣H1Ψ(0)
n

〉
.

Remember that we are using the normalization f(n) = sgn(n). Using the results found
above, we find for the Dirichlet case

Ω(1)
n = sgn(n)i

a∫
0

dZ

(
−isgn(n)

a
eA0(z) sin2(nπz)− isgn(n)

a
eA0(z) sin2(nπz)

)

= 2

1∫
0

dzeA0(z) sin2(nπz) .

(4.9)

With eA0 = −λ
a (z − 1

2 + α) one easily finds:

Ω(1)
n = −λ

a
α . (4.10)

We thus see that the first order correction is proportional to the gauge parameter and
that it is independent of n. Especially, it holds that ωn = aΩn + λα does not change
to first order in λ. Hence

ωn = −ω−n , (4.11)

to first order in λ. One easily finds that the exact same statements hold for the
Neumann case.

4.3 Calculation of the Modes for Dirichlet Boundary Con-
ditions

According to (2.19), the first order perturbative correction to the nth mode is given
by:

Ψ(1)
n =

∑
k∈I\{n}

1

〈Ψ(0)
k |Ψ

(0)
k 〉
〈Ψ(0)

k |H1Ψ
(0)
n 〉

Ω
(0)
n − Ω

(0)
k

Ψ
(0)
k

We will now calculate this explicitly. Recall that H1 =

(
eA0 0

0 eA0

)
and that eA0(z) =

−λ
a

(
z − 1

2 + α
)
. For the Dirichlet case, the first order correction is therefore given by2:

φ(1)
n (z) =

∑
k∈Z\{0,n,−n}

sgn(k)
sgn(n)

√
(am)2 + (nπ)2 + sgn(k)

√
(am)2 + (kπ)2

4
√

(am)2 + (nπ)2 4
√

(am)2 + (kπ)2

1∫
0

sin(nπx) sin(kπx)
(
−λ(x− 1

2 + α)
) sin(kπz)

4
√

(am)2+(kπ)2
dx

sgn(n)
√

(am)2 + (nπ)2 − sgn(k)
√

(am)2 + (kπ)2

2The term k = −n was excluded, as it can be seen that it yields no contribution.
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We now multiply and divide this expression by sgn(n)
√

(am)2 + (nπ)2+sgn(k)
√

(am)2 + (kπ)2.
This yields:

φ(1)
n (z) = − λ

4
√

(am)2 + (nπ)2

∑
k∈Z\{0,n,−n}

sgn(k)

×
(
(am)2 + (nπ)2

)
+ 2 sgn(n) sgn(k)

√
(am)2 + (nπ)2

√
(am)2 + (kπ)2 +

(
(am)2 + (kπ)2

)√
(am)2 + (kπ)2

×

1∫
0

x sin(nπx) sin(kπx) sin(kπz)dx

(nπ)2 − (kπ)2

The first and third term will vanish3 as they are antisymmetric in k. Therefore:

φ(1)
n (z) = −

λ 4
√

(am)2 + (nπ)2

|n|π
∑

k∈N\{n}

4nπ

(nπ)2 − (kπ)2

1∫
0

x sin(nπx) sin(kπx) sin(kπz)dx

(4.12)
We note that if one were to exchange the order of summation and integration, the
resulting sum would still be absolutely converging. According to the Fubini-Tonelli
theorem, it is therefore allowed to interchange the order of summation and integration.
To find the first order correction, it now remains to calculate the following expression:

−
1∫

0

∑
k∈N\{n}

4nπ

(nπ)2 − (kπ)2
x sin(nπx) sin(kπx) sin(kπz)dx (4.13)

As 4n
n2−k2 = 2

n−k + 2
n+k we may again write this as a sum over Z:4

− 1

π

1∫
0

∑
k∈Z\{0,n,−n}

2

n− k
x sin(nπx) sin(kπx) sin(kπz)dx (4.14)

We proceed by rewriting this using the addition theorem of the cosine

sin(kπx) sin(kπz) =
1

2
(cos(kπ(x− z)− cos(kπ(x+ z))) , (4.15)

and changing summation index to j := n− k , j ∈ Z \ {0, n, 2n}. (4.13) becomes:

− 1

π

1∫
0

∑
k∈Z\{0,n,2n}

1

j
x sin(nπx) (cos(kπ(x− z)− cos(kπ(x+ z))) dx (4.16)

We may now add and subtract the terms corresponding to j = n and j = 2n in order
to sum over a symmetric region. The term j = n yields no contribution, where as the

3Note that the sum is absolutely converging as
1∫
0

x cos(nπx) cos(kπx)dx goes like 1
k2

for large k.

