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1 Symmetries in Quantum Mechanics

1.1 Symmetries, Conservation Laws, and Degeneracies
1.1.1 Reminder: Symmetries in Classical Physics
One defines the Lagrangian L(qi, q̇i) of generalized coordinates qi and generalized velocities q̇i.
Consider a displacement qi → qi + δqi for a fixed i. If the Lagrangian does not change, i.e.

L(qi, q̇i) = L(qi + δqi, q̇i) ,

then one finds
∂L
∂qi

= 0 .

Example: Free particle Lagrangian L = m/2 · (ẋ2 + ẏ2 + ż2).

• Canonical Momentum:
pi = ∂L

∂q̇i

• Lagrange Equation:
0 = d

dt
∂L
∂q̇i

− ∂L
∂qi

Using the symmetry this is
0 = dpi

dt .

The canonical momentum pi is a conserved quantity if the Lagrangian is invariant under
translation qi → qi + δqi.

Similarly, in the Hamiltonian formalism of classical mechanics, with H(qi, pi), one finds

dpi
dt = 0 whenever ∂H

∂qi
= 0 .

The Hamilton equations of motion are

dpi
dt = −∂H

∂qi
and dqi

dt = ∂H
∂pi

.

If H is independent of qi, then pi is a conserved quantity.

1.1.2 Symmetries in Quantum Mechanics
In Quantum Mechanics operations like translation or rotation are described by a unitary operator
Ŝ:

Ŝ†Ŝ = ŜŜ† = 1 , that is Ŝ−1 = Ŝ† where (ψ, Âφ) = (Â†ψ,φ) .

• Translation operator:
T̂a = e−i a · p̂/ℏ
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• Rotation operator:
D̂(φ) = e−i φ · l̂/ℏ

Symmetry operations that differ infinitesimally from the identity transformation can be written
as

Ŝ = 1− i ε
ℏ
Ĝ

where Ĝ is a Hermitian operator called the generator of the symmetry operator Ŝ.
An operator is Hermitian if Ĝ = Ĝ†.
Properties of Hermitian operators:

• real eigenvalues

• eigenvectors to different eigenvalues are orthogonal to each other.

g ∈ R is called an eigenvalue of Ĝ with the eigenstate |g⟩ if

Ĝ|g⟩ = g|g⟩ .

For a discrete spectrum gi: ⟨gn|gm⟩ = δn,m.
For a continuous spectrum: ⟨g|g′⟩ = δ(g − g′).

Physical observables like position and momentum are associated with hermitian operators, which
have a complete eigensystem.∑

n

|gn⟩⟨gn| = 1 |φ⟩ =
∑
n

cn|gn⟩∫
dg |g⟩⟨g| = 1 |φ⟩ =

∫
dg c(g) |g⟩

where the expansion coefficients are given by

cn = ⟨gn|φ⟩ and c(g) = ⟨g|φ⟩ , respectively.

When Ĥ is invariant under the symmetry Ŝ, the transformed operator satisfies

Ŝ†ĤŜ = Ĥ or ĤŜ = ŜĤ ⇔ ĤŜ − ŜĤ ≡ [Ĥ , Ŝ] = 0 .

This is equivalent to [Ĝ , Ĥ] = 0, when Ĝ is the generator of Ŝ.
Due to the Heisenberg equation of motion for an operator in the Heisenberg picture F̂H(t):

d
dt F̂H(t) = i

ℏ
[Ĥ , F̂H(t)] + ∂F̂H(t)

∂t
⇒ dĜ

dt = 0 .

(The subscript in ĜH is now implicit.)

Example: Translation operator: T̂a = e−i a · p̂/ℏ ⇒ Ĝ = p̂ and
dp̂
dt = 0 in case of translation

symmetry.

Ĝ is a constant of motion. For example, if Ĥ is invariant under translation, then momentum p̂ is
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constant of motion. In the case of invariance under rotation, angular momentum l̂ is a constant
of motion.

It is instructive to look at eigenstates |g⟩ of Ĝ when [Ĥ , Ĝ] = 0.
(In the Schrödinger picture the state kets are time dependent, given by the Schrödinger equa-
tion.)
The time evolution of |g⟩ can be obtained by using the time evolution operator Û(t, t0) according
to:

|g; t0, t⟩ = Û(t, t0)|g, t0⟩ .

At the starting time |g; t0, t0⟩ = |g, t0⟩ is an eigenstate Ĝ|g, t0⟩ = g|g, t0⟩.
Reminder: The time evolution operator satisfies the differential equation:

iℏ ∂Û(t, t0)
∂t

= Ĥ Û(t, t0) with initial condition Û(t0, t0) = 1 .

If the Hamiltonian does not depend explicitly on time then

Û(t, t0) = e− i
ℏ Ĥ(t−t0) ⇒ [Ĝ , Û(t, t0)] = 0 if [Ĝ , Ĥ] = 0 .

If Ĝ|g, t0⟩ = g|g, t0⟩ then |g; t0, t⟩ is an eigenket of Ĝ with the same eigenvalue (if [Ĥ , Ĝ] = 0):

Ĝ
(
Û(t, t0)|g, t0⟩

)
= Û(t, t0)Ĝ|g, t0⟩ = Û(t, t0)g|g, t0⟩ = g

(
Û(t, t0)|g, t0⟩

)
.

Example: |p, t0⟩ is eigenstate of p̂ at time t0, it will be an eigenstate at all times if the system
is translationally invariant with [Ĥ , p̂].

One can transform between the pictures (where ĜS is a time-independent Schrödinger operator)

ĜH(t) = Û †(t, t0)ĜSÛ(t, t0) and |g; t0, t⟩S = Û(t, t0)|g, t0⟩H .

1.1.3 Degeneracies
In classical mechanics, degeneracies occur for example in the context of closed orbits in the
Kepler problem (many solutions rotated around the focal point).

In Quantum Mechanics, we consider a symmetry operator Ŝ (unitary and commutes with the
Hamiltonian) with [Ĥ , Ŝ] = 0.
Consider every eigenket |n⟩ with Ĥ|n⟩ = En|n⟩. Then Ŝ|n⟩ is also an eigenket with the same
eigenvalue En because

Ĥ
(
Ŝ|n⟩

)
=
(
ĤŜ

)
|n⟩ = ŜĤ|n⟩ = En

(
Ŝ|n⟩

)
.

Suppose now that |n⟩ and Ŝ|n⟩ represent different states, then this states have the same energy
and are hence degenerate.
Consider Ŝ characterized by a continuous parameter, e.g. a rotation

D̂(φ) = e−i φ · l̂/ℏ .

6



Assume now [D̂(φ) , Ĥ] = 0 =⇒ [l̂ , Ĥ] = 0 and [l̂ 2 , Ĥ] = 0. (The implication can be shown
using the commutator rule [ÂB̂ , Ĉ] = Â[B̂ , Ĉ] + [Â , Ĉ]B̂.)
Consider simultaneous eigenkets of Ĥ, l̂ 2, and l̂z, denote them by |n; l,m⟩ :

l̂ 2|n; l,m⟩ = ℏ2l(l + 1)|n; l,m⟩
l̂z|n; l,m⟩ = ℏm|n; l,m⟩ .

⇒ all states D̂(φ)|n; l,m⟩ have the same energy.
In general, D̂(φ)|n; l,m⟩ is a linear combination of the 2l+1 independent states |n; l,m′⟩ (−l ≤ m′ ≤ l)
which is independent of En:

D̂(φ)|n; l,m⟩ =
∑
m′

|n; l,m′⟩D̂(l)
m′,m(φ) with D̂

(l)
m′,m(φ) = ⟨l,m′|D̂(φ)|l,m⟩ .

[The total angular momentum is not changed under rotation. D̂(φ) has a block form: l = 0
scalar, l = 1 vector,...].
By changing φ continuously, we obtain different linear combinations of |n, l,m′⟩. If all states
with D̂(φ)|n; l,m⟩ have the same energy, then all the |n; l,m′⟩ have the same energy ⇒ En is
(2l + 1)-fold degenerate.
Alternative argument: The |n; l,m⟩ can be constructed by successive application of l̂± = l̂x±i l̂y,
which commute with Ĥ as well.
Application: Atomic electron moving in rotationally invariant potential V (r) = V (|r|) ⇒ expect
a (2l + 1)-fold degeneracy of atomic energy levels.
In the presence of an external electric or magnetic field, the rotational symmetry is broken and
the degeneracy is lifted (Stark and Zeemann effect).
En of hydrogen atom (l = 0, 1, ..., n) is n2 degenerate (higher than expected because of a dynamic
SO4 symmetry).

