Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
M. Thamm, E. Enache

Advanced Statistical Physics - Problem Set 14

Summer Term 2019

Due Date: Monday, July 15, 12:00 p.m., Hand in to the mailbox inside the ITP if you are below 50% of the total points.

Internet: Advanced Statistical Physics exercises
This exercise sheet is not mandatory, but you can solve it to get additional points. In case that you already have the 50% of the points from the exercises, it will not be marked.
A list with the achieved homework points will be uploaded to the website after correction of sheet 13 . You need a total of at least 52.5 points to be admitted to the exam.
The exam will take place on July $\mathbf{1 7}$ at 9:30 a.m. in the Theoretical Lecture Hall.

22. The differential recursion relations

The renormalization group procedure defines a mapping of the Hamiltonian with given parameters S into rescaled Hamiltonian with parameters S^{\prime}. The rescaled parameters S^{\prime} depend on the original parameters S and the rescaling factor $b=e^{l}$.
For the $d=1+\epsilon$ dimensional Ising model, the differential recursion relations for the temperature T and the magnetic field h are

$$
\begin{aligned}
\frac{d T}{d l} & =-\epsilon T+\frac{T^{2}}{2} \\
\frac{d h}{d l} & =(1+\epsilon) h
\end{aligned}
$$

a) Sketch the renormalization group flows in the (T, h) plane (for $\epsilon>0$), marking the fixed points along the $h=0$ axis.
b) Calculate the eigenvalues y_{t} and y_{h}, at the critical fixed point, to order of ϵ.
c) Starting from the relation governing the change of the correlation length ξ under renormalization, show that

$$
\xi(t, h)=|t|^{-\nu} g_{\xi}\left(h /|t|^{\Delta}\right)
$$

(where $t=T / T_{c}-1$), and find the exponents ν and Δ.
d) Use a hyperscaling relation to find the singular part of the free energy $f_{\operatorname{sing}}(t, h)$, and hence the heat capacity exponent α.

Consider the Landau-Ginzburg Hamiltonian

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} \vec{m}^{2}+\frac{K_{2}}{2}(\nabla \vec{m})^{2}+u \vec{m}^{4}\right] .
$$

The long-range interactions between the spins can be described by adding a term

$$
\int d^{d} x \int d^{d} y J(|\mathbf{x}-\mathbf{y}|) \vec{m}(\mathbf{x}) \cdot \vec{m}(\mathbf{y})
$$

to the Landau-Ginzburg Hamiltonian. For $J(r) \propto 1 / r^{d+\sigma}$, the Hamiltonian can be written as $\beta \mathcal{H}=\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{t+K_{2} q^{2}+K_{\sigma} q^{\sigma}}{2}|\vec{m}(\mathbf{q})|^{2}+u \int \frac{d^{d} q_{1} d^{d} q_{2} d^{d} q_{3}}{(2 \pi)^{3 d}} \vec{m}\left(\mathbf{q}_{1}\right) \cdot \vec{m}\left(\mathbf{q}_{2}\right) \vec{m}\left(\mathbf{q}_{3}\right) \cdot \vec{m}\left(-\mathbf{q}_{1}-\mathbf{q}_{2}-\mathbf{q}_{3}\right)$.
a) For $u=0$, construct the recursion relations for $\left(t, K_{2}, K_{\sigma}\right)$. Find the fixed point corresponding to $K_{2}^{\prime}=K_{2}$ and the anomalous dimensions y_{t} and $y_{K_{\sigma}}$. Similarly, find the fixed point corresponding to $K_{\sigma}^{\prime}=K_{\sigma}$ and the corresponding anomalous dimensions y_{t} and $y_{K_{2}}$.
b) Which of the fixed points controls the critical behavior of the system for $\sigma>2$? How about in the case $\sigma<2$? Which terms in the Hamiltonian are irrelevant?
c) For $\sigma<2$, calculate the generalized Gaussian exponents ν, η and γ from the recursion relations. Show that u is irrelevant, and hence the Gaussian results are valid, for $d>2 \sigma$.