4One easily shows that the individual sums are converging using Dirichlet’s test, which says that a
real sequence, which is monotonically decreasing to 0, multiplied by a complex sequence, whose partial
sum is bounded, converges (see e.g. [17]).
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term j = 2n yields the additional term

C =
1

nπ

1∫
0

x sin2(nπx) sin(nπz)dx . (4.17)

We may once again use the addition theorem of the cosine to get:

cos((n− j)π(x− z))− cos((n− j)π(x+ z)

= cos(nπ(x− z)) cos(jπ(x− z)) + sin(nπ(x− z)) sin(jπ(x− z))
− cos(nπ(x+ z)) cos(jπ(x+ z))− sin(nπ(x+ z)) sin(jπ(x+ z))

(4.18)

Note that the terms involving the cosine of j will vanish5, as they are antisymmetric
in j. We now use the formula6 (cf. [18, p. 449])∑

j∈Z\{0}

sin(jπy)

j
=

{
π(1− y) if 0 < y < 2
π(−1− y) if − 2 < y < 0

. (4.19)

We note that x+ z ∈ [0, 2]. However, x− z might be negative so we have to split the
integral into two terms: 0 ≤ x ≤ z and z ≤ x ≤ 1. Equation (4.13) may therefore be
written as:

C −
1∫

0

dx x sin(nπx)
(
−(x− z) sin(nπ(x− z))− (1− (x+ z)) sin(nπ(x+ z))

)

−
(
−

z∫
0

x sin(nπx) sin(nπ(x− z)) dx+

1∫
z

x sin(nπx) sin(nπ(x− z)) dx

)
.

(4.20)
Using the addition theorem of the sine function

sin(nπ(x− z))− sin(nπ(x+ z)) = −2 cos(nπx) sin(nπz)

sin(nπ(x− z)) + sin(nπ(x+ z)) = 2 sin(nπx) cos(nπz) ,
(4.21)

we find that equation (4.13) may be written as:

C − 2

1∫
0

x sin(nπx)(x cos(nπx) sin(nπz) + z sin(nπx) cos(nπz))dx

+ 2

( z∫
0

x sin2(nπx) cos(nπz)dx+

1∫
z

x sin(nπx) cos(nπx) sin(nπz)dx

)
.

(4.22)

We have now rewritten the expression such that it may easily (although tediously)
be evaluated by integration by parts. Performing the integrals and simplifying using
trigonometric identities, we finally obtain:

−
1∫

0

∑
k∈N\{n}

4nπ

(nπ)2 − (kπ)2
x sin(nπx) sin(kπx) sin(kπz)dx

=
1

2nπ

(1

2
− z
)
sin(nπz)− 1

2
z(1− z) cos(nπz)

(4.23)

5The convergence of the individual sums are still granted by Dirichlet’s test.
6The sum is equal to 0 on the nullset y = −2, 0, 2.
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Figure 4.1: |φ(1)
n,pert|2(dashed, red line) and the numerical solution in terms of parabolic

cylinder functions (blue line) are shown for different values of n, λ and am for Dirichlet
boundary conditions.

The modes for Dirichlet boundary conditions are to first order in λ therefore given by:

φ
(1)
n,pert =

1
4
√

(am)2 + (nπ)2

{
sin(nπz) +

√
(am)2 + (nπ)2

|n|π

[
λ

2πn

(
1

2
− z
)

sin(nπz)

− λ

2
z(1− z) cos(nπz)

]}
(4.24)

This reduces to the modes presented by Ambjørn and Wolfram when setting m = 0 (cf.
[1]). These modes (Eq. (4.24)) are compared to numerical calculations of the analytical
solution (3.15) in terms of parabolic cylinder functions in figure 4.1 for different values
of the parameters n, λ and am.

4.4 Calculation of the Modes for Neumann Boundary
Conditions

For the Neumann case, one also has to take the contribution from the zero modes into
account in (2.19). Completely analogous to the above calculation for the Dirichlet case,
one finds that the contribution from the non-zero modes to the first order correction
of the nth mode (n 6= 0) is given by:

φ
(1)
n, 6=0(z) = −

λ 4
√

(am)2 + (nπ)2

|n|π
∑

k∈N\{n}

4nπ

(nπ)2 − (kπ)2

1∫
0

x cos(nπx) cos(kπx) cos(kπz)dx

(4.25)
One can evaluate this analogously to the Dirichlet case by using the appropriate
trigonometric identities.7 However, one needs to be careful when adding and sub-

7This basically correspond to changing some plus signs into minus signs and replacing some sine
functions by cosines and vice versa.
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tracting the terms corresponding to j = n, 2n after equation (4.16), as the term j = n
now yields a non-zero contribution. Fortunately, this term exactly cancels the contri-
bution from the zero modes. In this manner, one finds that the non-zero modes for
the Neumann case are to first order in λ given by:

φ
(1)
n,pert =

1
4
√

(am)2 + (nπ)2

{
cos(nπz) +

√
(am)2 + (nπ)2

|n|π

[
λ

2πn

(
1

2
− z
)

cos(nπz)

+
λ

2

(
z(1− z) +

1

n2π2

)
sin(nπz)

]}
(4.26)

One calculates the correction to the zero modes similarly, by putting n = 0 in (2.19),
i.e.

