Advanced Statistical Physics - Problem Set 12

Summer Term 2025

Due Date: Thursday, June 26, 17:00. Hand in tasks marked with * via Moodle.

*1. Specific heat exponent and scaling relation 4+4 Points

(a) Calculate the specific heat critical exponent using

$$C_{\rm sing}(t,h) = -T \frac{\partial^2}{\partial T^2} f_{\rm sing}(t,h) ,$$

and the scaling hypothesis for $f_{sing}(t,h)$. Start from the generalized homogeneity equation

$$\lambda f_{\text{sing}}(t,h) = f_{\text{sing}}(\lambda^{a_t}t,\lambda^{a_h}h)$$
.

Hint: Use an appropriate expression for λ to obtain the form of the singular part of the free energy as given in the lectures

$$f_{\rm sing}(t,h) = |t|^c g_{f,\pm}(h/|t|^{\Delta})$$
.

Use the scaling of C_{sing} to relate c and α .

(b) Exactly at the critical point, the correlation length is infinite, and therefore all correlations decay as a power-law of the separation. From scattering experiments one obtains that

$$\langle m(\boldsymbol{x})m(0)\rangle_c \sim 1/|\boldsymbol{x}|^{d-2+\eta}$$

Away from criticality, the correlation functions decay exponentially with the length scale determined by the correlation length $\xi(t, h)$. This exponential decay can be approximated with an abrupt decay of the correlation function to zero at $|\mathbf{x}| \sim \xi(t, h)$.

Use the definition of the susceptibility

$$\chi \sim \int d^d x \langle m({\bm x}) m(0) \rangle_c$$

to derive Fisher's identity, which establishes a connection between the correlation length exponent ν , the correlation function exponent η , and the susceptibility exponent γ .

2. Hartree approximation

2+3+3+1+1+2 Points

Consider the Landau-Ginzburg Hamiltonian:

$$\beta \mathcal{H} = \int d^d x \left[\frac{t}{2} \boldsymbol{m}^2 + \frac{K}{2} (\nabla \boldsymbol{m})^2 + u(\boldsymbol{m}^2)^2 \right] ,$$

describing an N-component magnetization vector $\boldsymbol{m}(\boldsymbol{x})$. Assume that t > 0.

(a) Perform a Hubbard-Stratonovich trasnformation by first multiplying the partition function by

$$\mathbb{1} = \int D\rho(\boldsymbol{x}) \ e^{-N^2 \int d^d x \rho(\boldsymbol{x})^2/2}$$

and performing a shift $\rho \to \rho + \alpha m^2$, and show that with suitably chosen α you obtain a new Hamiltonian

$$\beta \mathcal{H}[m,\rho] = \int d^d x \left[\frac{t+2N^2 \alpha \rho}{2} \boldsymbol{m}^2 + \frac{K}{2} (\nabla \boldsymbol{m})^2 + \frac{N^2 \rho^2}{2} \right]$$

(b) We want to find a saddle-point equation, where $\rho(\mathbf{x}) = \rho_0$. Therefore, assume that ρ is constant in space and integrate over \mathbf{m} so that you obtain an effective Hamiltonian for ρ_0

$$\beta \mathcal{H}_{\text{eff}}(\rho_0) = \frac{N^2 \rho_0^2 V}{2} + \frac{N}{2} \sum_{q} \ln\left(t + 2N^2 \alpha \rho_0 + Kq^2\right) \;.$$

(c) Use the effective Hamiltonian obtained in (b) to find the saddle-point equation for ρ_0 . Notice that in the Hamiltonian obtained in part (a), t has been renormalized so that $t' = t + 2N^2 \alpha \rho$. Use the saddle-point equation to find the self-consistency equation for t'

$$t' = t + \frac{4uN}{(2\pi)^d} \int d^d q \, \frac{1}{t' + Kq^2} \; .$$

- (d) Argue why the method used above works well in the limit $N \to \infty$.
- (e) In order to determine the critical exponents, we need to know how the renormalized parameter t' depends on the reduced temperature $t - t_c$. It can be shown that by introducing a new variable $M^2 = t'/(t - t_c)$, the self-consistency equation for 2 < d < 4 can be rewritten as

$$1 = M^2 \left[1 + C(d) N \left(\frac{t_G}{M^2(t - t_c)} \right)^{\frac{4-d}{2}} \right] ,$$

where t_G is the Ginzburg temperature and C(d) is a constant. Solve the equation in the limits $t - t_c \gg t_G$ and $t - t_c \ll t_G$.

(f) Comment on how the critical exponents for the susceptibility γ , correlation length ν , specific heat α , and magnetization β are changed as compared to the result of the Gaussian model in the two limits discussed in (e).