1.2 Discrete Symmetries, Parity, or Space Inversion
1.2.1 Parity
There are three important discrete symmetry operations: parity, lattice translations, and time-
reversal.
When applying the parity operator to the coordinate system, then a right-handed coordinate
system is changed into a left-handed one.
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Figure 1.1: A parity operator transforms a right-handed to a left-handed coordinate system.

However, here we consider transformation of state kets and operators rather than transforma-
tions of the coordinate system.
Given a ket |α⟩, we consider a space-inverted state obtained by applying the unitary parity
operator Π̂ as follows: |α⟩ 7→ Π̂|α⟩. We require the position operator x̂ taken with respect to
Π̂|α⟩ to have opposite sign (

⟨α|Π̂†
)
x̂
(
Π̂|α⟩

) != −⟨α|x̂|α⟩ .

If this is true for all possible kets |α⟩, then due to the associative character of operator multi-
plication, this is achieved if

Π̂†x̂Π̂ = −x̂ or x̂Π̂ = −Π̂x̂ .

Hence, x̂ and Π̂ must anti-commute with each other:

x̂Π̂ + Π̂x̂ = 0 , anti-commutator notation: {x̂ , Π̂} = 0 .

Eigenkets of the position operator must transform in the following way, we claim that

Π̂|x′⟩ = eiδ| − x′⟩ . (1.1)

This is true because x̂Π̂|x′⟩ = −Π̂x̂|x′⟩ = −x′Π̂|x′⟩. ⇒ Π̂|x′⟩ is again eigenket of the position
operator x̂ with eigenvalue −x′. ⇒ Up to a phase factor eiδ it must be equal to | − x′⟩.
It is customary to choose eiδ = 1. Using this conversion in Eq. (1.1) we find Π̂2|x′⟩ = |x′⟩, and
hence Π̂2 = 1 with eigenvalues λ2 = 1 ⇒ λ = ±1. Using Π̂†Π̂ = 1 ⇒ Π̂ = Π̂†.
Π̂ is both unitary and Hermitian, and has eigenvalues ±1.
(For a unitary operator one can show Ŝ†Ŝ = 1 ⇒ λ∗λ = 1 ⇒ λ = eiα.)

How does the momentum operator transform under parity?
p̂ is related to m dx̂

dt , so we expect it to be odd under parity. More rigorous: p̂ is the generator
of translation. A translation followed by parity is equivalent to parity followed by a translation
in the opposite direction.
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Figure 1.2: Visualization of the different order of applying a translation and parity operator.

Let T̂(dx′) denote a translation operator by dx′.

Π̂T̂(dx′) = T̂(−dx′)Π̂

Π̂
[
1−

i p̂ · dx′

ℏ

]
=
[
1+

i p̂ · dx′

ℏ

]
Π̂

Π̂
[
1−

i p̂ · dx′

ℏ

]
Π̂† = 1+

i p̂ · dx′

ℏ

1 = Π̂Π̂† ⇒ Π̂†p̂Π̂ = −p̂ or {Π̂ , p̂} = 0

Angular momentum l̂ = x̂× p̂ ⇒ we have [Π̂ , l̂] = 0.
More generally angular momentum Ĵ is the generator of rotations and has the same properties
as 3 × 3 orthogonal matrices in R3.

R
(parity) =

−1 0 0
0 −1 0
0 0 −1

 = −1

R
(parity)

R(φ) = R(φ)R(parity)

⇒ Rotations and parity commute.
We postulate the same for rotation operators: Π̂D̂(φ) = D̂(φ)Π̂.

Consider a infinitesimal rotation D̂(ε) = 1 − i
ℏ
ε · Ĵ with the rotation axis unit vector n and

the rotation angle ε: ε = ε n.
From this follows

[Π̂ , Ĵ ] = 0 or Π̂†ĴΠ̂ = Ĵ .

We know [Ĵi , Ĵj ] = iℏεijkĴk ⇒ [Ĵ 2 , Ĵz] = 0.
⇒ Ĵ 2 and Ĵz have a common set of eigenfunctions/kets |j,m⟩ :

Ĵ 2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ and Ĵz|j,m⟩ = ℏm|j,m⟩
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where −j ≤ m ≤ j and m increases in integer fashion from −j to j. j can take on either integer
or half integer values.
Example:

|0, 0⟩
|1/2,−1/2⟩ , |1/2, 1/2⟩
|1,−1⟩ , |1, 0⟩ , |1, 1⟩
|3/2,−3/2⟩ , |3/2,−1/2⟩ , |3/2, 1/2⟩ , |3/2, 3/2⟩

Consider eigenfunctions ⟨θ, φ|j,m⟩ = Y m
l (θ, φ).

Y m
l (θ, φ) are solutions to the eigenvalue equation l̂

2
Y m
l (θ, φ) = ℏ2l(l + 1)Y m

l (θ, φ),
l̂zY

m
l (θ, φ) = ℏmY m

l (θ, φ), and Y m
l (θ, φ) = f(θ) eimφ.

The uniqueness of the wave function requires

eimφ = eim(φ+2π) ⇒ 2πm = n2π

⇒ In wave function only values m ∈ N0 are allowed.
⇒ Y m

l (θ, φ) are only single-valued if m is integer.
⇒ Orbital angular momentum related wave functions can only take integer values of l.

• "internal angular momentum" operator ŝ (realizes the N + 1/2 representations of the ro-
tation group) ⇒ [ŝ , Π̂] = 0

• Ĵ = l̂ + ŝ

Under rotations x̂, p̂, and Ĵ transform in the same way, hence they are all vectors. However, x̂
and p̂ are odd under parity, and Ĵ is even: Π̂†x̂Π̂ = −x̂ but Π̂ĴΠ̂ = Ĵ .
For this reason x̂ and p̂ are called polar vectors (Schubvektoren) and Ĵ is an axial vector.
x̂ · p̂ is a scalar (invariant under rotations) and even under parity.
ŝ · x̂ is odd under parity and called a pseudo-scalar:

Π̂−1ŝ · x̂Π̂ = −ŝ · x̂ .

1.2.1.1 Wave Functions under Parity

Let ψα(x′) be the wave function of a spinless particle whose state ket is |α⟩:

ψα(x′) = ⟨x′|α⟩ .

The wave function of the space inverted ket Π̂|α⟩ is

⟨x′|Π̂|α⟩ = (⟨x′|Π̂)|α⟩ = ⟨−x′|α⟩ = ψα(−x′) .

Assume now that |α⟩ is eigenket of parity with Π̂|α⟩ = ±|α⟩. Then the corresponding wave
function is

⟨x′|(Π̂|α⟩) = ±⟨x′|α⟩ = ±ψα(x′) .

For parity eigenstates: ψα(−x′) = ±ψα(x′) where the + is for even and − for odd parity.
We note that not all wave functions have definite parity, even if [Π̂ , Ĥ] = 0. One example are
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momentum eigenkets |p⟩. Since [Π̂ , l̂] = 0, eigenkets of orbital angular momentum are expected
to be eigenkets of parity as well.
Wave functions in a rotationally invariant potential have the following form:

⟨x′|n; l,m⟩ = Rn(r)Y m
l (θ, φ) .

We want to find the parity of Y m
l .

In spherical coordinates, the transformation x′ 7→ −x′ corresponds to

r 7→ r , θ 7→ π − θ and φ 7→ φ+ π ⇒ cos θ 7→ − cos θ , sin θ 7→ sin θ and eimφ 7→ (−1)meimφ .

We have

Y m
l = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)! P
|m|
l (cos θ) eimφ

where the Legendre polynomials are given by

P
|m|
l (cos θ) = (−1)m+l(l + |m|)!

