Advanced Statistical Physics - Problem Set 5

Summer Term 2020

Due Date: Tuesday, May 12, 10:00 a.m., solutions must be mailed to stp2.leipziguni@gmail.com

1. Coupling to a massless field

2+2+2+2+2+2+2 Points

Consider an n-component vector field $\vec{m}(x)$ coupled to a scalar field A(x), through the effective Hamiltonian

$$\beta \mathcal{H} = \int d^d x \left[\frac{K}{2} (\nabla \vec{m})^2 + \frac{t}{2} \vec{m}^2 + u(\vec{m}^2)^2 + e^2 \vec{m}^2 A^2 + \frac{L}{2} (\nabla A)^2 \right],$$

with K, L, and u positive.

- **a)** Assume $\vec{m}(x) = \overline{m} \ \hat{e}_{\ell}$ and $A(x) = \overline{A}$, and find the saddle point solution \overline{m} for t > 0 and t < 0.
- b) Sketch the heat capacity $C = \partial^2 ln Z / \partial t^2$ in the saddle point approximation, and discuss its singularity as $t \to 0$
- c) Include fluctuations by setting
 - $\begin{cases} \vec{m}(x) = (\overline{m} + \phi_{\ell}(x)) \ \hat{e}_{\ell} + \phi_{i}(x) \ \hat{e}_{i}, \\ A(x) = a(x), \end{cases}$

and expanding $\beta \mathcal{H}$ to quadratic order in ϕ and a. Hint: after substituting the above in $\beta \mathcal{H}$, the linear terms vanish at the minimum and the second order terms give

$$\beta \mathcal{H}_{2} = \int d^{d}x \left[\frac{K}{2} (\nabla \phi_{\ell})^{2} + \frac{t + 12 \, u \, \overline{m}^{2}}{2} \, \phi_{\ell}^{2} \right] + \int d^{d}x \left[\frac{K}{2} (\nabla \phi_{t})^{2} + \frac{t + 4 \, u \, \overline{m}^{2}}{2} \, \phi_{t}^{2} \right] \\ + \int d^{d}x \left[\frac{L}{2} (\nabla a)^{2} + \frac{2 \, e^{2} \, \overline{m}^{2}}{2} a^{2} \right] + \mathcal{O}(\phi^{3}).$$

- **d)** Use your results from (c) to find the correlation lengths ξ_{ℓ} , and ξ_t , for the longitudinal and transverse components of ϕ , for t > 0 and t < 0.
- e) Find the correlation length ξ_a for the fluctuations of the scalar field a, for t > 0 and t < 0.
- f) Compute the correction to the saddle point free energy -lnZ/V, from fluctuations. (You can leave the answer in the form of integrals involving ξ_{ℓ} , ξ_t , and ξ_a). Hint: Perform a Fourier transform in the Hamiltonian beta H2 to obtain Gaussian integrals over $D[\phi_t]$, $D[\phi_\ell]$, and D[a]. Then compute the Gaussian integrals to obtain an expression for Z. You do not need to perform the sums over momenta that you obtain after the Fourier transformation.
- **g)** Find the fluctuation corrections to the heat capacity in (b), again leaving the answer in the form of integrals.