Prof. Dr. B. Rosenow
M. Thamm, E. Enache

Advanced Statistical Physics - Problem Set 2

Summer Term 2019
Due Date: Wednesday, April 17, 12:00 p.m., Hand in tasks marked with * to mailbox inside ITP room 105b

Internet: Advanced Statistical Physics exercises

2. Field operators *

The operators a_{k}^{\dagger} and a_{k} create or annihilate single particle states with momentum k, respectively. They obey the commutation relations $\left[a_{k}, a_{k^{\prime}}\right]_{\zeta}=0$, and $\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]_{\zeta}=\delta_{k, k^{\prime}}$ with $\zeta=1$ for bosons and $\zeta=-1$ for fermions. The field operator $\Psi(x)$ is defined as the Fourier transform

$$
\Psi(x)=\frac{1}{\sqrt{L}} \sum_{k} a_{k} e^{i k x}
$$

Show that $\Psi(x)$ and its Hermitian conjugate $\Psi^{\dagger}(x)$ obey the commutation relations

$$
\left[\Psi(x), \Psi^{\dagger}(y)\right]_{\zeta}=\delta(x-y)
$$

3. Second quantization with field operators

A many-particle state is described by the Hamiltonian

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{j}^{2}}+U\left(x_{j}\right)\right)+\frac{1}{2} \sum_{i \neq j} V\left(x_{i}-x_{j}\right)
$$

with $U(x)$ being a scalar potential, $V\left(x-x^{\prime}\right)$ being the two-particle interaction potential, and the wave function $\varphi_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ being an eigenstate of H with eigenvalue E_{α}. In the following, we denote the non-interacting part of the Hamiltonian by H_{0} and the interaction part by $H_{\text {int }}$. In second quantized notation, the wave function φ_{α} is described by a state vector

$$
\left|\varphi_{\alpha}\right\rangle=\int d x_{1} d x_{2} \ldots d x_{N} \varphi_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{N}\right) \Psi^{\dagger}\left(x_{1}\right) \Psi^{\dagger}\left(x_{2}\right) \ldots \Psi^{\dagger}\left(x_{N}\right)|0\rangle
$$

with commutation relations of Ψ and Ψ^{\dagger} as in exercise 2 , supplemented by the condition that the operator $\Psi(x)$ annihilates the vacuum state, $\Psi(x)|0\rangle=0$. In second quantization, the Hamiltonian reads

$$
H_{s}=\int d x \Psi^{\dagger}(x)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \Psi(x)+\frac{1}{2} \int d x d y \Psi^{\dagger}(x) \Psi^{\dagger}(y) V(x-y) \Psi(y) \Psi(x)
$$

As before, we denote the non-interacting part by $H_{0, s}$ and the interaction part by $H_{\mathrm{int}, s}$. The aim of the task is to show that this is a consistent notation by proving

$$
H_{s}\left|\varphi_{\alpha}\right\rangle=E_{\alpha}\left|\varphi_{\alpha}\right\rangle
$$

(a)* Start with the non-interacting part $H_{0, s}$ and show that

$$
H_{0, s}\left|\varphi_{\alpha}\right\rangle=\int d x_{1} d x_{2} \ldots d x_{N}\left[H_{0} \varphi_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right] \Psi^{\dagger}\left(x_{1}\right) \Psi^{\dagger}\left(x_{2}\right) \ldots \Psi^{\dagger}\left(x_{N}\right)|0\rangle
$$

Hint: Use the result from exercise 2, i.e.

$$
\left[\Psi(x), \Psi^{\dagger}(y)\right]_{\zeta}=\delta(x-y),
$$

with $\zeta= \pm 1$ to cover bosons and fermions simultaneously.
(b) For the interaction part $H_{\text {int }, s}$ show that

$$
H_{\mathrm{int}, s}\left|\varphi_{\alpha}\right\rangle=\int d x_{1} d x_{2} \ldots d x_{N}\left[H_{\mathrm{int}} \varphi_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right] \Psi^{\dagger}\left(x_{1}\right) \Psi^{\dagger}\left(x_{2}\right) \ldots \Psi^{\dagger}\left(x_{N}\right)|0\rangle .
$$

(c) From your results of task (a) and (b) conclude that

$$
H_{s}\left|\varphi_{\alpha}\right\rangle=E_{\alpha}\left|\varphi_{\alpha}\right\rangle .
$$