2ll!(l − |m|)! (sin θ)−|m|
( d

d cos θ

)l−|m|
(sin θ)2l

⇒ eimφ 7→ (−1)meimφ and Pml 7→ (−1)l−|m|Pml :

Y m
l 7→ (−1)lY m

l and Π̂|n; l,m⟩ = (−1)l|n; l,m⟩

When [Ĥ , Π̂] = 0, and |n⟩ is a non degenerated eigenket of Ĥ with eigenvalue En, then |n⟩ is
also a parity eigenket.
Consider the 1d harmonic oscillator as an example. The ground state |0⟩ has a Gaussian wave
function, and has even parity for this reason. (This is a consequence of the Sturm–Liouville
theory: 0 nodes for ground state.)
The first excited state |1⟩ = â†|0⟩ has odd parity (â† ∼ x̂+ i p̂ ⇒odd).
Using Π̂ = Π̂† = Π̂−1 we find Π̂â†|0⟩ = Π̂−1â†|0⟩ = Π̂−1â†Π̂Π̂−1|0⟩ = −â†|0⟩. In general, the
parity of harmonic oscillator eigenstates |n⟩ is (−1)n.
For the non-relativistic hydrogen atom, 2p (n = 2, l = 1) and 2s (n = 2, l = 0) are degenerate
and parity eigenstates each.
However, the linear combination cp|2p⟩ + cs|2s⟩ is obviously not a parity eigenket. As a fur-
ther example, the free particle Hamiltonian Ĥ = p̂2

2m is invariant under parity, but momentum
eigenstates |p′⟩ and | − p′⟩ are not: Π̂|p′⟩ = | − p′⟩. However, since they are degenerate, parity
eigenstates can be formed: 1/

√
2 (|p′⟩ ± | − p′⟩). In terms of wave functions, eip′ ·x/ℏ does not

have a definite parity, but cos(p′ · x/ℏ) and sin(p′ · x/ℏ) do.
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1.2.1.2 Symmetrical Double-Well Potential
.

V0
E

x

ground state 

symmetric

�rst excited state

anti-symmetric

V0

Figure 1.3: Symmetric (S) and assymetric (A) state, where EA > ES and for V0 → ∞ : EA−ES → 0

We can from states |R⟩ and |L⟩, which are localized in the right and left potential well, respec-
tively.

|R⟩ = 1√
2

(|S⟩ + |A⟩) and |L⟩ = 1√
2

(|S⟩ − |A⟩) .

|R⟩ and |L⟩ are neither eigenstates of the Hamiltonian nor parity eigenstates.

Π̂|L⟩ = 1√
2

(
Π̂|S⟩ − Π̂|A⟩

)
= 1√

2
(|S⟩ + |A⟩) = |R⟩ .

Instead, they are typical examples of non-stationary states. The time evolution of the state |R⟩
is given by

|R; t0 = 0, t⟩ = 1√
2

(
e− i

ℏ ESt|S⟩ + e− i
ℏ EAt|A⟩

)
= 1√

2
e− i

ℏ ESt
(
|S⟩ + e− i

ℏ (EA−ES) t|A⟩
)
.

While the system is represented by |R⟩ at t = 0, at time

t = T

2 = 2πℏ
2(EA − ES) where 1

ℏ
(EA − ES) t = π

the system is found in pure |L⟩. At t = T , we are back in pure |R⟩, and so on. We observe an
oscillation between |R⟩ and |L⟩ with angular frequency

ω = EA − ES
ℏ

.

An example demonstrating the importance of the symmetry is the Amonia molecule.
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Figure 1.4: The Amonia molecule rotates arround the dashed axis. Due to the rotation both ori-
entations can be distinguished by the direction of the angular momentum.

Up and down for the Nitrogen are analogous to |L⟩ and |R⟩ in the double-well.
The energy and parity eigenstates are superpositions and the energy difference corresponding
to an oscillation frequency of 24000MHz, a wavelength of about 1cm (microwave).

There are naturally occurring organic molecules, such as amino acids or sugars, which are of
R-type or L-type only.
For such molecules with a definite handedness, in many cases, the oscillation time is infinite for
practical purposes (104-106 years).
Examples are chiral amino acids (L-versions: rotate the orientations of linear polarized light to
the left) and sugars (R-versions) in biochemistry.
The origin of symmetry breaking is unclear, since the synthesis in the laboratory yields equal
amounts of L- and R-types.

1.2.1.3 Parity Selection Rule

We consider parity eigenstates |α⟩ and |β⟩ with eigenvalues λα, λβ ∈ {±1} : Π̂|α⟩ = λα|α⟩ and
Π̂|β⟩ = λβ|β⟩. We now show that ⟨β|x̂|α⟩ = 0 unless λα = −λβ.

⟨β|x̂|α⟩ = ⟨β|Π̂−1 Π̂x̂Π̂−1︸ ︷︷ ︸
−x̂

Π̂|α⟩ = −⟨β|Π̂†x̂Π̂|α⟩ = −λαλβ⟨β|x̂|α⟩

which is only possible if either −λαλβ = 1 or ⟨β|x̂|α⟩ = 0.
This selection rule is important for transitions between atomic states.
The vector potential operator of incoming light with frequency ω is given by

Â(x, t) = A0 e
i k · x̂−iωt .

Since the wavelength of light is much larger then the Bohr radius, we can expand a plane wave:

eik · x̂ ≈ 1 + i k · x̂︸ ︷︷ ︸
dipole

−1
2 (k · x̂)2︸ ︷︷ ︸

quadrupol

,

13



(we consider only the stronger dipole transitions) and for the application of Fermis golden rule
(transition probability from initial state I to final state F; only when energy difference is equal
to photon energy)

ΛIF ≈ 2π
ℏ

|⟨F |Ĥ1|I⟩|2 δ(EF − EI − ℏω)

we need to compute matrix elements of the position operator x̂ between different atomic states.
Together with our result for the parity of angular momentum eigenstates, Π̂|n; l,m⟩ = (−1)l|n; l,m⟩
we can immediately conclude that optical dipole transitions are only possible between states with
different angular momentum.

1.2.1.4 Parity Non-Conservation

During β-decay, a neutron is transformed into a proton by emission of an electron ("beta ray")
and a neutrino, or conversely a proton is transformed into a neutron by emission of a positron
and a neutrino.
The basic Hamiltonian for this so-called weak interaction is not invariant under parity. Observ-
ables like the angular distribution of emitted β-rays depends on pseudo-scalars like ⟨ŝ⟩ · p̂, where
⟨ŝ⟩ is the expectation value of the nuclear spin. In the experiment by Wu, Ambler, et al. [Phys.
Rev. 105, 1413 (1957)] it was demonstrated that the emission of β-rays occurs preferentially in
the direction opposite to the orientation of the nuclear spin.

1.2.2 Lattice Translations as a Discrete Symmetry
We consider a periodic potential in one dimension, with V (x+ a) = V (x).

.
V(x)

x
a

Figure 1.5: Periodic lattice potential

Such a potential may describe the motion of an electron in a chain of regularly spaced ions. In
general the Hamiltonian is not invariant under a translation by an arbitrary amount l as de-
scribed by the translation operator T̂l which transforms the position operator according to

T̂ †
l x̂T̂l = x̂+ l , and T̂l|x′⟩ = |x′ + l⟩ .

Only when l coincides with the lattice spacing a, one finds

T̂ †
aV (x̂)T̂a = V (x̂+ a) = V (x̂) .

14



Since the kinetic energy contained in the Hamiltonian is invariant under arbitrary displacements,
the entire Hamiltonian satisfies

T̂ †
aĤT̂a = Ĥ, and since T̂a is unitary, also [Ĥ , T̂a] .

Ĥ and T̂a can be simultaneously diagonalized for this reason.
First, we study a periodic potential with infinitely high boundaries.

.
V(x)

x
a

Figure 1.6: Periodic lattice potential with infinite boundaries

A particle located at lattice site n is a ground state of the Hamiltonian. We denote this state
by |n⟩, Ĥ|n⟩ = E0|n⟩. The wave function ⟨x′|n⟩ is finite only on the n-th lattice site. |n⟩ is not
an eigenstate of T̂a :

T̂a|n⟩ = |n+ 1⟩ .

This is possible because of the degeneracy.
Consider the state

|θ⟩ ≡
∞∑

n=−∞
einθ|n⟩ with θ ∈ [−π, π]

T̂a|θ⟩ =
∞∑

n=−∞
einθ|n+ 1⟩ =

∞∑
n′=−∞

ei (n′−1) θ|n′⟩

= e−iθ |θ⟩ .

