Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
N. John, M. Thamm

Advanced Statistical Physics - Problem Set 12

Summer Term 2018

Due Date: Tuesday, July 03, 09:15 a.m., mailbox inside ITP
Internet: Advanced Statistical Physics exercises

18. The differential recursion relations

$2+2+2+2$ Points
The renormalization group procedure defines a mapping of the Hamiltonian with given parameters S into rescaled Hamiltonian with parameters S^{\prime}. The rescaled parameters S^{\prime} depend on the original parameters S and the rescaling factor $b=e^{l}$.
For the $d=1+\epsilon$ dimensional Ising model, the differential recursion relations for the temperature T and the magnetic field h are

$$
\begin{aligned}
\frac{d T}{d l} & =-\epsilon T+\frac{T^{2}}{2} \\
\frac{d h}{d l} & =(1+\epsilon) h
\end{aligned}
$$

a) Sketch the renormalization group flows in the (T, h) plane (for $\epsilon>0$), marking the fixed points along the $h=0$ axis.
b) Calculate the eigenvalues y_{t} and y_{h}, at the critical fixed point, to order of ϵ.
c) Starting from the relation governing the change of the correlation length ξ under renormalization, show that

$$
\xi(t, h)=|t|^{-\nu} g_{\xi}\left(h /|t|^{\Delta}\right),
$$

(where $t=T / T_{c}-1$), and find the exponents ν and Δ.
d) Use a hyperscaling relation to find the singular part of the free energy $f_{\text {sing }}(t, h)$, and hence the heat capacity exponent α.

19. Coupled scalars
 $1+3+2+2+2$ Points

Consider the Hamiltonian

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} m^{2}+\frac{K}{2}(\nabla m)^{2}-h m+\frac{L}{2}\left(\nabla^{2} \phi\right)^{2}+v(\nabla m)(\nabla \phi)\right],
$$

coupling two one-component fields m and ϕ.
a) Write $\beta \mathcal{H}$ in terms of the Fourier transforms $m(\boldsymbol{q})$ and $\phi(\boldsymbol{q})$.
b) Construct a renormalization group transformation by rescaling distances such that $\boldsymbol{q}^{\prime}=$ $b \boldsymbol{q}$, and the fields such that $m^{\prime}\left(\boldsymbol{q}^{\prime}\right)=\tilde{m}(\boldsymbol{q}) / z$ and $\phi^{\prime}\left(\boldsymbol{q}^{\prime}\right)=\tilde{\phi}(\boldsymbol{q}) / y$. You do not need to evaluate the integrals that just contribute a constant additive term.
c) There is a fixed point such that $K^{\prime}=K$ and $L^{\prime}=L$. Find y_{t}, y_{h} and y_{v} at this fixed point.
d) The singular part of the free energy has a scaling form

$$
f(t, h, v)=t^{2-\alpha} g\left(h / t^{\Delta}, v / t^{\omega}\right)
$$

for t, h, v close to zero. Find α, Δ and ω.
e) There is another fixed point such that $t^{\prime}=t$ and $L^{\prime}=L$. What are the relevant operators at this fixed point, and how do they scale?

