Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
M. Thamm, E. Enache

Advanced Statistical Physics - Problem Set 8

Summer Term 2019
Due Date: Wednesday, June 05, 12:00 p.m., Hand in tasks marked with * to mailbox with label 'Advanced Statistical Physics Exercises' inside ITP room 105b
Internet: Advanced Statistical Physics exercises

10. Tricritical point*

By tuning an additional parameter, a second order transition can be made first order. The special point separating the two types of transitions is known as a tricritical point, and can be studied by examining the Landau-Ginzburg Hamiltonian

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} m^{2}+u m^{4}+v m^{6}-h m\right]=\int d^{d} x \Psi(m),
$$

where u can be positive or negative. For $u<0$, a positive v is necessary to ensure stability.
a) By sketching the energy density $\Psi(m)$, for various t, show that in the saddle point approximation there is a first-order transition for $u<0$ and $h=0$.
b) Calculate the critical value of the parameter $t=\bar{t}(u)$ for this transition and the discontinuity in the magnetization $\bar{m}(u)$.
c) For $h=0$ and $v>0$, plot the phase boundary in the (u, t) plane, identifying the phases, and order of the phase transitions.
d) The special point $u=t=0$, separating first and second order phase boundaries, is a tricritical point. For $u=0$, calculate the tricritical exponents α, β, δ and γ, governing the singularities in heat capacity, magnetization and susceptibility. (Recall: $C \propto t^{-\alpha}$, $\bar{m}(h=0) \propto t^{\beta}, \bar{m}(t=0) \propto h^{1 / \delta}$ and $\left.\chi \propto t^{-\gamma}.\right)$

11. Correlation function I

Consider a time series $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$, where at each moment of time i the variable s_{i} can take values ± 1. At each time step Δt the variable changes its sign $\left(s_{i+1}=-s_{i}\right)$ with probability p and keeps it value ($s_{i+1}=s_{i}$) with probability $1-p$.
a) Show that the correlation function is given by $G(j-i)=\left\langle s_{i} s_{j}\right\rangle=(1-2 p)^{|j-i|}$.
b) Denote $j-i=t / \Delta t$ and $\tau=\Delta t /(2 p)$, and calculate the continuum limit $G(t)$ of the correlation function by assuming that τ is constant, but $\Delta t \rightarrow 0$. (Notice, that this means that $p \rightarrow 0$ i.e. we assume that the probability of the sign change decreases when we decrease the time step in our time series.)
c) Calculate the Fourier transform $G(\omega)$ of a correlation function $G(t)=e^{-|t| / \tau}$.