⇒ |θ⟩ is eigenstate of T̂a with eigenvalue e−iθ with |e−iθ| = 1.
In the limit of infinitely high barriers, the energy is independent of θ. Now we consider the more
realistic case of potential barriers with finite height. Then, the wave functions ⟨x′|n⟩ also have
tails extending to neighboring sites.

15



.
V(x) <x‘   n>=Ψ  (x)

x
a

n

Figure 1.7: Periodic finite lattice potential and wave function on lattice site n

The diagonal matrix elements ⟨n|Ĥ|n⟩ = E0 are all equal because of translational invariance.
We assume that the only non-diagonal elements of importance are the one connecting immediate
("neutral") neighbors.

⟨n′|H⃗|n⟩ ≠ 0 only if n′ = n or n′ = n± 1 .

This assumption is known as "tight-binding" approximation. More specifically ⟨n±1|Ĥ|n⟩ = −∆
independent of n due to translational invariance. We thus obtain

Ĥ|n⟩ = E0|n⟩ − ∆|n+ 1⟩ − ∆|n− 1⟩

valid to the extend that ⟨n′|n⟩ = δn,n′ . We now again form the linear combination |θ⟩:

|θ⟩ =
∑
n

einθ|n⟩ with T̂a|θ⟩ = e−iθ|θ⟩ .

Applying the tight-binding Hamiltonian yields

Ĥ|θ⟩ = Ĥ
∞∑

n=−∞
einθ|n⟩ = E0

∞∑
n=−∞

einθ|n⟩ − ∆
∞∑

n=−∞
einθ|n+ 1⟩ − ∆

∞∑
n=−∞

einθ|n− 1⟩

= E0

∞∑
n=−∞

einθ|n⟩ − ∆
∞∑

n=−∞
einθe−iθ|n⟩ − ∆

∞∑
n=−∞

einθeiθ|n⟩

= (E0 − 2∆ cos θ)
∞∑

n=−∞
einθ|n⟩ = (E0 − 2∆ cos θ)|θ⟩ .

The eigenstates depend on the parameter θ. The degeneracy is lifted, and we have a contineous
spectrum of eigenvalues between E0 − 2∆ and E0 + 2∆.
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.
E

E0

Δ

Figure 1.8: Energy spectrum

(In the homework the SSH-model, the simplest model of an topological insulator, is discussed.
It has a diatomic unit cell (A,B labeled with n) and two different hopping strengths. The idea
is to express the wave function as ψn = (ψnA, ψnB) separate.)

Physical significance of θ: Consider the wave function ⟨x′|θ⟩. For the translated state T̂a|θ⟩,
we find ⟨x′|T̂a|θ⟩ = ⟨x′ − a|θ⟩ by using ⟨x′|T̂a = ⟨x′|T̂ †

−a = (T̂−a|x′⟩)† = (|x′ − a⟩)† because
T̂ †
a = T̂−1

a = T̂−a.
On the other hand, we know T̂a|θ⟩ = e−iθ|θ⟩, such that

⟨x′ − a|θ⟩ = ⟨x′|θ⟩ e−iθ .

We find a solution by making the ansatz:

⟨x′|θ⟩ = eikx′
uk(x′) with θ = ka and uk(x′) = uk(x′ ± a) .

We varify by substitution that this ansatz indeed satisfies the condition

⟨x′ − a|θ⟩ = eik(x′−a)uk(x′ − a) = eikx′
uk(x′)e−ika = ⟨x′|θ⟩e−ika .

For wave functions in a periodic potential we thus find the condition known as Bloch theorem:
The wave function of the eigenket |θ⟩ can be written as a plane wave times a periodic function
with periodicity of the lattice.
Since we only used that |θ⟩ is an eigenket of T̂a with eigenvalue e−iθ, the theorem even holds,
when the tight-binding approximation breaks down.
We can now reinterpret our earlier result |θ⟩ = ∑

n e
inθ|n⟩.

⟨x′|θ⟩ =
∑
n

einθ⟨x′|n⟩ = eikx′ ∑
n

e−ik(x′−na)⟨x′|n⟩︸ ︷︷ ︸
uk(x′)

with θ = ka

As θ varies from −π to π, the wave vector varies from −π
a to π

a .
The energy eigenvalue E depends on k as follows:

E(k) = E0 − 2∆ cos(ka) .

This is independent of the detailed shape of the lattice potential, as long as the tight-binding
approximations stays valid.
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.
E(k)

k
-π/a   π/a

E0

E0–2∆

E0+2∆

Figure 1.9: Dispersion relation E(k)

The range of allowed k values that yield linear independent wave functions is called Brillouin
zone: (−π

a ,
π
a ].

(The velocity v = ∂kE(k)/ℏ = ∂kω of electrons moving through the lattice. p = ℏk and
ṗ = eE ⇒ velocity can decrease when the momentum increases after passing k = π/a. In a
clean atomic crystal a dc B-field can lead to an ac current. A Ohmic current-voltage dependence
is only due to impurities.)
So far we considered only one electron in a periodic potential. In the case of many electrons,
the Pauli exclusion principle must be satisfied: each state can only be occupied by one electron.

.

EF
∆

band gap

occupied

k
-π/a

metal semi-conductor or insulator

  π/a

E(k)E(k)

k
-π/a   π/a

Figure 1.10: Band structure of a metal and a semi-conductor

The Fermi energy is referring to the energy difference between the highest and lowest occupied
single-particle states in a quantum system of non-interacting fermions at absolute zero temper-
ature.
If the band gap in the second case is ∆ ∼ kBT it is a semi-conductor and for ∆ ≫ kBT an
insulator.
Electrons fill up the low energy states of the band, and the main quantitative features of metal,
semi-conductors, and insulators can be explained.
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1.2.3 The Time-Reversal Discrete Symmetry
This topic sounds initially difficult, because "time-reversal" is a misnomers, some what reminis-
cent of science fiction. What is meant here is a "reversal of motion".
We consider the trajectory of a particle subject to a given force-field. At time t = 0, we let the
particle stop and reverse its motion, p

∣∣
t=0+ = −p

t=0− . The particle runs backwards along the
same trajectory.

.

(a)

t=0

p

(b)

t=0

reversed momentum

-p

Figure 1.11: Reversing of motion to check time-reversal symmetry

If we run video recordings of trajectories (a) and (b), it looks as if the video of (b) was the video
of (a) played backwards. This is the definition of time-reversal symmetry in classical mechanics.
A system in classical mechanics is called time-reversal invariant if motion-reversal looks the same
as playing video (a) backwards.
More formally, if x(t) is a solution of Newton’s equation mẍ = −∇V (x), then x(−t) is a solution
as well:

t′ = −t ⇒ d
dt′ = − d

dt ⇒ d2

dt′2
= d2

dt2 .

In the presence of a magnetic field, one can tell the difference between "motion reversal" and
"playing the video backwards".

.

(a) (b)

t=0 t=0

reversed 

motion

playing

video

backwards

Figure 1.12: Electron in a constant magnetic field as an example of non-time-reversal-invariant
system

This is since the Lorentz force qv × B = qẋ × B contains the first time derivative ⇒ x(−t) is
not a solution to the equation of motion.
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We now consider the Schrödinger equation

iℏ ∂ψ
∂t

=
(

− ℏ2

2m ∇2 + V (x)
)
ψ . (*)

When we have a solution ψ(x, t), then ψ(x,−t) is clearly not a solution due to the appearance
of the first time derivative.
The complex conjugate of (*) is

−iℏ ∂ψ
∗

∂t
=
(

− ℏ2

2m ∇2 + V (x)
)
ψ∗ .

However, ψ∗(x,−t) is a solution as one sees by complex conjugation.
This can be seen explicitly when considering an energy eigenstate

ψ(x, t) = un(x) e−i En
ℏ t , ψ∗(x,−t) = u∗

n(x) e−i En
ℏ t

substituted into the Schrödinger equation. We thus conjecture that time-reversal is related to
complex conjugation.

1.2.3.1 Digression on Symmetry Operations

Consider a symmetry operation |α⟩ 7→ |α̃⟩ , |β⟩ 7→ |β̃⟩. So far, we required that the inner
product stays unchanged

⟨β̃|α̃⟩ = ⟨β|α⟩ .