φ
(1)
0,± =

∑
k∈Z

sgn(k)

±m− sgn(k)

√(
kπ
a

)2
+m2

1∫
0

dx
−λ(x− 1

2 + α)
4
√

(kπ)2 + (am)2
√

2am

×

±m+ sgn(k)

√(
kπ

a

)2

+m2

 cos(kπx)
cos(kπz)

4
√

(kπ)2 + (am)2
.

(4.27)

By partial integration one easily finds that the integral vanishes for even k and that it
is given by

1∫
0

x cos(kπx)dx =
−2

(kπ)2
, (4.28)

for odd k. Multiplying and dividing by the conjugate of the denominator, i.e. ±m −
sgn(k)

√(
kπ
a

)2
+m2, now yields:

φ
(1)
0,± =

−λ√
2am

∑
k,odd

2 sgn(k)
(am)2 ± 2am sgn(k)

√
(kπ)2 + (am)2 + (kπ)2 + (am)2√

(kπ)2 + (am)2k4π4

(4.29)
One then easily notices, that each term is absolutely converging, as the asymptotic
behaviour of the slowest converging term goes like k−5/2. We further see, that only
one term, namely the one containing ±2am sgn(k)

√
(kπ)2 + (am)2 is even in k and

thus, which is ensured by the convergence of the individual terms, only this term gives
a non-zero contribution. We are therefore left with:

φ
(1)
0,± = ∓4λ

√
2am

∑
k>0,odd

cos(kπz)

k4π4
(4.30)

We now take advantage of the absolute convergence and rewrite the sum of odd natural
numbers into a sum of all natural numbers minus the even ones. Formally, we perform
the following rewriting:

∑
k>0,odd

f(k)→
∞∑
k=1

f(k)−
∞∑
k=1

f(2k) (4.31)
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Thus, the first order correction to the zero modes can be written as:

φ
(1)
0,± = ∓4λ

√
2am

 ∑
k>0,odd

cos(kπz)

k4π4
− 1

16

∑
k>0,odd

cos(2kπz)

k4π4

 (4.32)

With the knowledge of the sum (cf. [18, p. 449])

∞∑
k=1

cos(kx)

k4
=

1

90
π4 − 1

12
π2x2 +

1

12
πx3 − 1

48
x4 , (4.33)

the calculation is now easy, and one obtains:

φ
(1)
0,± = ∓λ

√
2am

(
1

24
− 1

4
z2 +

1

6
z3

)
(4.34)

Summarizing, the modes for the Neumann case are to first order in λ given by:

φ
(1)
n,pert =

1
4
√

(am)2 + (nπ)2

{
cos(nπz) +

√
(am)2 + (nπ)2

|n|π

[
λ

2πn

(
1

2
− z
)

cos(nπz)

+
λ

2

(
z(1− z) +

1

n2π2

)
sin(nπz)

]}

φ
±,(1)
0,pert =

1√
2am

∓ λ
√

2am

[
1

24
− 1

4
z2 +

1

6
z3

]
(4.35)

These modes are compared to numerical calculations of the analytical solution (3.15)
in terms of parabolic cylinder functions in figure 4.2.
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Figure 4.2: |φ(1)
n,pert|2(dashed, red line) and the numerical solution in terms of parabolic

cylinder functions (blue line) are shown for different values of n, λ and am for Neumann
boundary conditions.
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Chapter 5

The Charge Density

5.1 The Special Case m = 0

For the special case m = 0 the charge density may be calculated explicitly for Dirichlet
boundary conditions in first order perturbation theory. We will now do this using the
summation of modes method and the Hadamard point-splitting procedure.

5.1.1 The Summation of Modes Method

For m = 0 the modes are for Dirichlet boundary conditions given by (Eq. (4.24)):

φ
(1)
n,pert =

1√
|n|π

[
sin(nπz)

(
1 +

λ

2nπ

(1

2
− z
))
− λ

2
z(1− z) cos(nπz)

]
. (5.1)

According to the summation of modes method, the charge density is now calculated
to first order in λ by using the formalism developed in section 3.4. We first calculate
the charge density of each mode (Equation (3.34)) ρn = 2e(Ωn − eA0)|φn|2. For
A0(z) = −λ

a

(
z − 1

2 + α
)

one finds:

ρn(z) = 2
e

a

(
ωn + λ(z − 1

2
)

)
|φn(z)|2 . (5.2)

Using the above expression for the modes and ω−n = −ωn = nπ (Equation (4.11)), it
follows that

ρIn =
1

2
(ρn + ρ−n)

= −λe
a
z(1− z) sin(2nπz) .

(5.3)

Unfortunately,
∞∑
n=1

ρIn is not converging for most z, which is easily seen by noting that

sin(2nπz) is not converging to zero, which is a necessary condition for the convergence
of an infinite series. However, one can still make sense of this expression. For instance,
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the sum is Abel summable1, as

lim
ε→0+

1

2i

∞∑
n=1

[
ei2nπ(z+iε) − e−i2nπ(z+iε)

]
= lim

ε→0+

sin(2π(z + iε))

2− 2 cos(2π(z + iε))

=
1

2

cos(πz)

sin(πz)
.

