TP 3: Statistische Physik - Übungsblatt 5

Winter Semester 2024/25

Due: Lösungen für die mit * markierten Aufgaben können bis Dienstag, 19.11.2024,

12:00 Uhr via Moodle abgegeben werden. Die Lösungen werden in den Übungen

am Donnerstag, 22.11.2024 und Freitag, 23.11.2024 besprochen.

Website: Die Übungsblätter können von der Kurswebsite heruntergeladen werden:

https://home.uni-leipzig.de/stp/Statistical.html_Physics_MPS_WS2425.html

Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=50952

13. Dirac-Delta Distribution

2+2+3 Punkte

Wir bezeichnen eine Funktionenfolge $\{\delta_n(x)\}_{n\in\mathbb{N}}$ als Dirac-Folge, wenn sie normiert ist, d.h. wenn

$$\int_{-\infty}^{\infty} \delta_n(x) dx = 1 \quad \forall n \in \mathbb{N}$$
 (1)

erfüllt ist, und für jede Testfunktion f(x) die Filtereigenschaft

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n(x) f(x) dx = f(0)$$
 (2)

gilt. In Gleichung (2) ist zu beachten, dass der Grenzwert nicht mit dem Integral vertauscht werden kann. Insbesondere konvergiert die Folge δ_n nicht gegen eine Funktion und für die Schreibweise $\lim_{n\to\infty} \delta_n(x) = \delta(x)$ ist $\delta(x)$ als Distribution zu verstehen.

Wir betrachten die Funktionenfolgen

$$g_n(x) = \frac{n}{\sqrt{2\pi}} e^{-\frac{n^2 x^2}{2}}$$
 (3)

$$h_n(x) = \begin{cases} n & \text{für } |x| \le \frac{1}{2n} \\ 0 & \text{sonst } . \end{cases}$$
 (4)

- (a) Zeigen Sie, dass die Folgen die Normierungseigenschaft (1) erfüllen und skizzieren Sie die Funktionen $g_n(x)$ und $h_n(x)$ für einige Werte von $n \in \mathbb{N}$. Wie verhalten sich die Funktionen qualitativ für wachsende n?
- (b) Sei f(x) eine Testfunktion, die in eine überall konvergente Taylorreihe entwickelt werden kann¹. Zeigen Sie, dass dann die Filtereigenschaft (2) für die Funktionenfolgen $g_n(x)$ und $h_n(x)$ erfüllt ist.

¹Diese strengen Einschränkungen an f(x) sind tatsächlich nicht notwendig, damit die Filtereigenschaft erfüllt ist. Es würde schon ausreichen, dass f(x) stetig in x=0 ist und dass die Integrale in Gleichung (2) für alle n absolut konvergieren.

(c) Zeigen Sie nun ausgehend von der Filtereigenschaft

$$\int_{a}^{b} \delta(x) f(x) dx = \begin{cases} f(0) & \text{für } 0 \in (a, b) \\ 0 & \text{sonst} \end{cases} \quad \text{mit } a < b ,$$
 (5)

die folgenden Eigenschaften der Dirac-Delta Distribution $\delta(x)$ für $x_0, \alpha \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} f(x)\delta(x - x_0) = f(x_0)$$
 (i)

$$\delta(-x) = \delta(x) \tag{ii}$$

$$\delta(\alpha x) = \frac{1}{|\alpha|} \delta(x) \tag{iii}$$

Prüfen Sie für die Dirac-Folge $h_n(x)$ aus Gleichung (4), dass für eine stetig differenzierbare Funktion g(x) mit endlich vielen, isolierten, einfachen Nullstellen x_{ν} gilt

$$\int_{-\infty}^{\infty} dx \ f(x)\delta(g(x)) = \sum_{x_{\nu}} \frac{f(x_{\nu})}{|g'(x_{\nu})|} \ . \tag{iv}$$

14. Grenzwerte der Binomialverteilung

2+2+2 Punkte

Die Binomialverteilung beschreibt die Wahrscheinlichkeit bei N unabhängigen, identisch verteilten Zufallsexperimenten mit zwei möglichen Ergebnissen mit Erfolgswahrscheinlichkeit p und Misserfolgswahrscheinlichkeit (1-p) genau n Erfolge zu erzielen:

$$P_{\text{bin}}(n; N, p) = \binom{N}{n} p^n (1 - p)^{N - n} . {6}$$

Man bezeichnet solche Zufallsreihen unabhängiger Messungen von binären Ereignissen mit festen Wahrscheinlichkeiten als Bernoulli-Prozesse.

