Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
N. John, M. Thamm

Advanced Statistical Physics - Problem Set 4

Summer Term 2018

Due Date: Tuesday, May 8, 09:15 a.m., mailbox inside ITP
Internet: Advanced Statistical Physics exercises

5. The Néel state
 $4+4+4+4$ Points

In this problem set, you will learn about antiferromagnetism in a half filled lattice model with

$$
\left\langle\hat{n}\left(\boldsymbol{r}_{j}\right)\right\rangle=\sum_{\sigma}\left\langle\hat{\psi}_{\sigma}^{\dagger}\left(\boldsymbol{r}_{j}\right) \hat{\psi}_{\sigma}\left(\boldsymbol{r}_{j}\right)\right\rangle=1
$$

for every lattice site \boldsymbol{r}_{j}. In the following, we consider a 2 D square lattice with lattice constant $a=1$.
(a) Before taking interactions into account, let us consider the kinetic energy of electrons hopping between nearest neighbouring sites only. The Hamiltonian is

$$
H_{0}=-t \sum_{\sigma} \sum_{\left\langle\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right\rangle} \hat{\psi}_{\sigma}^{\dagger}\left(\boldsymbol{r}_{i}\right) \hat{\psi}_{\sigma}\left(\boldsymbol{r}_{j}\right)
$$

with t being the nearest neighbour hopping amplitude, and $\left\langle\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right\rangle$ denoting that \boldsymbol{r}_{i} and \boldsymbol{r}_{j} are nearest neighbour lattice sites.
Using the Fourier decomposition of the field operators, show that H_{0} is diagonal in momentum space and can be expressed as

$$
H_{0}=\sum_{\sigma} \sum_{\boldsymbol{k}} \varepsilon(\boldsymbol{k}) \hat{c}_{\boldsymbol{k}, \sigma}^{\dagger} \hat{c}_{\boldsymbol{k}, \sigma}
$$

with $\varepsilon(\boldsymbol{k})=-2 t\left[\cos k_{x}+\cos k_{y}\right]$. What are the allowed values for \boldsymbol{k} and what is the range of the \boldsymbol{k}-summation if we consider a $N \times N$ lattice with periodic boundary conditions? In order to understand the following tasks, sketch the Fermi surface of the 2 D square lattice in the first Brillouin zone.
Hint: The Fermi surface Ω is defined as $\Omega=\left\{\boldsymbol{k}, \varepsilon(\boldsymbol{k})=\varepsilon_{F}\right\}$, with ε_{F} being the Fermi energy. You might use that $\varepsilon_{F}=0$ and

$$
\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)
$$

(b) If the on-site contribution of the Coulomb interaction is dominant, the Hamiltonian is of Hubbard type. Using the identity $\sum_{i} \sigma_{\alpha \beta}^{i} \sigma_{\gamma \delta}^{i}=2 \delta_{\alpha \delta} \delta_{\beta \gamma}-\delta_{\alpha \beta} \delta_{\gamma \delta}$ and neglecting terms renormalizing the chemical potential, the interaction Hamiltonian is given by

$$
H_{\mathrm{int}}=-\frac{2 U}{3} \sum_{\boldsymbol{r}_{j}}\left(\hat{\boldsymbol{S}}\left(\boldsymbol{r}_{j}\right)\right)^{2}
$$

Here, $\hat{S}_{i}(\boldsymbol{r})=\frac{1}{2} \sum_{\alpha, \beta} \hat{\psi}_{\alpha}^{\dagger}(\boldsymbol{r}) \sigma_{\alpha \beta}^{i} \hat{\psi}_{\beta}(\boldsymbol{r})$, with σ^{i} denoting the i-th Pauli matrix is the spin operator in a second quantized notation, and U is the on-site interaction strength. In the following, we want to perform a mean field analysis for the Hubbard Hamiltonian. The mean field decoupling of $H_{\text {int }}$ yields