Hence, ρIn Abel converges to

ρI(z) = −1

2

e

a
λz(1− z) cot(πz) . (5.4)

This is the charge density given by Ambjørn and Wolfram [1]. One can also show that
∞∑
n=1

ρIn converges to ρI(z) in a distributional sense, by showing that for any smooth

test function f(z)
∞∑
n=1

1∫
0

ρIn(z)f(z)dz =

1∫
0

ρI(z)f(z)dz . (5.5)

This calculation is showed in appendix B. ρI is plotted in figure 5.1. One espe-
cially notes that the charge density does not vanish on the boundary according to this
method.
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Figure 5.1: Plot of ρI(z) (full line) in units of e
aλ. The line − 1

2π + z
π (dashed line) is

given as comparison.

5.1.2 Explicit Calculation of the Two-point Function

We will here calculate the charge density for the Dirichlet boundary conditions using
the Hadamard point-splitting procedure, by first computing the functions (Dy

0)∗ω2φφ
∗(x, y)

1A sum
∑
an is Abel summable, if

∑
anz

n converges for all |z| < 1 and if lim
z→1−

∑
anz

n exists, cf.

[17]
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and Dx
0ω2φ

∗φ(x, y). We should therefore evaluate:2

(Dy
0)∗ω2φφ

∗(x, y) = i
∑
n,+

φn(x1)
(
Ωn − eA0(y1)

) (
φn(y1)

)∗
e−i(x

0−y0)Ωn

Dx
0ω2φ

∗φ(x, y) = −i
∑
n,−

φn(x1)
(
Ωn − eA0(x1)

) (
φn(y1)

)∗
e−i(x

0−y0)Ωn

(5.6)

For A0(z1) = − λ
ea

(
z1 − 1

2 + α
)
, ωn = aΩn + αλ, we get:

(Dy
0)∗ω2φφ

∗(x, y) =
i

a

∑
n,+

φn(x1)

(
ωn + λ

(
y1 − 1

2

))(
φn(y1)

)∗
e−i

x0−y0
a

(ωn−αλ)

Dx
0ω2φ

∗φ(x, y) = − i
a

∑
n,−

φn(x1)

(
ωn + λ

(
x1 − 1

2

))(
φn(y1)

)∗
e−i

x0−y0
a

(ωn−αλ)

(5.7)
To first order in λ:3

φn(z) =
1√
|n|π

[
sin(nπz)

(
1 +

λ

2nπ

(
1

2
− z
))
− λ

2
z(1− z) cos(nπz)

]
ωn = nπ

(5.8)

Therefore, to first order in λ:

φn(x1)

(
ωn + λ

(
y1 − 1

2

))(
φn(y1)

)∗
= sgn(n) sin(nπx1)

[
sin(nπy1)

(
1 +

λ

2nπ

(
1

2
− y1

))
− λ

2
y1(1− y1) cos(nπy1)

]
+ sgn(n)λ

[
1

2nπ
sin(nπx1)

(
1

2
− x1

)
− 1

2
x1(1− x1) cos(nπx1)

]
sin(nπy1)

+
λ

|n|π
sin(nπx1)

(
y1 − 1

2

)
sin(nπy1)

The term φn(x1)
(
ωn + λ

(
x1 − 1

2

)) (
φn(y1)

)∗
is obtained by performing the transfor-

mation x1 ↔ y1 in the above expression. We must therefore calculate sums of the

form sin(nπx1) sin(nπy1), sin(nπx1) cos(nπy1) and sin(nπx1) sin(nπy1)
n , each multiplied

by a factor e−i
nπ
a

(x0−y0). To evaluate these sums we will use the iε-prescription, which
can be thought of as adding a small imaginary part, iε, to one of the time-components.

We introduce the notations x = πx1, y = πy1 and t = π(x0−y0)
a . The relevant sums

2x1 and y1 are here reduced spatial variables, that is, divided by a.
3This is found by setting m = 0 in 4.24.
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expanded to first order in (x− y − t+ iε) are given by4

∞∑
n=1

sin(nx) sin(ny)e−in(t−iε)

=
−1

4

( 1

1− ei(x+y−t+iε) −
i

x− y − t+ iε
− i

−x+ y − t+ iε

+
1

1− ei(−x−y−t+iε)
− 1− i

6
(t− iε)

)
,

∞∑
n=1

sin(nx) cos(ny)e−in(t−iε)

=
−i
4

( 1

1− ei(x+y−t+iε) +
i

x− y − t+ iε
− i

−x+ y − t+ iε

− 1

1− ei(−x−y−t+iε)
− i

6
(x− y)

)
,

∞∑
n=1

sin(nx) sin(ny)

n
e−in(t−iε)

=
1

4

(
log
(

1− ei(x+y−t+iε)
)
− log (x− y − t+ iε)

− log (−x+ y − t+ iε) + log
(

1− ei(−x−y−t+iε)
)

+ iπ + i(t− iε)
)

.

