Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow<br>N. John, M. Thamm

# Advanced Statistical Physics - Problem Set 8 

## Summer Term 2018

Due Date: Tuesday, June 5, 09:15 a.m., mailbox inside ITP
Internet: Advanced Statistical Physics exercises

## 10. Correlation function I

Consider a time series $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$, where at each moment of time $i$ the variable $s_{i}$ can take values $\pm 1$. At each time step $\Delta t$ the variable changes its $\operatorname{sign}\left(s_{i+1}=-s_{i}\right)$ with probability $p$ and keeps it value $\left(s_{i+1}=s_{i}\right)$ with probability $1-p$.
a) Show that the correlation function is given by $G(j-i)=\left\langle s_{i} s_{j}\right\rangle=(1-2 p)^{|j-i|}$.
b) Denote $j-i=t / \Delta t$ and $\tau=\Delta t /(2 p)$, and calculate the continuum limit $G(t)$ of the correlation function by assuming that $\tau$ is constant, but $\Delta t \rightarrow 0$. (Notice, that this means that $p \rightarrow 0$ i.e. we assume that the probability of the sign change decreases when we decrease the time step in our time series.)
c) Calculate the Fourier transform $G(\omega)$ of a correlation function $G(t)=e^{-|t| / \tau}$.

## 11. Correlation function II

Consider the Ginzburg-Landau functional

$$
\mathcal{H}=\int d^{d} x\left[\frac{a \tau}{2} \psi(\mathbf{x})^{2}+\frac{c}{2}(\nabla \psi(\mathbf{x}))^{2}-h(\mathbf{x}) \psi(\mathbf{x})\right]
$$

The associated Euler-Lagrange equation is given by

$$
c \nabla^{2} \psi(\mathbf{x})=a \tau \psi(\mathbf{x})-h(\mathbf{x})
$$

a) Use the Fourier transformation to write down the formal solution of this equation for $h(\mathbf{x})=h \delta^{(d)}(\mathbf{x})$. In the lectures it will be shown that this solution is equivalent with a two point correlation function.
b) Solve the Euler-Lagrange equation for $\tau=0$ and $h(\mathbf{x})=h \delta^{(d)}(\mathbf{x})$.

Hint: Use Gauss's theorem.
c) Solve the Euler-Lagrange equation for $\tau>0$.

Hint: Assume that the solution is spherically symmetric and decays exponentially at large distances

$$
\psi(\mathbf{x}) \propto \frac{e^{-r / \xi}}{r^{p}}
$$

Solve the equation in the limits $r \ll \xi$ and $r \gg \xi$.