$$
H_{\mathrm{int}}^{\mathrm{MF}}=\frac{3}{8 U} \sum_{\boldsymbol{r}_{j}}\left(\boldsymbol{M}\left(\boldsymbol{r}_{j}\right)\right)^{2}-\sum_{\boldsymbol{r}_{j}} \boldsymbol{M}\left(\boldsymbol{r}_{j}\right) \cdot \hat{\boldsymbol{S}}\left(\boldsymbol{r}_{j}\right)
$$

with the magnetization $\boldsymbol{M}\left(\boldsymbol{r}_{j}\right)$ given by $\boldsymbol{M}\left(\boldsymbol{r}_{j}\right)=-(4 U / 3)\left\langle\hat{\boldsymbol{S}}\left(\boldsymbol{r}_{j}\right)\right\rangle$.
Show that in momentum space the mean field Hubbard Hamiltonian is given by

$$
H_{\mathrm{int}}^{\mathrm{MF}}=\sum_{\boldsymbol{k}}\left[\frac{3}{8 U}|\boldsymbol{M}(\boldsymbol{k})|^{2}+\boldsymbol{M}^{*}(\boldsymbol{k}) \cdot \hat{\boldsymbol{S}}(\boldsymbol{k})\right]
$$

with $\hat{S}_{i}(\boldsymbol{q})=\frac{1}{2} \sum_{\boldsymbol{k}} \sum_{\alpha \beta} \hat{c}_{\boldsymbol{k}-\boldsymbol{q}, \alpha}^{\dagger} \sigma_{\alpha \beta}^{i} \hat{c}_{\boldsymbol{k}, \beta}$ being the spin operator in momentum space.
An antiferromagnetic state is characterized by a magnetization $\boldsymbol{M}\left(\boldsymbol{r}_{j}\right)=\boldsymbol{M}_{0} \cos \left(\boldsymbol{Q} \cdot \boldsymbol{r}_{j}\right)$, with order parameter momentum $\boldsymbol{Q}=(\pi, \pi)$. Describe the meaning of the vector \boldsymbol{Q} by using your sketch of the Fermi surface from task (a). The vector \boldsymbol{Q} is called the nesting vector. Is there another nesting vector \boldsymbol{Q}^{\prime} for the 2 D square lattice at half filling?
(c) Show that the total mean field Hamiltonian in momentum space is given by

$$
\begin{aligned}
H^{\mathrm{MF}}= & \frac{3}{8 U} M_{0}^{2} N^{2}+\sum_{\sigma} \sum_{\boldsymbol{k}} \varepsilon(\boldsymbol{k}) \hat{c}_{\boldsymbol{k}, \sigma}^{\dagger} \hat{c}_{\boldsymbol{k}, \sigma} \\
& +\frac{1}{4} \sum_{\alpha \beta} \boldsymbol{\sigma}_{\alpha \beta} \cdot \boldsymbol{M}_{0} \sum_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}, \alpha}^{\dagger} \hat{c}_{\boldsymbol{k}+\boldsymbol{Q}, \beta}+\frac{1}{4} \sum_{\alpha \beta} \boldsymbol{\sigma}_{\alpha \beta} \cdot \boldsymbol{M}_{0} \sum_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}, \alpha}^{\dagger} \hat{c}_{\boldsymbol{k}-\boldsymbol{Q}, \beta} .
\end{aligned}
$$

In order to find the eigenvalues, we introduce the spinor

$$
\hat{\Psi}_{\sigma}(\boldsymbol{k})=\binom{\hat{c}_{\boldsymbol{k}, \sigma}}{\hat{c}_{\boldsymbol{k}+\boldsymbol{Q}, \sigma}}
$$