This was natural because the symmetry operations considered so far were unitary:

|β̃⟩ = Û |β⟩ , ⟨β̃| = ⟨β|Û † = ⟨β|Û−1 =⇒ ⟨β̃|α̃⟩ = ⟨β| Û †Û︸ ︷︷ ︸
1

|α⟩ = ⟨β|α⟩

For time-reversal this condition is too restrictive, and we impose the weaker requirement that

|⟨β̃|α̃⟩| = |⟨β|α⟩| .

This is obviously satisfied if ⟨β̃|α̃⟩ = ⟨β|α⟩, but ⟨β̃|α̃⟩ = ⟨β|α⟩∗ = ⟨α|β⟩ works equally well.

The transformation |α⟩ 7→ |α̃⟩ = θ̂|α⟩ , |β⟩ 7→ |β̃⟩ = θ̂|β⟩ is said to be anti-unitary if

⟨β̃|α̃⟩ = ⟨β|α⟩∗ (I)
θ̂ (c1|α⟩ + c2|β⟩) = c∗

1θ̂|α⟩ + c∗
2θ̂|β⟩ (II)

The second condition (II) defines an anti-linear operator. We now claim that an anti-unitary
operator can be written as θ̂ = ÛK̂, with a unitary operator Û , and with K̂ denoting the
complex conjugation operator. K̂ takes the complex conjugate of any coefficient multiplying a
ket, e.g.

K̂c|α⟩ = c∗K̂|α⟩ .
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If |α⟩ is expended in terms of base kets |a′⟩, then

|α⟩ =
∑
a′

|a′⟩⟨a′|α⟩

K̂|α⟩ =
∑
a′

⟨a′|α⟩∗K̂|a′⟩ =
∑
a′

⟨a′|α⟩∗|a′⟩ .

Important is that the base kets are not changed under the action of K̂. This is due to the fact
that the explicit representation of the base ket |a′⟩ corresponds to (0, ..., 0, 1, 0, ..., 0) which is
not changes by K̂ (no proof given here).

One can ask whether the ŝy-eigenkets for spin 1
2 are changed by K̂. When the ŝy-eigenkets are

used as space-kets, they stay unchanged. If the ŝz-eigenkets are used however, then

K̂

( 1√
2

|+⟩ ± i√
2

|−⟩
)

= 1√
2

|+⟩ ∓ i√
2

|−⟩ .

Thus, the effect of K̂ changes with bases, and the form of Û also depends on the particular
representation.

Let us check the anti-linearity for θ̂ = ÛK̂.

θ̂ (c1|α⟩ + c2|β⟩) = ÛK̂ (c1|α⟩ + c2|β⟩)
= c∗

1ÛK̂|α⟩ + c∗
2ÛK̂|β⟩

= c∗
1θ̂|α⟩ + c∗

2θ̂|β⟩

Before checking condition (I), we state that it is safer to work with the action of θ̂ on kets only,
and to not consider the action of θ̂ on bras or the Hermitian adjoint θ̂†.
We find

|α̃⟩ = θ̂|α⟩ =
∑
a′

⟨a′|α⟩∗Û |a′⟩

=
∑
a′

⟨α|a′⟩ Û |a′⟩

similarly for

|β̃⟩ =
∑
a′

⟨β|a′⟩ Û |a′⟩

⟨β̃| =
∑
a′

⟨a′|β⟩⟨a′| Û †

⇒ ⟨β̃|α̃⟩ =
∑
a′

∑
a′′

⟨a′′|β⟩ ⟨a′′| Û †Û︸ ︷︷ ︸
1

|a′⟩

︸ ︷︷ ︸
δa′,a′′

⟨α|a′⟩

=
∑
a′

⟨α|a′⟩⟨a′|β⟩ = ⟨α|β⟩ = ⟨β|α⟩∗ .
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1.2.3.2 Time-Reversal Operator

In the following, we denote the time-reversal operator by T̂ , and |α̃⟩ = T̂ |α⟩ is the time-reversed
(or better motion-reversed) state.
If |α⟩ = |p ′⟩ is a momentum eigenstate, then we expect T̂ |p ′⟩ = | − p ′⟩. Similarly, we expect
angular momentum Ĵ to be reversed under time-reversal.
We now establish a fundamental property of T̂ by studying the time evolution of the motion
reversed state. For a infinitesimal δt we have

|α; t0 = 0, t = δt⟩ =
[
1 − i Ĥ

ℏ
δt

]
|α⟩ with initial state |α⟩ = |α; t0 = 0, t = 0⟩

as the time evolution of |α⟩. The time evolution of the time-reversed state is given by[
1 − i Ĥ

ℏ
δt

]
T̂ |α⟩ .

According to our classical considerations, if motion obeys symmetry under time reversal, then
T̂ |α; t0 = 0, t = δt⟩ is the same state as the above.

.

t=0| -p‘ >=T | p‘ >

t=δt
T | p‘ >

  | p‘ >

  | p‘ >

1-        δti H
ħ( (

^

               T | p‘ ,-δt>
^

^
^

t=0  | p‘ >

t=-δt state            
at earlier time

motion reversed state

  | p‘ >

Figure 1.13: Illustration of the condition for time reversal symmetry

Considering a state at an earlier time and motion reversing is the same as propagating the motion
reversed state forward in time. Mathematically, we obtain

T̂

(
1 − i Ĥ

ℏ
(−δt)

)
|α⟩ =

(
1 − i Ĥ

ℏ
δt

)
T̂ |α⟩

If this relation is true for every ket |α⟩, it must be an operator identity

−i ĤT̂ = T̂ i Ĥ

If T̂ was unitary, it was also linear and we could cancel the factors i in the above equation, and
would find that −ĤT̂ = ĤT̂ .
Consider now an energy eigenstate n̂ with eigenvalues En. Then, the time reversed state T̂ |n⟩
satisfies

ĤT̂ |n⟩ = −T̂ Ĥ|n⟩ = (−En)T̂ |n⟩ ,
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i.e. an eigenstate with eigenvalue −En. This is not possible even in the elementary case of a
free particle: the energy spectrum ℏ2k2

2m is positive semidefinite and thus not contain negative
eigenvalues.
We also see this contradiction when looking at the Hamiltonian Ĥ = p̂2

2m . Under time reversal,
we expect p 7→ −p, but p2 should not change sign ⇒ we are not allowed to cancel factors of i in
−i ĤT̂ = T̂ i Ĥ, and that T̂ should better be anti-unitary.
Then, −i ĤT̂ = T̂ i Ĥ = −i T̂ Ĥ and

ĤT̂ = T̂ Ĥ .

The Hamiltonian is T̂ -invariant if [T̂ , Ĥ] = 0.

We now consider a general operator Ô, and prove that the identity

⟨β|Ô|α⟩ = ⟨α̃|T̂ Ô†T̂−1|β̃⟩

follows from the anti-linear property of T̂ .

Proof: We define |γ⟩ ≡ Ô†|β⟩, the corresponding bra is ⟨γ| = ⟨β|Ô. Then using |γ̃⟩ = T̂ |γ⟩
yields

⟨β|Ô|α⟩ = ⟨γ|α⟩ = ⟨α̃|γ̃⟩ = ⟨α̃|T̂ Ô†|β⟩⟨α̃|T̂ Ô†T̂−1(T̂ |β⟩) = ⟨α̃|T̂ Ô†T̂−1|β̃⟩ . □

For a Hermitian observable Â, we find that

⟨β|Â|α⟩ = ⟨α̃|T̂ ÂT̂−1|β̃⟩ . (*)

We define an observable to be even or odd under time-reversal according to whether the upper
or lower sign in the following equation applies:

T̂ ÂT̂−1 = ±Â

Taking this equation together with the rule (*) for matrix elements, we find the following re-
striction on matrix elements

⟨β|Â|α⟩ = ±⟨β̃|Â|α̃⟩∗ .

For expectation values with |β⟩ ≡ |α⟩, we find

⟨α|Â|α⟩ = ±⟨α̃|Â|α̃⟩ .

Example: Expectation value of p̂. We will reasonably assume that the expectation value of p̂
taken with respect to the time-reversed state will have the opposite sign as compared to the
original state:

⟨α|p̂|α⟩ = −⟨α̃|p̂|α̃⟩ .