- (a) Berechnen Sie für die Binomialverteilung den Erwartungswert $\langle n \rangle$ und die Varianz $\langle (n \langle n \rangle)^2 \rangle$.
- (b) Betrachten Sie nun den Fall großer N und zeigen Sie, dass die Binomialverteilung im Grenzfall sehr kleiner Wahrscheinlichkeit p in eine Poisson-Verteilung

$$P_{\mathbf{p}}(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!} \tag{7}$$

übergeht. Betrachten Sie dafür den Limes $N \to \infty$, $Np \to \lambda < \infty$, $n \ll N$.

(c) Für den Fall nicht verschwindend kleiner p zeigen Sie, dass sich die Binomialverteilung im Limes großer N, wie vom zentralen Grenzwertsatz vorhergesagt, einer Gaußverteilung $\mathcal{N}(Np,Np(1-p))$ annähert. Betrachten Sie dafür den Fall $N\to\infty,\ p\approx\frac{n}{N}\sim\frac{1}{2}$.

Hinweis: Nähern Sie $\ln(P_{\text{bin}}(n; N, p))$ mit der Stirling-Formel für $n, N \gg 1$ und berechnen Sie dann die Taylorreihe von $\ln(P_{\text{bin}}(n; N, p))$ um $\frac{n}{N} = p$ zur führenden Ordnung.

Betrachten Sie ein System aus $N\gg 1$ ununterscheidbaren, eindimensionalen harmonischen Oszillatoren der Masse m und Frequenz ω . Der Hamiltonian von Oszillator i sei gegeben als $H(r_i,p_i)=\frac{p_i^2}{2m}+\frac{m\omega^2}{2}q_i^2$. Im Folgenden wird die Boltzmann Entropie S_B als Funktion der mittleren Energie pro Oszillator ϵ im klassischen und quantenmechanischen Fall berechnet. Hierbei sei die Gesamtenergie $E=N\epsilon$ konstant.

(a) Für die klassische Rechnung, sei ein Makrozustand durch die Teilchendichte im μ -Raum definiert. Bestimmen Sie die Gleichgewichtsdichte n(r,p) mittels der Methode der Lagrangemultiplikatoren. Berechnen Sie die Multiplikatoren dann explizit aus den Nebenbedingungen konstanter Teilchenzahl $N = \int d\Gamma \, n(r,p)$ und konstanter Energie $E = N\epsilon = \int d\Gamma \, H(r,p) n(r,p)$. Bestimmen Sie damit $S_B^{\rm cl}(\epsilon)$.

Hinweis: Sie können das Resultat der Vorlesung $S_B^{\rm cl} = -k_B \left[\int d\Gamma \ n(r,p) \ln(n(r,p)h) - n(r,p) \right]$ verwenden. Da hier die Maximierung bezüglich einer Funktion n(r,p) erfolgen soll, ist analog zum diskreten Fall $\frac{\partial (S_B(n_\nu) + {\rm N.B.})}{\partial n_\nu} = 0$ hier eine Nullstelle der Funktionalableitung $\frac{\delta [S_B + {\rm N.B.}]}{\delta n(r,p)}$ zu bestimmen. Sie können dazu die folgende Regel für die Funktionalableitung verwenden

 $\frac{\delta}{\delta f(x)} \int \mathrm{d}x \, F[f(x)] = \frac{\partial F(f)}{\partial f} \Big|_{f = f(x)} \; .$

(b) Für die quantenmechanische Rechnung, verwenden Sie, dass die Eigenzustände des harmonischen Oszillators, $\hat{H}|\nu\rangle = E_{\nu}|\nu\rangle$, die Energielevel $E_{\nu} = \hbar\omega \left(\nu + \frac{1}{2}\right)$ mit $\nu = 0, 1, 2, ...$ besitzen. Ein Makrozustand sei dann über die Anzahl n_{ν} der Oszillatoren im Einteilchenzustand ν definiert. Bestimmen Sie die Besetzungszahlen n_{ν} im Gleichgewicht mittels der Methode der Lagrangemultiplikatoren. Berechnen Sie die Multiplikatoren dann explizit aus den Nebenbedingungen $N = \sum_{\nu} n_{\nu}$ und $E = N\epsilon = \sum_{\nu} E_{\nu} n_{\nu}$. Bestimmen Sie damit $S_B^{\rm qm}(\epsilon)$.

Hinweis: Zeigen Sie zunächst mittels Stirling-Approximation, dass $S_B^{\text{qm}}(n_{\nu}) \approx \text{const.} - k_B \sum_{\nu} (n_{\nu} \ln(n_{\nu}) - n_{\nu})$ gilt.

(c) Vergleichen Sie die Resultate von (a) und (b) im Grenzfall großer und kleiner ϵ , sowie im klassischen Limes $\hbar \to 0$.