4These are easily found by writing the trigonometric functions in terms of exponentials and then
using the geometric series or the Taylor expansion of the logarithm. One then expands the results to
linear order in (x− y − t+ iε).
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Using the above expressions we now obtain:

(Dy
0)∗ω2φφ

∗(x, y) = ± i
a
ei
x0−y0
a

λα

[
± −1

4

( 1

1− ei(x+y−t+iε) −
i

x− y − t+ iε
− i

−x+ y − t+ iε

+
1

1− ei(−x−y−t+iε)
− 1− i

6
(t− iε)

)
∓ λ

2π

(
1

2
− y1

)
1

4

(
log
(

1− ei(x+y−t+iε)
)
− log (x− y − t+ iε)

− log (−x+ y − t+ iε) + log
(

1− ei(−x−y−t+iε)
)

+ iπ + i(t− iε)
)

− λ

2
y1(1− y1)

−i
4

( 1

1− ei(x+y−t+iε) +
i

x− y − t+ iε
− i

−x+ y − t+ iε

− 1

1− ei(−x−y−t+iε)
− i

6
(x− y)

)
± λ

2π

(
1

2
− x1

)
1

4

(
log
(

1− ei(x+y−t+iε)
)
− log (x− y − t+ iε)

− log (−x+ y − t+ iε) + log
(

1− ei(−x−y−t+iε)
)

+ iπ + i(t− iε)
)

− λ

2
x1(1− x1)

−i
4

( 1

1− ei(x+y−t+iε) +
i

−x+ y − t+ iε
− i

x− y − t+ iε

− 1

1− ei(−x−y−t+iε)
+
i

6
(x− y)

)]
(5.9)

Here, the upper sign should be used for (Dy
0)∗ω2φφ

∗(x, y) and the lower sign for
Dx

0ω2φ
∗φ(x, y). Furthermore, one should do the replacement t → −t in the expres-

sion for Dx
0ω2φ

∗φ(x, y). We further remind ourselves that with the above conventions

x = πx1, y = πy1 and t = π x
0−y0
a , where x1 and y1 are the spatial variables divided by

the interval length a. Now that we have managed to calculate the two-point function
explicitly to first order in λ, we can use it to calculate the charge density.

5.1.3 The Hadamard Point-splitting Procedure

We will now evaluate the charge density according to (3.37) using the two-point func-
tions calculated in the previous section. Using (2.26), we find that the parallel trans-
port is in our case given by:

V0(x, y) = e
iλx

0−y0
a

(
x1+y1

2
− 1

2
+α

)
(5.10)

The singular parts of Dx
0ω2φ

∗φ(x, y) and (Dy
0)∗ω2φφ

∗(x, y) can now be found by cal-
culating Dx

0h
−(x, y) and (Dy

0)∗h+(x, y). Using (2.27) and (2.28) one finds

(Dy
0)∗h+(x, y) =

−1

4π
e
iλx

0−y0
a

(
x1+y1

2
− 1

2
+α

)
2(x0 − y0 − iε)

(x1 − y1)2 + iε(x0 − y0)− (x0 − y0)2

Dx
0h
−(x, y) =

1

4π
e
iλx

0−y0
a

(
x1+y1

2
− 1

2
+α

)
2(x0 − y0 + iε)

(x1 − y1)2 − iε(x0 − y0)− (x0 − y0)2
,

(5.11)
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plus terms that vanish in the coinciding-point limit. If one takes the coinciding-point
limit from the time direction, singularities in (Dy

0)∗ω2φφ
∗(x, y) occur in the first term

in (5.9). However, one can see that (Dy
0)∗h+(x, y) cancels this singularity:5

lim
y→x

i

a
ei
x0−y0
a

λα−1

4

[
−i

x− y − t+ iε
− i

−x+ y − t+ iε

]
− (Dy

0)∗h+(x, y)

= − iλ

2πa

(
x1 − 1

2

)
For Dx

0ω2φ
∗φ(x, y), one similarly finds

lim
y→x

i

a
ei
x0−y0
a

λα 1

4

[
−i

x− y + t+ iε
− i

−x+ y + t+ iε

]
−Dx

0h
−(x, y)

=
iλ

2πa

(
x1 − 1

2

)
The charge density can now be calculated to first order in λ according to (3.37) by
taking the limit from the time direction:6

ρ(x) = lim
t→0

lim
ε→0+

ie

[
iλ

2πa

(
x1 − 1

2

)
+

λ

4a
x1(1− x1)

( 1

1− ei(2x+t+iε)
− 1

1− ei(−2x+t+ε)

)
+

iλ

2πa

(
x1 − 1

2

)
+

λ

4a
x1(1− x1)

( 1

1− ei(2x−t+iε)
− 1

1− ei(−2x−t+ε)

)]

= 2ie

[
iλ

2πa

(
x1 − 1

2

)
+

λ

4a
x1(1− x1)

