Advanced Statistical Physics - Problem Set 14

Summer Term 2019

Due Date: Monday, July 15, 12:00 p.m., Hand in to the mailbox inside the ITP if you are below 50% of the total points.

Internet: Advanced Statistical Physics exercises

This exercise sheet is **not mandatory**, but you can solve it to get additional points. In case that you already have the 50 % of the points from the exercises, it will not be marked.

A list with the achieved homework points will be uploaded to the website after correction of sheet 13. You need a total of at least **52.5 points** to be admitted to the exam.

The exam will take place on July 17 at 9:30 a.m. in the Theoretical Lecture Hall.

22. The differential recursion relations

2+2+2+2 Points

The renormalization group procedure defines a mapping of the Hamiltonian with given parameters S into rescaled Hamiltonian with parameters S'. The rescaled parameters S' depend on the original parameters S and the rescaling factor $b = e^l$.

For the $d = 1 + \epsilon$ dimensional Ising model, the differential recursion relations for the temperature T and the magnetic field h are

$$\frac{dT}{dl} = -\epsilon T + \frac{T^2}{2}$$
$$\frac{dh}{dl} = (1+\epsilon)h .$$

- a) Sketch the renormalization group flows in the (T, h) plane (for $\epsilon > 0$), marking the fixed points along the h = 0 axis.
- **b)** Calculate the eigenvalues y_t and y_h , at the critical fixed point, to order of ϵ .
- c) Starting from the relation governing the change of the correlation length ξ under renormalization, show that

$$\xi(t,h) = |t|^{-\nu} g_{\xi}(h/|t|^{\Delta}),$$

(where $t = T/T_c - 1$), and find the exponents ν and Δ .

d) Use a hyperscaling relation to find the singular part of the free energy $f_{\text{sing}}(t, h)$, and hence the heat capacity exponent α .

23. Long-range interaction II

Consider the Landau-Ginzburg Hamiltonian

$$\beta \mathcal{H} = \int d^d x \bigg[\frac{t}{2} \vec{m}^2 + \frac{K_2}{2} (\nabla \vec{m})^2 + u \vec{m}^4 \bigg].$$

The long-range interactions between the spins can be described by adding a term

$$\int d^d x \int d^d y \ J(|\mathbf{x} - \mathbf{y}|) \vec{m}(\mathbf{x}) \cdot \vec{m}(\mathbf{y})$$

to the Landau-Ginzburg Hamiltonian. For $J(r) \propto 1/r^{d+\sigma}$, the Hamiltonian can be written as

$$\beta \mathcal{H} = \int \frac{d^d q}{(2\pi)^d} \frac{t + K_2 q^2 + K_\sigma q^\sigma}{2} |\vec{m}(\mathbf{q})|^2 + u \int \frac{d^d q_1 d^d q_2 d^d q_3}{(2\pi)^{3d}} \vec{m}(\mathbf{q}_1) \cdot \vec{m}(\mathbf{q}_2) \vec{m}(\mathbf{q}_3) \cdot \vec{m}(-\mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3).$$

- a) For u = 0, construct the recursion relations for (t, K_2, K_{σ}) . Find the fixed point corresponding to $K'_2 = K_2$ and the anomalous dimensions y_t and $y_{K_{\sigma}}$. Similarly, find the fixed point corresponding to $K'_{\sigma} = K_{\sigma}$ and the corresponding anomalous dimensions y_t and y_{K_2} .
- b) Which of the fixed points controls the critical behavior of the system for $\sigma > 2$? How about in the case $\sigma < 2$? Which terms in the Hamiltonian are irrelevant?
- c) For $\sigma < 2$, calculate the generalized Gaussian exponents ν , η and γ from the recursion relations. Show that u is irrelevant, and hence the Gaussian results are valid, for $d > 2\sigma$.