Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow

M. Thamm, E. Enache

Advanced Statistical Physics - Problem Set 5

Summer Term 2019

Due Date: Wednesday, May 15, 12:00 p.m., Hand in tasks marked with * to mailbox with label 'Advanced Statistical Physics Exercises' inside ITP room 105b

Internet: Advanced Statistical Physics exercises

6. BCS as a mean-field theory

$$
4+4+4+4 \text { Points }
$$

In this problem we will consider electrons interacting through the BCS interaction, which is non-zero in a shell around the Fermi surface. We consider the following Hamiltonian

$$
H=\sum_{\boldsymbol{k} \sigma} \xi_{\boldsymbol{k}} c_{\boldsymbol{k} \sigma}^{\dagger} c_{\boldsymbol{k} \sigma}+\sum_{\boldsymbol{k} \boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger} c_{-\boldsymbol{k}^{\prime} \downarrow} c_{\boldsymbol{k}^{\prime} \uparrow}
$$

where

$$
V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right)=\left\{\begin{array}{rc}
-V / \Omega, & \left|\xi_{\boldsymbol{k}}\right|,\left|\xi_{\boldsymbol{k}^{\prime}}\right| \leq \hbar \omega_{D} \\
0, & \text { otherwise }
\end{array}\right.
$$

Here, $\xi_{\boldsymbol{k}}=\hbar^{2} \boldsymbol{k}^{2} / 2 m-E_{F}$, and ω_{D} denotes the Debye frequency. Motivated by the condensation into momentum space pairs $(\boldsymbol{k} \uparrow, \boldsymbol{k} \downarrow)$, we introduce a mean field expectation value $\left\langle c_{-\boldsymbol{k} \downarrow} c_{\boldsymbol{k} \uparrow}\right\rangle$, which is called condensation amplitude when computed with respect to the BCS ground state $|\phi\rangle$.
a) * Proceeding analogously to Hartree-Fock mean-field theory as shown in the lectures, convince yourself that the mean-field decoupling of the Hamiltonian yields
$H=\sum_{\boldsymbol{k} \sigma} \xi_{\boldsymbol{k}} c_{\boldsymbol{k} \sigma}^{\dagger} c_{\boldsymbol{k} \sigma}-\sum_{\boldsymbol{k}} \Delta_{\boldsymbol{k}} c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}-\sum_{\boldsymbol{k}} \Delta_{\boldsymbol{k}}^{*} c_{\boldsymbol{k} \downarrow} c_{-\boldsymbol{k} \uparrow}-\sum_{\boldsymbol{k} \boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right)\left\langle c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}\right\rangle\left\langle c_{\boldsymbol{k}^{\prime} \downarrow} c_{-\boldsymbol{k}^{\prime} \uparrow}\right\rangle$,
with the self-consistency condition given by

$$
\Delta_{\boldsymbol{k}}=-\sum_{\boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right)\left\langle c_{-\boldsymbol{k}^{\prime} \downarrow} c_{\boldsymbol{k}^{\prime} \uparrow}\right\rangle
$$

b) * Show that the Hamiltonian can be diagonalized by the following unitary transformation

$$
\binom{\gamma_{\boldsymbol{k} \uparrow}}{\gamma_{-\boldsymbol{k} \downarrow}^{\dagger}}=\left(\begin{array}{cc}
\cos \theta_{\boldsymbol{k}} & \sin \theta_{\boldsymbol{k}} \\
\sin \theta_{\boldsymbol{k}} & -\cos \theta_{\boldsymbol{k}}
\end{array}\right)\binom{c_{\boldsymbol{k} \uparrow}}{c_{-\boldsymbol{k} \downarrow}^{\dagger}}
$$

such that

$$
H=\sum_{\boldsymbol{k} \sigma} E(\boldsymbol{k}) \gamma_{\boldsymbol{k} \sigma}^{\dagger} \gamma_{\boldsymbol{k} \sigma}+\text { constant }
$$

Derive an expression for $E(\boldsymbol{k})$.
c) Show that at zero temperature the self-consistency condition is equivalent to the BCS gap equation. Next, use the self-consistency condition to find the transition temperature T_{c} for the case $T>0$.

Hint: Use the unitary transformation obtained in part (b) to rewrite the product $c_{-\boldsymbol{k} \downarrow} c_{\boldsymbol{k} \uparrow}$ in terms of $\gamma_{\boldsymbol{k} \sigma}^{\dagger}$ and $\gamma_{\boldsymbol{k} \sigma}$. Next, use that $\left\langle\gamma_{\boldsymbol{k} \sigma}^{\dagger} \gamma_{\boldsymbol{k}^{\prime} \sigma^{\prime}}\right\rangle=f_{\boldsymbol{k}} \cdot \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \delta_{\sigma \sigma^{\prime}}$, with f_{k} being the Fermi function as defined in exercise 5 . In the case $T>0$, you will end up with an integral which diverges logarithmically in the limit $T_{c} \rightarrow 0$. Use integration by parts to extract the divergent part. In order to solve the remaining (convergent) integral, you may use the limit $T_{c} \rightarrow 0$. The remaining integral will be given by

$$
\int_{0}^{\infty} d x \frac{\ln x}{\cosh ^{2}(x)}=-\gamma+\ln \left(\frac{\pi}{4}\right)
$$

with $\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \frac{1}{k}-\ln n\right] \approx 0.5772$ being the Euler-Mascheroni constant.
d) Bonus: Compute the integral given above.

Hint: You may use that

$$
\ln x=\lim _{n \rightarrow 0} \frac{x^{n}-1}{n},
$$

and you may change the order of integration and applying the limit $n \rightarrow 0$. In case your favourite computer algebra program fails to solve the integrals, consider looking them up in a table of integrals like the book by Gradshteyn and Ryshik.