( 1

1− e2ix
− 1

1− e−2ix

)]

= − e
a

λ

π

(
x1 − 1

2

)
− 1

2

e

a
λx1(1− x1) cot(πx1)

(5.12)

This result is shown in figure 5.2. The result differs from the one obtained by the
summation of modes method in that there is an extra term, which compensates the
other term near the boundary of the interval and results in a vanishing charge density
on the boundary of the interval. This result is therefore qualitatively different from the
result presented by Ambjørn and Wolfram (cf. [1]), where the charge density takes on
the values ± eλ

2πa on the boundary. It is however in some sense reasonable as the modes
all vanish on the boundary of the interval due to the Dirichlet boundary conditions. In
[19] a similar result was obtained: They calculated the vacuum expectation value of the
charge density due to a constant gauge field in flat spacetimes with toroidal topology
and found that it vanishes on the boundary for Dirichlet boundary conditions.

The results obtained above show explicitly that the summation of modes method
and the Hadamard point-splitting procedure yield different results when applied to the

5To match the conventions used in h+ and h− one needs to do the replacement ε → πε
2a

in the

expressions for the two-point functions. Also recall that x = πx1 and t = π(x0−y0)
a

.
6One may also calculate the charge density with a coinciding-point limit from the space direction.

One then proceeds analogously and the same result is obtained.
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Figure 5.2: The vacuum polarization obtained by the Hadamard point-splitting pro-
cedure for the massless Klein-Gordon field on a finite interval in 1 + 1 dimensions with
Dirichlet boundary conditions.

Klein-Gordon field in a static external electric field, similar to what was found for the
Dirac field in [2].

5.2 The Charge Density for m 6= 0

The charge density per mode for the massive case can be found by using (5.2). For
Dirichlet boundary conditions, one finds, by using the modes found before (4.24), that
the induced charge density for the nth mode (Equation (5.3)) is given by:

ρIn = −λe
a

[√
(am)2 + (nπ)2

nπ
z(1− z) sin(2nπz)

+ 2(z − 1

2
) sin2(nπz)

(√
(am)2 + (nπ)2

(nπ)2
− 1√

(am)2 + (nπ)2

)]

Using the modes found for Neumann boundary conditions (4.35), one similarly finds
for the Neumann case:

ρIn =
λe

a

[√
(am)2 + (nπ)2

nπ

(
z(1− z) +

1

(nπ)2

)
sin(2nπz)

− 2

(
z − 1

2

)
cos2(nπz)

(√
(am)2 + (nπ)2

(nπ)2
− 1√

(am)2 + (nπ)2

)]

ρI0 =
λe

a

((
z − 1

2

)
am

− am
[

1

6
− z2 +

2

3
z3

])

The charge density is now, according to the summation of modes method, given as

ρ =
∑
n
ρIn. Unfortunately, we needed to evaluate these expressions numerically.

The above calculations suggest that, in the limit m→ 0, the charge density shows
an extremely strong screening behaviour and that it is definitely not anti-screening,
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parallel transport.

Figure 5.3: Numerical calculations of the vacuum polarization at different values of
am for Dirichlet boundary conditions are shown. The dashed line shows the charge
density for the massless case.

as suggested by Ambjørn and Wolfram within the external field approximation (cf.
[1]). The reason that they got that result is of course not due to the fact that they
used the summation of modes method (up to this point, we did as well), but rather
that they neglected the contribution from the zero modes. As we can see explicitly
by inspecting our results, the zero mode is actually dominating the charge density for
small masses. However, it seems like e.g. back-reaction effects need to be included in
order to understand the behaviour for small masses in the Neumann case properly, as
one might physically not expect the vacuum polarization to grow indefinitely in the
limit m → 0. For instance, one would intuitively not expect the screening field to be
larger than the external field.

The charge density can now be calculated numerically by summing the above ex-
pressions and including the term coming from the parallel transport. The results are
presented in figure 5.3 and 5.4.
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Figure 5.4: Numerical calculations of the vacuum polarization at different values of
am for Neumann boundary conditions are shown.

We can further try to find closed form expressions for am� π by Taylor expanding
the above formulae. Doing this and performing the sum yields for the Dirichlet case:

ρ(z) = −λ e
2a

[
z(1− z) cot(πz) +

(am)2

2iπ2
z(1− z)

(
Li2(e2iπz)− Li2(e−2iπz)

)
+ 2

(am)2

π3
(z − 1

2
)

(
ζ(3)− 1

2

(
Li3(e2iπz) + Li3(e−2iπz)

))]
+O

((am
π

)4
)

(5.13)
Li2 is the polylogarithm7 and ζ is the Riemann-zeta function.

