Advanced Statistical Physics - Problem Set 8

Summer Term 2020

Due Date: Tuesday, June 9, 10:00 a.m., solutions must be mailed to stp2.leipziguni@gmail.com

1. The renormalization group of the Ising model 2+2+3+2+2+2 Points

The differential recursion relations for temperature T, and magnetic field h, of the Ising model in $d = 1 + \epsilon$ dimensions are (for $b = e^{\ell}$)

$$\begin{cases} \frac{d\,T}{d\ell} = -\epsilon\,T + \frac{1}{2}T^2 \\ \frac{d\,h}{d\ell} = dh \end{cases}$$

- a) Sketch the renormalization group flows in the (T, h) plane (for $\epsilon > 0$), marking the fixed points along the h = 0 axis.
- **b)** Calculate the eigenvalues y_t and y_h , at the critical fixed point, to order of ϵ .
- c) Starting from the relation governing the change of the correlation length ξ under renormalization, show that

$$\xi(h,t) = t^{-\nu} g_{\xi} \left(h / \mid t \mid^{\Delta} \right) \ , \ t = \frac{T}{T_c} - 1 \ ,$$

find the exponents Δ and ν

- d) Use a hyperscaling relation to find the singular part of the free energy $f_{sing}(t, h)$, and hence the heat capacity exponent α .
- e) Find the exponents β and γ for the singular behaviors of the magnetization and susceptibility, respectively.
- f) Starting with the relation between susceptibility and correlations of local magnetizations, calculate the exponent η for the critical correlations $(\langle m(0)m(x)\rangle \sim |x|^{-(d-2+\eta)})$
- g) How does the correlation length diverge as $T \to 0$ (along h = 0) for d = 1?