Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
N. John, A. Afanah

Advanced Statistical Physics - Problem Set 4

Summer Term 2020

Due Date: Tuesday, May 5, 10:00 a.m., solutions must be mailed to stp2.leipziguni@gmail.com

1. Functional derivatives

Derive the Euler-Lagrange equation corresponding to the following potential

$$
F=\int_{a}^{b} \mathrm{~d} x\left[\frac{c}{2}\left(\partial_{x} \psi\right)^{2}+\frac{a \tau}{2} \psi^{2}(x)+\frac{d}{2}\left(\partial_{x}^{2} \psi\right)^{2}\right],
$$

with the boundary values $\psi(a)=\psi_{a}, \psi(b)=\psi_{b},\left.\partial_{x} \psi(x)\right|_{x=a}=\psi_{a}^{\prime}$, and $\left.\partial_{x} \psi(x)\right|_{x=b}=\psi_{b}^{\prime}$. You may follow the route of the usual variational calculus that you should have encountered in earlier courses. Therefore, assume that the stationary solution is $\psi(x)$ and consider the field $\psi_{\lambda}(x)=\psi(x)+\lambda \varepsilon(x)$, where $\varepsilon(x)$ is a deviation with the boundary conditions $\varepsilon(a)=\varepsilon(b)=$ $\left.\partial_{x} \varepsilon(x)\right|_{x=a}=\left.\partial_{x} \varepsilon(x)\right|_{x=b}=0$.

2. Correlation function II

Consider the Ginzburg-Landau functional

$$
\mathcal{H}=\int d^{d} x\left[\frac{a \tau}{2} \psi(\mathbf{x})^{2}+\frac{c}{2}(\nabla \psi(\mathbf{x}))^{2}-h(\mathbf{x}) \psi(\mathbf{x})\right] .
$$

The associated Euler-Lagrange equation is given by

$$
c \nabla^{2} \psi(\mathbf{x})=a \tau \psi(\mathbf{x})-h(\mathbf{x}) .
$$

a) Use the Fourier transformation to write down the formal solution of this equation for $h(\mathrm{x})=h \delta^{(d)}(\mathrm{x})$. In the lectures it will be shown that this solution is equivalent with a two point correlation function.
b) Solve the Euler-Lagrange equation for $\tau=0$ and $h(\mathbf{x})=h \delta^{(d)}(\mathbf{x})$.

Hint: Use Gauss's theorem.
c) Solve the Euler-Lagrange equation for $\tau>0$.

Hint: Assume that the solution is spherically symmetric and decays exponentially at large distances

$$
\psi(\mathbf{x}) \propto \frac{e^{-r / \xi}}{r^{p}}
$$

Solve the equation in the limits $r \ll \xi$ and $r \gg \xi$.

