Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
N. John, A. Afanah

Advanced Statistical Physics - Problem Set 11

Summer Term 2020

Due Date: Tuesday, June 30, 10:00 a.m., solutions must be mailed to stp2.leipziguni@gmail.com

1. KosterlitzThouless transition

The KosterlitzThouless transition is a second order phase transition in the two-dimensional xymodel due to topological defects. We describe $\theta(\boldsymbol{x})$ as the spatial orientation of a spin-density $\boldsymbol{m}(\boldsymbol{x})=\bar{m}\left(\cos \theta(\boldsymbol{x}) \boldsymbol{e}_{\boldsymbol{x}}+\sin \theta(\boldsymbol{x}) \boldsymbol{e}_{y}\right)$. We require $\boldsymbol{m}(\boldsymbol{x})$ to be continuous everywhere except at a single point and consider a vortex with

$$
\theta(r, \varphi)=n \varphi+\theta_{0}
$$

where r and φ are polar coordinates and n is an integer. The singularity at the origin is removed by requiring $\langle\boldsymbol{m}(\boldsymbol{x})\rangle=0$ inside the vortex core of size a, centered around the origin.
a) Using the definition of $\theta(r, \varphi)$, explicitly calculate the integral

$$
\frac{1}{2 \pi} \int_{\mathcal{C}} \mathrm{d} \boldsymbol{l} \cdot \nabla \theta
$$

where \mathcal{C} is a circle with radius R around the origin. Give an interpretation for the meaning of the variable n. Comment on the behavior of the angle θ at the positive x-axis, i.e. on $\theta(x, 0)$? How is this compatible with continuity of the order parameter $\boldsymbol{m}(\boldsymbol{x})$?
b) The energy of a vortex in a circular volume Ω with radius R is divided into two contributions. i) the energy E_{c} of the vortex core. The core is a circular region with radius a around the center of the vortex. ii) the elastic energy $E_{\text {el }}=(K / 2) \int \mathrm{d}^{2} x(\nabla \theta)^{2}$. Show that the elastic energy is given by

$$
E_{\mathrm{el}}=\pi K n^{2} \ln \left(\frac{R}{a}\right) .
$$

c) Obtain an expression for the free energy $F=E_{\text {el }}-T S$ of a vortex. Find the transition temperature T_{c} above which vortices can proliferate and destroy the ordered phase.

Hint: To obtain an expression for the entropy, you may want to estimate the number of different vortex positions in the area Ω by taking into account the finite area πa^{2} of the vortex core. To find the transition temperature, consider at which temperature the contribution of the vortex to the free energy changes sign.

Consider the Landau-Ginzburg Hamiltonian:

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} \boldsymbol{m}^{2}+\frac{K}{2}(\nabla \boldsymbol{m})^{2}+u\left(\boldsymbol{m}^{2}\right)^{2}\right]
$$

describing an N-component magnetization vector $\boldsymbol{m}(\boldsymbol{x})$. Assume that $t>0$.
a) Perform a Hubbard-Stratonovich transformation by first multiplying the partition function by

$$
\mathbb{1}=\int D \rho(\mathbf{x}) e^{-N^{2} \int d^{d} x \rho(\mathbf{x})^{2} / 2}
$$

and performing a shift $\rho \rightarrow \rho+\alpha \boldsymbol{m}^{2}$ and show that with suitably chosen α you obtain a new Hamiltonian

$$
\beta \mathcal{H}[m, \rho]=\int d^{d} x\left[\frac{t+2 N^{2} \alpha \rho}{2} \boldsymbol{m}^{2}+\frac{K}{2}(\nabla \boldsymbol{m})^{2}+\frac{N^{2} \rho^{2}}{2}\right]
$$

b) We want to find saddle-point equation, where $\rho(\mathbf{x})=\rho_{0}$. Therefore, assume that ρ is constant in space and integrate over \boldsymbol{m} so that you will obtain an effective Hamiltonian for ρ_{0}

$$
\beta H_{\mathrm{eff}}\left(\rho_{0}\right)=\frac{N^{2} \rho_{0}^{2} V}{2}+\frac{N}{2} \sum_{\mathbf{q}} \ln \left(t+2 N^{2} \alpha \rho_{0}+K q^{2}\right)
$$

c) Use the effective Hamiltonian obtained in (b) to find the saddle-point equation for ρ_{0}. Notice that in the Hamiltonian obtained in part (a) t has been renormalized so that $t^{\prime}=t+2 N^{2} \alpha \rho$. Use the saddle-point equation to find the self-consistency equation for t^{\prime}

$$
t^{\prime}=t+\frac{4 u N}{(2 \pi)^{d}} \int d^{d} q \frac{1}{t^{\prime}+K q^{2}}
$$

d) Argue why the method used above works well in the limit $N \rightarrow \infty$.

