Statistical Mechanics of Deep Learning - Problem set 6

Winter Term 2024/25

Hand in Python code: Before Monday 25.11.2024, 9:15, only submit the Python code you have written. Share a Google Colab Notebook with your code and send the link via email to itpleipzig@gmail.com.

12. Generalization error of the high-low game

4 Points

Consider a system with a single parameter θ_T which classifies real numbers $S \in (0,1)$ as +1 if $S > \theta_T$ and -1 otherwise.

This so-called high-low game can be considered as an extremely simplified perceptron (N=1). A student characterized by θ_J is supposed to guess the teacher threshold θ_T from the classification provided by the latter on a set of random examples ξ^{μ} .

Show that for a student chosen at random with equal probability from the set of numbers θ_J with zero training error, the generalization error is given by

$$\varepsilon = \frac{\xi_{\text{max}} - \xi_{\text{min}}}{3}$$

where ξ_{max} (ξ_{min}) is the smallest (largest) element of the training set that was classified +1 (-1) by the teacher. Assume that the threshold θ_T is drawn at random with constant density from the interval ($\xi_{\text{max}}, \xi_{\text{min}}$).

13. Distribution of a product of Random Numbers 4+2 Points

Generate numerically M random numbers x, each being the product of N independent random numbers equally distributed between 1 and 2 with M between 10^3 and 10^6 and N between 5 and 50.

- (a) Approximate the distribution of x by a histogram and compare the evolution with N of the most probable value x_{mp} of x, with its average $x_{mean} = \langle \langle x \rangle \rangle$, with the typical x value defined as $x_{typ} := \exp(\langle \langle \ln x \rangle \rangle)$ and with the median value x_{med} .
- (b) Can you give an argument, why asymptotically (for $N \to \infty$), the typical value x_{typ} and the median x_{med} should coincide?