
Institut for Theoretical Physics Prof. Dr. B. Rosenow
University Leipzig M. Kühn

Statistical Mechanics of Deep Learning - Problem set 1

Winter Term 2024/25

Hand in Python code: Before Monday 21.10.2024, 9:15, only submit the Python code
you have written. Share a Google Colab Notebook with your code
and send the link via email to itpleipzig@gmail.com.

1. The vanishing gradient problem 2+1+4+3 Points

Consider a simple neural network with one unit per hidden layer as depicted in the figure
below. The output of the network is denoted by fw(x) = w4g(z3) with the sigmoidal activation

function g(z) =
1

1 + e−z
. The preactivations zi are computed recursively in the following way:

z1 = w1x+ b1, and zi = wig(zi−1) + bi. The deviation between the desired output a(x) and the

actual network output is quantified by the quadratic cost function C =
1

2
[fw(x)− a(x)]2.

b1Input b1 b2 b3 Output
w1

w2 w3 w4

Deep neural networks are known to suffer from the so-called vanishing gradient problem. The
goal of this exercise is to invistigate the cause of this problem, and then to explore suitable
restrictions to be imposed on the range of weights and activations to avoid this problem.

(a) Find the derivative
∂C

∂b1
, and comment on the value of the derivative in the case g′(z) < 1.

(b) Consider the product |wg′(wz + b)| and assume that |wg′(wz + b)| ≥ 1. Argue that this
can only ever occur if |w| ≥ 4 .

(c) Supposing that |w| ≥ 4, consider the set of preactivations {z} for which |wg′(wz+ b)| ≥ 1.
Show that the set of {z} satisfying that constraint can range over an interval no greater
in width than

2

|w|
ln

(
|w|(1 +

√
1− 4/|w|)
2

− 1

)

(d) Show numerically that the above expression bounding the width of the range is greatest at
|w| ≈ 6.9, where it takes a value ≈ 0.45. So given that everything lines up just perfectly, we
still have a fairly narrow range of input activations which can avoid the vanishing gradient
problem.

1

https://colab.research.google.com/
mailto:itpleipzig@gmail.com

2. Learning Python 8 Points

The goal of this exercise is to make you familiar with Python and some of its libraries.

(a) Write a Python program that generates random integer numbers in the range of [1, 200]
until the number 100 is randomly drawn or more than 200 numbers in total were drawn.
The generated numbers should be stored in a list.

(b) Make a numpy array out of the list and sort the array in ascending order using numpy
functions.

(c) Loop through all elements of the array. If the element is odd, subtract 1; if it is even, add
1.

(d) Create an evenly spaced numpy array using numpy.linspace and plot the generated data
with plt.plot(data). The parameters of numpy.linspace are your choice.

2