For the Neumann case, one similarly gets

ρ(z) = λ
e

2a

[
2

am

(
z − 1

2

)
+ z(1− z) cot(πz)

+
1

iπ2

(
Li2(e2iπz)− Li2(e−2iπz)

)
− 2am

[
1

6
− z2 +

2

3
z3

]
+

(am)2

2iπ2

(
z(1− z)

(
Li2(e2iπz)− Li2(e−2iπz)

)
+

1

π2

(
Li4(e2iπz)− Li4(e−2iπz)

))
− 2

(am)2

π3
(z − 1

2
)

(
ζ(3) +

1

2

(
Li3(e2iπz) + Li3(e−2iπz)

))]
+O

((am
π

)4
)

.

(5.14)

7The polylogarithm is defined by Lik(z) =
∞∑
n=1

zn

nk for |x| < 1. See [20] for properties of such

functions.

39



Chapter 6

Conclusions and Outlook

In this work the massive Klein-Gordon field on a finite interval in 1 + 1 dimensions
subject to a static, external electric field was treated. The modes were calculated
explicitly for Dirichlet and Neumann boundary conditions up to first order in the
field. The analytic solution in terms of parabolic cylinder functions was also presented
and a small discrepancy to the solution presented by Ambjørn and Wolfram in [1]
in the massless limit was found. As a special case, we considered the massless case
under Dirichlet boundary conditions, for which the charge density may be calculated
explicitly with the summation of modes method, as well as with the Hadamard point-
splitting procedure. When using the summation of modes method, the same result as
those of Ambjørn and Wolfram were found, where as the Hadamard point-splitting
procedure yielded an extra term, which caused the charge density to vanish on the
boundary of the interval. The two methods thus yielded qualitatively different results,
as also found in [2] for the Dirac field.

The charge density per mode was further found explicitly for the massive case for
both Dirichlet and Neumann boundary conditions, but to calculate the full charge den-
sity a numerical computation was needed. When the parallel transport was included
one here also found a vanishing charge density on the boundary for Dirichlet boundary
conditions. However, for Neumann boundary conditions, the charge density was found
not to vanish on the boundary in general and its value was found to depend on the
product of the interval length and the mass am. It was also found - even when the
parallel transport was not included - that the field also for Neumann boundary condi-
tions screens the external field, as one would physically expect. In the limit m→ 0 the
screening behaviour was found to be especially strong, in contrary to the anti-screening
behaviour claimed by Ambjørn and Wolfram in the massless case. The reason for this
qualitative discrepancy was found to be due to that they neglected the contribution
from the zero modes to the charge density, which was seen to be especially important
in the limit of low masses.

It would be interesting to explore non-perturbative effects, by e.g. taking a more
numerical approach to the problem. Then, one could also investigate whether the
behaviour of the vacuum polarization far away from the boundary is depending on the
boundary conditions in the limit of large intervals a→∞, or not. One would physically
expect that the boundary conditions do not matter far away from the boundary for
large intervals. One could further try to generalize the treatment in this work to other
boundary conditions and/or higher dimensions. The field was here taken to be an
external field, but one may try to leave this approximation by taking back-reaction
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effects into account. One might for instance expect the vacuum polarization to not
grow indefinitely for Neumann boundary conditions in the limit of low masses. One
could further consider an electric field varying in space.
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Appendix A

Propagators of the Klein-Gordon
Field

We will now show that the retarded propagator of the Klein-Gordon field in a static
electric field (∂tA0 = 0) is given by:

∆− = iθ(x0 − y0) 〈0|[φ(x), φ∗(y)]|0〉 (A.1)

A similar calculation for the free Klein-Gordon field is given in [3]. As such a calculation
is usually not given when an external field is present, the calculations will be presented
here. One finds:

1

i

(
D2
µ +m2

)
∆− =

(
∂2
t θ(x

0 − y0)
)
〈0|[φ(x), φ∗(y)]|0〉+ 2

(
∂tθ(x

0 − y0)
)
〈0|[∂tφ(x), φ∗(y)]|0〉

+ 2ieA0

(
∂tθ(x

0 − y0)
)
〈0|[φ(x), φ∗(y)]|0〉

+ θ(x0 − y0)
(
D2
µ +m2

)
〈0|[φ(x), φ∗(y)]|0〉

= δ(x0 − y0) 〈0|[∂tφ(x), φ∗(y)]|0〉+ 2ieA0δ(x
0 − y0) 〈0|[φ(x), φ∗(y)]|0〉

We used the distributional identity ∂xθ(x) = δ(x). Using the equal-time commutation
relations, we notice that 2ieA0δ(x

0 − y0) 〈0|[φ(x), φ∗(y)]〉 = 0. It also follows that

δ(x0 − y0) 〈0|[∂tφ(x), φ∗(y)]|0〉 = δ(x0 − y0) 〈0|[∂tφ(x) + ieA0(x), φ∗(y)]|0〉
= δ(x0 − y0) 〈0|[π∗(x), φ∗(y)]|0〉
= −iδ(~x− ~y) .

