Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
N. John, A. Afanah

Advanced Statistical Physics - Problem Set 13

Summer Term 2020

Due Date: Tuesday, July 14, 10:00 a.m., solutions must be mailed to stp2.leipziguni@gmail.com
Internet: Advanced Statistical Physics exercises

1. Field operators

The operators a_{k}^{\dagger} and a_{k} create or annihilate single particle states with momentum k, respectively. They obey the commutation relations $\left[a_{k}, a_{k^{\prime}}\right]_{\zeta}=0$, and $\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]_{\zeta}=\delta_{k, k^{\prime}}$ with $\zeta=1$ for bosons and $\zeta=-1$ for fermions. The field operator $\Psi(x)$ is defined as the Fourier transform

$$
\Psi(x)=\frac{1}{\sqrt{L}} \sum_{k} a_{k} e^{i k x} .
$$

Show that $\Psi(x)$ and its Hermitian conjugate $\Psi^{\dagger}(x)$ obey the commutation relations

$$
\left[\Psi(x), \Psi^{\dagger}(y)\right]_{\zeta}=\delta(x-y) .
$$

2. Lindhard response function

$$
2+3+1+3+2 \text { Points }
$$

As derived in the lectures, the response of a d-dimensional free electron gas to a potential $\phi(\boldsymbol{r})$ is described by an induced charge $\varrho^{\text {ind }}(\boldsymbol{r}, t)$ with Fourier transform

$$
\varrho^{\text {ind }}(\boldsymbol{q}, \omega)=\Pi_{0}(\boldsymbol{q}, \omega) \phi(\boldsymbol{q}, \omega),
$$

where $\Pi_{0}(\boldsymbol{q}, \omega)$ is the Lindhard response function given by

$$
\Pi_{0}(\boldsymbol{q}, \omega)=2 \int \frac{\mathrm{~d}^{d} \boldsymbol{k}}{(2 \pi)^{d}} \frac{f_{\boldsymbol{k}}-f_{\boldsymbol{k}+\boldsymbol{q}}}{\xi_{\boldsymbol{k}}-\xi_{\boldsymbol{k}+\boldsymbol{q}}+i \omega} .
$$

The aim of this task is to compute the Lindhard response function for $T=0$ up to linear order in \boldsymbol{q}.
(a) Show that the Fermi function

$$
f_{k}=f\left(\xi_{k}, T\right)=\frac{1}{1+\exp \left[\frac{\xi_{k}}{k_{B} T}\right]}
$$

reduces to the a Heaviside step function $\theta\left(-\xi_{k}\right)$ in the limit $T \rightarrow 0^{+}$. Note that $\xi_{k=k_{F}}=0$.
(b) Expand $f_{\boldsymbol{k}}-f_{\boldsymbol{k}+\boldsymbol{q}}$ and $\xi_{\boldsymbol{k}}-\xi_{\boldsymbol{k}+\boldsymbol{q}}$ up to linear order in \boldsymbol{q} and show that

$$
\Pi_{0}(\boldsymbol{q}, \omega) \approx 2 \int \frac{\mathrm{~d}^{d} \boldsymbol{k}}{(2 \pi)^{d}} \delta\left(\xi_{\boldsymbol{k}}\right) \frac{\frac{\hbar^{2}}{m} \boldsymbol{k} \cdot \boldsymbol{q}}{-\frac{\hbar^{2}}{m} \boldsymbol{k} \cdot \boldsymbol{q}+i \omega} .
$$

(c) Argue that you can use $\boldsymbol{k}=k_{F} \boldsymbol{n}$ in the integral, with \boldsymbol{n} denoting the direction of \boldsymbol{k}. Show that $\Pi_{0}(\boldsymbol{q}, \omega)$ is given by

$$
\Pi_{0}(\boldsymbol{q}, \omega)=2 \int \frac{\mathrm{~d}^{d} \boldsymbol{k}}{(2 \pi)^{d}} \delta\left(\xi_{\boldsymbol{k}}\right) \frac{\hbar v_{F} \boldsymbol{n} \cdot \boldsymbol{q}}{-\hbar v_{F} \boldsymbol{n} \cdot \boldsymbol{q}+i \omega},
$$

with $v_{F}=\hbar k_{F} / m$ denoting the Fermi velocity.
(d) Show that for $d=3$ the Lindhard function is given by

$$
\Pi_{0}(\boldsymbol{q}, \omega)=-\rho_{F}\left[1+\frac{i \omega}{2 \hbar v_{F} q} \ln \left(\frac{i \omega-\hbar v_{F} q}{i \omega+\hbar v_{F} q}\right)\right]
$$

with the Fermi density of states given by

$$
\rho_{F}=2 \int \frac{d^{d} k}{(2 \pi)^{d}} \delta\left(\xi_{k}\right) .
$$

(e) Calculate the static limit $\Pi_{0}(\boldsymbol{q}, \omega \rightarrow 0)$ for the case $d=3$. Does the result depend on the dimension of system?