⇒ p̂ is an odd operator:

T̂ p̂T̂−1 = −p̂ ⇐⇒ T̂ p̂ = −p̂T̂ .
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It follows than that p̂T̂ |p′⟩ = −T̂ p̂|p′⟩ = −p′T̂ |p′⟩ which agrees with our earlier assumption that
T̂ |p′⟩ is a momentum eigenket with eigenvalue −p′.
Similarly we find that

T̂ x̂T̂−1 = x̂ .

and T̂ |x′⟩ = |x′⟩ up to a phase factor eiδ which is often taken to be unity.

Now we can verify the invariance of the fundamental commutator relation [x̂i , p̂j ]|α⟩ = iℏδij |α⟩
where |α⟩ stands for every possible ket. Applying T̂ to both sites yields

T̂ [x̂i , p̂j ]T̂−1T̂ |α⟩ = T̂ iℏδij |α⟩ .

Using the transformation properties of x̂ and p̂, and using T̂ i = −i T̂ we find

[x̂i , −p̂j ]T̂ |α⟩ = −iℏδij T̂ |α⟩
[x̂i , p̂j ] = iℏδij .

From the invariance of the commutator under T̂ we can sometimes determine if a operator must
be odd or even.
The fundamental commutation relation is only preserved since T̂ is anti-unitary. Similarly, in
order to preserve

[Ĵi , Ĵj ] = iℏεijkĴk ,

the angular momentum operator Ĵ must be odd under time-reversal.

T̂ Ĵ T̂−1 = −Ĵ

This applies to orbital angular momentum and spin. For a spinless system with Ĵ = x̂× p̂ this
is consistent with x̂ being even and p̂ being odd.

1.2.3.3 Wave Functions

We consider a spinless particle to be in state |α⟩.
In position representation, we can expand

|α⟩ =
∫

d3x′ ⟨x′|α⟩|x′⟩ .

Application of the time-reversal operator yields

T̂ |α⟩ =
∫

d3x′ ⟨x′|α⟩∗T̂ |x′⟩

=
∫

d3x′ ⟨x′|α⟩∗|x′⟩

⇒ ⟨x′|α⟩∗ is the wave function of the time-reversed state, and we used the phase convention
T̂ |x′⟩ = |x′⟩.
We recover the following rule ψ(x′) T̂7−→ ψ∗(x′), inferred earlier from looking at the Schrödinger
equation.
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In a rotationally invariant potential the angular part of the wave function is given by a spher-
ical harmonic Y m

l (θ, φ) with Y m
l ∝ Pml (cos θ) eimφ. We find Y m

l (θ, φ) T̂7−→ Y m∗
l (θ, φ) =

(−1)mY −m
l (θ, φ) since Pml = (−1)mP−m

l . We deduced that in general

T̂ |l,m⟩ = (−1)m|l,−m⟩ .
.

x

y

j for m<0

j for m>0

Figure 1.14: Probability current associated with a wave function of type Rnl(r)Y m
l (θ, φ) (expected

motion, e.g. of an electron; j ∝ Im(ψ∗∇ψ))

When computing the probability current associated with a wave function of type Rnl(r)Y m
l (θ, φ),

one finds that for m > 0 the current flows in the counter clockwise direction within the x-y-plane
(as seen from the positive z-axis). The wave function for the corresponding time-reversed state
has the probability current flowing in the opposite direction, as m is reversed.

An interesting consequence of time-reversal symmetry is the following theorem:
We consider a time-reversal invariant Hamiltonian with a non-degenerate energy eigenket |n⟩.
Then the corresponding energy eigenfunction is real, or can be made real by multiplication with
a phase factor independent of the position x.
Proof: We start with

ĤT̂ |n⟩ = T̂ Ĥ|n⟩ = EnT̂ |n⟩ ,
and conclude that |n⟩ and T̂ |n⟩ have he same energy. Due to the assumption of non-degeneracy,
|n⟩ and T̂ |n⟩ must represent the same state. The corresponding wave functions are ⟨x′|n⟩ and
⟨x′|n⟩∗. They must be the same ⟨x′|n⟩ = ⟨x′|n⟩∗ since x̂ is even. □

As a consequence the wave function of a non-degenerate bound state is always real. In the hydro-
gen atom, the eigenfunctions for states with l ̸= 0, and m ̸= 0 are complex because the spherical
harmonics Y m

l are complex. This does not contradict the above theorem because |n; l,m⟩ and
|n; l,−m⟩ are degenerate.
Vice versa, if Ĥ is T̂ -invariant and we have a complex wave function, there need to be a degen-
eracy.
Similarly, the wave function of a plane wave e

i
ℏ p ·x is complex, but degenerate with e− i

ℏ p ·x.

For a spinless system, the wave function for the time-reversal state is simply obtained by com-
plex conjugation (in the position representation).
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Expanding a ket |α⟩ in position representation, T̂ is the same as complex conjugation K̂ because
both have the same effect. When expressing in terms of momentum eigenkets however, we need
to take into account T̂ |p′⟩ = | − p′⟩ and obtain

T̂ |α⟩ =
∫

d3p′ | − p′⟩⟨p′|α⟩∗ =
∫

d3p′ |p′⟩⟨−p′|α⟩∗ .

Apparently the momentum space wave function of the time-reversed state is not just the complex
conjugation of the original wave function, but in addition we need to take ϕ∗(−p′), the complex
conjugate with the momentum reversed.

1.2.3.4 Time-Reversal for a Spin-1
2 System

Consider an eigenket of Ŝ · n̂ :

|n̂,+⟩ = e− i
ℏ Ŝz αe− i

ℏ Ŝy β|+⟩ .

Since the rotation operator is given by e− i
ℏ φ · Ŝ this is a rotation of the |+⟩ state which points

in positive z-direction (Ŝz|+⟩ = ℏ
2 |+⟩ and Ŝz|−⟩ = −ℏ

2 |−⟩) to a position with polar angle β and
azimuthal angle α.

.

β

x

y

z

β

α

x

y

z

e
-i Sy β/ħ

^

e
-i Sz α/ħ

^

Figure 1.15: e− i
ℏ Ŝz α corresponds to a rotation by α around the z-axis and e− i

ℏ Ŝy β is a rotation of
β around the y-axis.

Because of T̂ Ĵ = −Ĵ T̂ and the anti-unitary property of T̂ we have

T̂ |n̂,+⟩ = e− i
ℏ Ŝzαe− i

ℏ Ŝyβ|−⟩

where |+⟩ = |m = +1/2⟩, therefore T̂ |+⟩ = η|−⟩

T̂ |n̂,+⟩ = e− i
ℏ Ŝzαe− i

ℏ ŜyβT̂ |+⟩ = η|n̂,−⟩ .

On the other hand, we can verify that

|n̂,−⟩ = e− i
ℏ Ŝzαe− i

ℏ Ŝy(β+π)|+⟩ .
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β

π

x

y

z

β

α

x

y

z

e
-i Sy (β+π)/ħ

^

e
-i Sz α/ħ

^

π

Figure 1.16: Additional factor e− i
ℏ πŜy is needed for the |n̂,−⟩ state.

We saw earlier that T̂ = ÛK̂ is a possible representation of T̂ . Remembering that K̂|+⟩ = |+⟩,
K̂|−⟩ = |−⟩ does not change the base kets, we see that

T̂ = η e− i
ℏ π ŜyK̂ = −iη

(
2Ŝy
ℏ

)
K̂

is the representation we are looking for.
Here we used that

e− i
ℏ α Ŝy =

∞∑
n=0

(
2Ŝy
ℏ

)n (−iα/2)n
n!

=
∞∑
m=0

(
2Ŝy
ℏ

)2m (α/2)2m

(2m)! (−i )2m − i 2Ŝy
ℏ

∞∑
n=0

(
2Ŝy
ℏ

)2m

(−i )2m (α/2)2m+1

(2m+ 1)! .