We once again used the equal-time commutation relations. Therefore:(
D2
µ +m2

)
iθ(x0 − y0) 〈0|[φ(x), φ∗(y)]|0〉 = δ(x− y) (A.2)

As ∆− vanishes for x0 < y0, this shows that ∆− indeed is the retarded fundamental
solution of the Klein-Gordon operator. One analogously shows that the advanced
propagator ∆+ is given by:

∆+ = −iθ(x0 − y0) 〈0|[φ(x), φ∗(y)]|0〉 (A.3)

These calculations especially show that the two-point functions fulfil the condition

ω2φφ
∗(x, y)− ω2φ

∗φ(x, y) = i
(
∆+ −∆−

)
. (A.4)
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Appendix B

The Charge Density as a
Distribution

When using the summation of modes method, we calculated the sum

∞∑
n=1

ρI(z) = −λe
a

∞∑
n=1

z (1− z) sin(2nπz) , (B.1)

in Abel’s sense. Now, we however want to understand it in a distributional sense,
which may be more appropriate. For this reason we introduce a test function f(z) and
consider the expression:

∞∑
n=1

1∫
0

ρI(z)f(z) dz (B.2)

We integrate by parts by making use of the formula:∫
z(1− z) sin(2nπz) dz = −(1− z)z cos(2nπz)

2πn
− cos(2nπz)

4π3n3
+

(1− 2z) sin(2nπz)

4π2n2

(B.3)
Thus:

∞∑
n=1

1∫
0

z (1− z) sin(2nπz)f(z) dz

=

∞∑
n=1

1∫
0

dzf ′(z)

{
(1− z)z cos(2nπz)

2πn
+

cos(2nπz)

4π3n3
− (1− 2z) sin(2nπz)

4π2n2

}

Using∫
z(1− z) cos(2nπz) dz =

sin(2nπz)

4π3n3
+
z(1− z) sin(2nπz)

2πn
− (2z − 1) cos(2nπz)

4π2n2
,

(B.4)
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we can perform partial integration on the first term again, one gets:

∞∑
n=1

1∫
0

z (1− z) sin(2nπz)f(z) dz

=

∞∑
n=1

1∫
0

dz

([
−sin(2nπz)

8π4n4
− z(1− z) sin(2nπz)

4π2n2
+

(2z − 1) cos(2nπz)

8π3n3

]
f ′′(z)

+

[
cos(2nπz)

4π3n3
− (1− 2z) sin(2nπz)

4π2n2

]
f ′(z)

)

We integrate the terms containing 1
n3 and 1

n4 by parts ”backwards”:

∞∑
n=1

1∫
0

z (1− z) sin(2nπz)f(z) dz

=
∞∑
n=1

1∫
0

dz

(
sin(2nπz)

2π2n2
f(z)− z(1− z) sin(2nπz)

4π2n2
f ′′(z)

+
(2z − 1) sin(2nπz)

4π2n2
f ′(z)− sin(2nπz)

2π2n2
f(z) +

sin(2nπz)

2π2n2
f(z)− (1− 2z) sin(2nπz)

4π2n2
f ′(z)

)

=

∞∑
n=1

1∫
0

dz

(
sin(2nπz)

2π2n2
f(z)− z(1− z) sin(2nπz)

4π2n2
f ′′(z) +

(2z − 1) sin(2nπz)

2π2n2
f ′(z)

)

As each term is absolutely converging we can interchange the sum and the integral.
We further use sin(2nπz) = 1

2i(e
2iπnz − e−2iπnz) and (cf. [20])

∞∑
n=1

xn

n2
= −

x∫
0

ln(1− t)
t

dt . (B.5)

The above function is known as the dilogarithmic function (cf. [20]). Thus:

∞∑
n=1

1∫
0

z (1− z) sin(2nπz)f(z) dz

=

1∫
0

dz
1

4iπ2

(
−f(z)− (2z − 1)f ′(z) +

z(1− z)
2

f ′′(z)

) e2iπz∫
0

ln(1− t)
t

dt−
e−2iπz∫

0

ln(1− t)
t

dt


Further

∂

∂z

 e2iπz∫
0

ln(1− t)
t

dt−
e−2iπz∫

0

ln(1− t)
t

dt

 = 2πi
(
ln(1− e2iπz) + ln(1− e−2iπz)

)
= 4πi ln |2 sin(πz)|
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We now want to integrate by parts backwards. As −1−(−1) ∂∂z (2z−1)+ ∂2

∂z2
z(1−z)

2 = 0
the term involving the dilogarithmic function cancels and only terms containing its
derivatives remain. Hence:

∞∑
n=1

1∫
0

z (1− z) sin(2nπz)f(z) dz

=

1∫
0

dzf(z)
1

4iπ2

(
(2z − 1)4πi ln |2 sin(πz)|+

+ 2
1− 2z

2
4πi ln |2 sin(πz)|+ z(1− z)

2

∂

∂z
4πi ln |2 sin(πz)|

)

=

1∫
0

dzf(z)

(
−1

2
z(1− z) cot(πz)

)

By comparing this to our original expression, we might thus think of the charge density
as a distribution of the form:

ρ̂(z) = −λe
a

1

2
z(1− z) cot(πz) (B.6)

We see that this result coincides with the Abel limit.
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