Due to the doubling of degrees of freedom and by using the parity symmetry $\varepsilon(\boldsymbol{k})=\varepsilon(-\boldsymbol{k})$ of the dispersion relation, we can restrict the range of the \boldsymbol{k}-summation to the upper half of the BZ denoted by $I=\left\{\boldsymbol{k},-\pi \leq k_{x} \leq \pi, 0 \leq k_{y} \leq \pi\right\}$. Show that the Hamiltonian can be recast in the form

$$
H^{\mathrm{MF}}=\frac{3}{8 U} M_{0}^{2} N^{2}+\sum_{\sigma \sigma^{\prime}} \sum_{k \in I} \hat{\Psi}_{\sigma}^{\dagger}(\boldsymbol{k}) \mathcal{H}_{\sigma \sigma^{\prime}}(\boldsymbol{k}) \hat{\Psi}_{\sigma^{\prime}}(\boldsymbol{k}),
$$

with

$$
\mathcal{H}(\boldsymbol{k})=\left(\begin{array}{cc}
\sigma^{0} \cdot \varepsilon(\boldsymbol{k}) & \frac{1}{2} \boldsymbol{\sigma} \cdot \boldsymbol{M}_{0} \\
\frac{1}{2} \boldsymbol{\sigma} \cdot \boldsymbol{M}_{0} & -\sigma^{0} \cdot \varepsilon(\boldsymbol{k})
\end{array}\right)=\tau^{z} \otimes \sigma^{0} \cdot \varepsilon(\boldsymbol{k})+\tau^{x} \otimes \boldsymbol{\sigma} \cdot \frac{\boldsymbol{M}_{0}}{2},
$$

with $\sigma^{0}=\mathbb{I}_{2}$ being the identiy matrix, and τ^{x} and τ^{z} being Pauli matrices.
Diagonalize \mathcal{H} and determine its eigenvalues in order to find the spectrum of the Hamiltonian. Show that the system aquires a band gap given by

$$
\Delta=\left|\boldsymbol{M}_{0}\right| \equiv M_{0}
$$

Hint: You may use that $\varepsilon(\boldsymbol{k}+\boldsymbol{Q})=-\varepsilon(\boldsymbol{k})$. Further, you may want to calculate \mathcal{H}^{2} first and next determine its eigenvalues. Then, argue how to relate the eigenvalues of \mathcal{H} and \mathcal{H}^{2}. You will come up with the result that there are two eigenvalues $E_{ \pm}(\boldsymbol{k})= \pm E(\boldsymbol{k})$, which are both doubly degenerate.
(d) For the remainder of this task, we apply the limit $N \rightarrow \infty$ and consider the energy per lattice site $\mathcal{E}=E / N^{2}$, with E being the total energy of the system. Using your result from the previous task, show that \mathcal{E} is given by

$$
\mathcal{E}=\frac{3}{8 U} M_{0}^{2}-2 \int_{\substack{0 \leq k_{i} \leq \pi \\ k_{x}+k_{y} \leq \pi}} \frac{d \boldsymbol{k}}{(2 \pi)^{2}} E(\boldsymbol{k}) .
$$

Show that energy minimization leads to the condition

$$
\frac{3}{2 U} M_{0}=\int_{\substack{0 \leq k_{i} \leq \pi \\ k_{x}+k_{y} \leq \pi}} \frac{d \boldsymbol{k}}{(2 \pi)^{2}} \frac{M_{0}}{\sqrt{\varepsilon(\boldsymbol{k})^{2}+\frac{1}{4} M_{0}^{2}}} .
$$

Identify the two possible solutions and find an expression for the gap parameter $\Delta=M_{0}$ as a function of the interaction strength U and the hopping parameter t in the limit of small Δ.
Hint: The integral is logarithmically divergent in the limit $M_{0} \rightarrow 0$. In fact, the integral is dominated by contributions with momenta around $k_{x}+k_{y}=\pi$. Thus, we make the approximation that

$$
\cos \left(\frac{k_{x}+k_{y}}{2}\right) \approx \frac{\pi-k_{x}-k_{y}}{2} \quad \text { and } \quad \cos \left(\frac{k_{x}-k_{y}}{2}\right) \approx 1 .
$$

This allows to compute the integral over occupied momenta by neglecting the actual dependence on $k_{x}-k_{y}$. Your result should be

$$
\frac{3}{2 U} \simeq \frac{1}{2 \pi} \frac{1}{2 t} \sinh ^{-1}\left(\frac{2 t \pi}{M_{0}}\right) .
$$

Use this to find an expression for M_{0} in the weak coupling limit $U / 2 t \rightarrow 0$.