With Ŝ2
y = ℏ2

4 1 (remember this via: Ŝ2 = ℏ2s(s+ 1) = ℏ23/4 = Ŝ2
x + Ŝ2

y + Ŝ2
z ⇒ Ŝ2

z = ℏ2/4) we
have (2Ŝ2

y/ℏ)2 = 1 and thus

e− i
ℏ α Ŝy =

∞∑
m=0

(α/2)2m(−i )2m

(2m)! − i 2Ŝy
ℏ

∞∑
n=0

(−i )2m (α/2)2m+1

(2m+ 1)!

=
∞∑
m=0

(−1)m (α/2)2m

(2m)! − i 2Ŝy
ℏ

∞∑
n=0

(−1)m (α/2)2m+1

(2m+ 1)!

= cos
(
α

2

)
− i 2Ŝy

ℏ
sin
(
α

2

)
.

We found:

e− i
ℏ α Ŝy = cos

(
α

2

)
− i 2Ŝy

ℏ
sin
(
α

2

)
and thus

e− i
ℏ π Ŝy = −i 2Ŝy

ℏ
.

Along similar lines one finds the important result
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e− i
ℏ α n̂ · Ŝ = cos

(
α

2

)
− i 2 n̂ · Ŝ

ℏ
sin
(
α

2

)
.

For spin-1
2 system holds

T̂ = −iη 2Ŝy
ℏ

K̂ and Ŝy =̂ ℏ
2 σ

y , σy =
(

0 −i
i 0

)
.

Therefore we have for the spin-1
2 system: T̂ = −iησyK̂ , and often one chooses η = i and thus

T̂ = σyK̂ .

In a homework problem, it was verified that if χ(n̂,+) is an eigenspinor of n̂ · σ = nxσ
x + nyσ

y + nzσ
z

with eigenvalue +1: n̂ ·σ χ(n̂,+) = χ(n̂,+), then −iσy χ∗(n̂,+) = χ(n̂,−) with n̂ · σ χ(n̂,−) = (−1)χ(n̂,−)
an eigenspinor pointing in the opposite direction. The appearance of Ŝy, σy is due to the fact
that we use a basis {|+⟩, |−⟩} of eigenspinors of Ŝz, i.e. Ŝz is diagonal, and Ŝy, σ

y is purely
imaginary.

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

We check T̂ σx,y,z = −σx,y,zT̂ :

• σy : (−) sign from complex conjugation

• σx,z : (−) sign from σx,zσy = −σyσx,z

We note that
e− i

ℏ π Ŝy |+⟩ = (+1)|−⟩ and e− i
ℏ π Ŝy |−⟩ = (−1)|+⟩

as can be seen in a component representation with |+⟩=̂(1, 0) , |−⟩ =̂ (0, 1), and phase conven-
tion η = 1

⇒ e− i
ℏ π Ŝy =̂ − iσy =

(
0 −1
1 0

)
⇒
(

0 −1
1 0

)(
1
0

)
=
(

0
1

)
and

(
0 −1
1 0

)(
0
1

)
=
(

−1
0

)
.

We are now in a position to work out the effect of T̂ on the most general spin-1
2 ket

T̂ (c+|+⟩ + c−|−⟩) = ηc∗
+|−⟩ + ηc∗

−(−1)|+⟩
T̂ 2(c+|+⟩ + c−|−⟩) = ηη∗c+(−1)|+⟩ + ηη∗c−(−1)|−⟩

= (−1) (c+|+⟩ + c−|−⟩)

Hence, we have for a spin-1
2 system

T̂ 2 = −1 .

This situation is very different for a spinless system, where T̂ 2 = +1, which can be inferred from
T̂ |l,m⟩ = (−1)m|l,−m⟩. Even more generally, we now demonstrate that

T̂ 2|j half-integer⟩ = −1 |j half-integer⟩
T̂ 2|j integer⟩ = +1 |j integer⟩ .
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As a consequence, the eigenvalue of T̂ 2 is given by (−1)2j . First, we note that even for general
j we have

T̂ = ηe− i
ℏ π ĴyK̂

since the from of the rotation operator does not depend on the specific value of j. We now
expand a general ket |α⟩ in terms of |j,m⟩ base kets

T̂
(
T̂ |α⟩

)
= T̂

(
T̂
∑
m

|j,m⟩⟨j,m|α⟩
)

= T̂

(
η
∑
m

e− i
ℏ π Ĵy |j,m⟩⟨j,m|α⟩∗

)
= |η|2e− 2i π

ℏ Ĵy
∑
m

|j,m⟩⟨j,m|α⟩ = e− 2i π
ℏ Ĵy |α⟩

⇒ T̂ 2 = e−2iπĴy/ℏ .

However
e−2iπ Ĵy/ℏ|j,m⟩ = (−1)2j |j,m⟩

due to the properties of angular momentum eigenkets under rotation. This can be understood
for instance by expanding in an eigenbasis of Ĵy which satisfies Ĵy|j,my⟩ = ℏmy|j,my⟩ with
−j ≤ my ≤ j such that Ĵy can be replaced by an integer·ℏ for integer j ⇒ e−2πimy = 1, and it
is replaced by a half-integer·ℏ for half-integer j ⇒ e−2πimy = −1.

Remark:
An integer j is obtained either by the orbital state |l,m⟩ of a spinless particle, or by the "addition"
(to be discussed later) of two spin-1

2 particles, for instance the spin state 1√
2 (| + −⟩ ± | − +⟩)

(corresponds to m = 0, +: j = 1 or − : j = 0) or | + +⟩ (j = 1, m = 1) or | − −⟩
(j = 1, m = −1) where |m1 , m2⟩ is used as a notation. Two times spin 1

2 can be j = 0 (one
state, singlet) or j = 1 (three states, triplet).
Similarly, a half-integer j may stand for a single electron or a three-electron system in any
configuration. Generally, for a system made up of electrons only, any system with an odd (even)
number of electrons has T̂ 2 = −1 (T̂ 2 = 1). For this to happen, the electrons do not have to
be in an eigenstate of Ĵ2.

Remark on phase convention:
Inspired by the rule for angular momentum T̂ |l,m⟩ = (−1)m|l,−m⟩ often on chooses
T̂ |j,m⟩ = (−1)m|j,−m⟩ for integer j. This can be generalized to half-integer j by demanding
T̂ |j,m⟩ = i 2m|j,−m⟩. This corresponds to a choice of phase η = i .

1.2.3.5 Kramers Degeneracy

Consider a charged particle in a electrostatic potential eϕ(x̂) . ⇒ [T̂ , Ĥ] = 0 since x̂ is even
under time-reversal. ⇒ |n⟩ is an energy eigenstate with eigenvalue En, then T̂ |n⟩ is an eigenstate
with the same eigenvalue.

Ĥ(T̂ |n⟩) = T̂ (Ĥ|n⟩) = En(T̂ |n⟩)

Does T̂ |n⟩ represent the same state as |n⟩?
Assume that it does represent the same state, T̂ |n⟩ = eiδ|n⟩. Then

T̂ 2|n⟩ = T̂ (eiδ|n⟩) = e−iδeiδ|n⟩ = |n⟩ ⇒ T̂ 2 = +1
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in contradiction to T̂ 2 = −1 for half-integer j. As a consequence, in a system with half-integer
j, all energy levels are at least two-fold degenerate. This is called Kramers degeneracy.

Consider a free electron with spin.

Dispersion: ε(p) =
p2

2m , state |p′,m = ±1⟩

.

T

ε(p)

p

|p‘,+>|-p‘,->

Figure 1.17: Parabolic dispersion of the free electron and action of time-reversal T̂ , the states |p′,+⟩
and | − p′,−⟩ are called Kramer pairs

Action of time-reversal yields T̂ |p′,m⟩ ∝ | − p′,−m⟩. In addition we have a parity symmetry
[Ĥ , Π̂] = 0 and Π̂|p′,m⟩ = | − p′,m⟩. We consider Π̂T̂ |p′,m⟩ = |p′,−m⟩ therefore also |p′,m⟩
and |p′,−m⟩ are degenerate.
In the homework we will discuss

Ĥ = p̂2

2m + α p̂σy +Bzσ
z .

