Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
M. Thamm, E. Enache

Advanced Statistical Physics - Problem Set 9

Summer Term 2019

Due Date: Wednesday, June 12, 12:00 p.m., Hand in tasks marked with * to mailbox with label 'Advanced Statistical Physics Exercises' inside ITP room 105b

Internet: Advanced Statistical Physics exercises

12. Cooper pair size

a) The Cooper pair wave function can be expanded in a plane-wave basis as

$$
\psi(\boldsymbol{r})=\sum_{\boldsymbol{k}} g(\boldsymbol{k}) e^{i \boldsymbol{k} \boldsymbol{r}}
$$

with $g(\boldsymbol{k})$ being the amplitude of finding an electron in state with momentum \boldsymbol{k} and another one in a state with momentum $-\boldsymbol{k}$, and \boldsymbol{r} being the relative coordinate (distance between the electrons) of the Cooper pair. Note that $g(\boldsymbol{k})=0$ for $k<k_{F}$. Start with the definition of the mean square radius

$$
R^{2}=\frac{\int d \boldsymbol{r} r^{2}|\psi(\boldsymbol{r})|^{2}}{\int d \boldsymbol{r}|\psi(\boldsymbol{r})|^{2}}
$$

and show that it can be reexpressed as

$$
R^{2}=\frac{\sum_{\boldsymbol{k}}\left|\nabla_{\boldsymbol{k}} g(\boldsymbol{k})\right|^{2}}{\sum_{\boldsymbol{k}}|g(\boldsymbol{k})|^{2}}
$$

b) By turning the sums into integrals and by using the definition of the density of state, show that the expression for the mean square radius becomes

$$
R^{2} \simeq \frac{\left(\frac{\partial \xi}{\partial k}\right)_{\xi=0}^{2} \int_{0}^{\infty} d \xi\left(\frac{\partial g(\xi)}{\partial \xi}\right)^{2}}{\int_{0}^{\infty} d \xi g(\xi)^{2}}
$$

Further, use that $g(\xi) \propto 1 /(\Delta+2 \xi)$ to show that the mean square radius of a Cooper pair is given by

$$
R=\frac{2}{\sqrt{3}} \frac{\hbar v_{F}}{\Delta}
$$

with v_{F} being the Fermi velocity, and Δ being the binding energy of the Cooper pair relative to the Fermi surface.
c) Insert realistic values for v_{F} and Δ and estimate the size of the Cooper pair.

Consider the Ginzburg-Landau functional

$$
\mathcal{H}=\int d^{d} x\left[\frac{a \tau}{2} \psi(\mathbf{x})^{2}+\frac{c}{2}(\nabla \psi(\mathbf{x}))^{2}-h(\mathbf{x}) \psi(\mathbf{x})\right] .
$$

The associated Euler-Lagrange equation is given by

$$
c \nabla^{2} \psi(\mathbf{x})=a \tau \psi(\mathbf{x})-h(\mathbf{x}) .
$$

a) Use the Fourier transformation to write down the formal solution of this equation for $h(\mathbf{x})=h \delta^{(d)}(\mathbf{x})$. In the lectures it will be shown that this solution is equivalent with a two point correlation function.
b) Solve the Euler-Lagrange equation for $\tau=0$ and $h(\mathbf{x})=h \delta^{(d)}(\mathbf{x})$.

Hint: Use Gauss's theorem.
c) Solve the Euler-Lagrange equation for $\tau>0$.

Hint: Assume that the solution is spherically symmetric and decays exponentially at large distances

$$
\psi(\mathbf{x}) \propto \frac{e^{-r / \xi}}{r^{p}}
$$

Solve the equation in the limits $r \ll \xi$ and $r \gg \xi$.