There α p̂σy is a "spin-orbit coupling" term.
(Motivation: 1D system needs confinement (potential) equivalent to a Bz field: Moving electron
feels a effective B field that couples to the spin: B ∝ E×v, B · σ = α(êz×p) · σ. "Left movers",
"right movers", and no backscattering between both. This is relevant e.g. in spin quantum Hall
edge states.)
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2 Dirac Fermions

2.1 Graphene
Graphene is a two-dimensional variant of carbon, and can be experimentally prepared from
Graphite by peeling of a single layer using scotch tape. This preparation was successfully per-
formed in 2004 by K.S. Novoselov and A.K. Geim, who were awarded the 2010 Nobel prize in
physics for proving that they had indeed studied single layers of Graphene.

Graphene is a two-dimensional hexagonal lattice of carbon atoms.
.

A sublattice B sublattice

a

aa sin(30°)=a/2

a 
c

o
s(

30
°)

=
√

3/
2 

a

x

y

a2

a1

a1

δ3
δ1

δ2

60°

30°

30°

-t3 -t1

-t2

Figure 2.1: Graphene lattice, primitive and translation lattice vectors, diatomic unit cell

The Graphene lattice is composed of a triangular lattice (only A-sites for instance) with a di-
atomic unit cell. The underlying triangular lattice has the following translation vectors:

a1 = a

2 (3,
√

3) and a2 = a

2 (3,−
√

3)

where a is the bond length. In addition, there are reciprocal lattice vectors b1 and b2 defined by
ai · bj = 2πδij . One finds

b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√

3) .

A-sites can be moved into other A-sites via translation by an amount a1 or a2.
The Brillouin zone defines the allowed (distinguishable from each other) eigenvalues of the lattice
translation operators

eip · a1/ℏ and eip · a2/ℏ
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given by eik · a1 and eik · a2 , respectively.
.

k

b=2π/a

b/2 90°

-2π/a

Brillouin zone

-π/a π/aГ  2π/a

Figure 2.2: 1D reciprocal lattice and construction rule of the Brillouin zone

Remark:
The Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice.

.
ky

K

K

Γ

M

K‘K‘

K‘

K

K

b1

kx

b2

K‘
-K

Figure 2.3: Hexagonal Brillouin zone with three-fold-rotation symmetry and special points

On finds for the K-point

K = 2π
3a

(
1 , 1√

3

)
and K ′ = 2π

3a

(
1 , − 1√

3

)
.

These points are time-reversal partners of each other because K T̂−→ −K and −K = K ′ −b1 −b2.
Points are considered equivalent, if they can be connected by reciprocal lattice vectors, because
eik · a1 = ei (k+b1) · a1 = eik · a1e2πi .
What is the dispersion relation ε(k) of Graphene?
The simplest tight-binding model for Graphene contains hopping of electrons to nearest neighbor
sites in the direction of the primitive vectors

δ1 = a

2 (1,
√

3) , δ2 = a

2 (1,−
√

3) , and δ3 = a (−1, 0) .
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We introduce Fourier transformed states such that (using the total number of lattice points N)

|k,B⟩ = 1√
N

∑
n1,n2∈Z

ei (n1a1+n2a2) · k |n1a1 + n2a2⟩

|k,A⟩ = 1√
N

∑
n1,n2∈Z

ei (n1a1+n2a2) · k |n1a1 + n2a2 + δ1⟩ .

Using this notation the to momentum-space transformed Hamiltonian is given by

Ĥ(k) =
∑
k

(|k,A⟩, |k,B⟩)
(

0 h(k)
h∗(k) 0

)
︸ ︷︷ ︸

h(k)

(
⟨k,A|
⟨k,B|

)
.

The diagonal elements vanish because there is no hopping to nearest neighbors on the same
sub-lattice. And the off-diagonal term is given by

h(k) =
∑
rj

eik · rjHr0,rj
= −

3∑
i=1

tie
ik · δi .

Where Hr0,rj
= ⟨rj |Ĥ|r0⟩ are matrix elements with respect to a basis of the Hilbert space.

Unfortunately in this basis the Hamiltonian is not invariant under translation by a reciprocal
lattice vector, i.e. h(k) ̸= h(k +G) with G = m1b1 +m2b2 because bi · δj ̸= 2πδij .
Because of a1 = δ1 − δ3 and a2 = δ2 − δ3 a rescaling of ∑ ti e

ik · δi by e−iδ3 · k restores the trans-
lation invariance. This can be achieved by transforming wave functions: ⟨k,B| → ⟨k,B|eik · δ3 .
⇒ We obtain

h(k) =
(

0 −t1eik · a1 − t2e
ik · a2 − t3

−t∗1e−ik · a1 − t∗2e
−ik · a2 − t∗3 0

)
.

We now consider the isotropic limit with t1 = t2 = t3 ≡ t ∈ R. In Graphene one can find
t ≈ 2.8eV. We expand around the points K and K ′=̂ −K:

.
ky

1

1

2 2

3

3

K

Γ

M

K‘

K‘

K‘

K‘

K

K

kx

Figure 2.4: There is a full vicinity of K in the first Brillouin zone.
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We parametrize k = K + κ or k = −K + κ and Taylor expand (around K or K ′ that is κ = 0):

∆(κ) = ei (K+κ) · a1 + ei (K+κ) · a2 + 1 .

We only keep the terms to first order in κ:

⇒ ∆(κ) = eiK · a1(1 + iκ · a1) + eiK · a2(1 + iκ · a2) + 1 + o(κ2).

We use K · a1,2 = 2π
3a

3a
2

(
1, 1√

3

)( 1
± 1√

3

)
= π(1 ± 1/3) = π

{
4/3 for a1

2/3 for a2

.
Im(z)

1

2iπ/3

4iπ/3
e

e

Re(z)

Figure 2.5: Sum of the constant terms e4iπ/3 + e2iπ/3 + 1 = 0 in ∆(κ)

We have e2iπ/3 = −1
2 + i

√
3

2 and e4iπ/3 = −1
2 − i

√
3

2 . Therefore the expansion is

∆(κ) = e4πi/3iκ · a1 + e2πi/3iκ · a2

=
(

−1
2 − i

√
3

2

)
iκ · a1 +

(
−1

2 + i
√

3
2

)
iκ · a2

= − i
2 κ · (a1 + a2) +

√
3

2 κ · (a1 − a2)

= − i
2 κ · a2(6, 0) +

√
3

2 κ · a2(0, 2
√

3)

= −i 3a
2 κx + 3a

2 κy

= −i 3a
2 (κx + iκy)

Therefore the Bloch-Hamiltonian expanded around K as a function of κ is given by

h
K

(κ) =
(

0 −t∆(κ)
−t∆∗(κ) 0

)
= i 3at

2

(
0 κx + iκy

−κx + iκy 0

)
.

We now define vF ≡ 3ta
2ℏ ≈ 106 m

s and absorb the phase factor i into the wave functions

⇒ h
K

(κ) = ℏvF

(
0 κx + iκy

κx − iκy 0

)
≡ ℏvF σ · κ (*)
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where σ = (σ
x
, σ

y
) is the vector of Pauli matrices. We note that in the last step we have adopted

an unusual definition of handedness (σ
y

→ −σ
y
) in order to conform with the usual definition

of handedness on the Dirac-Hamiltonian at the K-point in Graphene.
For the expansion around K ′ = −K:

K · a1 = 4π
3 −→ −4π

3
K · a2 = 2π

3 −→ −2π
3

.
Im(z)

1

2iπ/3

4iπ/3
e

e

Re(z)

Figure 2.6: Again sum of the constant terms e4iπ/3 + e2iπ/3 + 1 = 0 in δ(κ) because the minus sign
corresponds to a complex conjugation

Therefore, the expansion is

∆(κ) →
(

−1
2 − i

√
3

2

)
iκ · a1 +

(
−1

2 − i
√

3
2

)
iκ · a2 = ... = −i 3a

2 (κx − iκy) .

Hence, the Bloch Hamiltonian at the K ′ point is

h
K′(κ) = h∗

K
= ℏvFσ∗ · κ with σ∗ = (σ

x
, σ∗

y
) = (σ

x
,−σ

y
)

since σ
x

is real and σ
y

is imaginary.
In order to find the eigenvalues Eκ of h(κ), we use that h2(κ) has the same eigenfunctions as h
and eigenvalues E2

κ ( since h |κ⟩ = Eκ|κ⟩ ⇒ hh|κ⟩ = E2
κ|κ⟩).

Because σ
x

and σ
y

anti-commute σ
x
σ
y

= −σ
y
σ
x
, we find

h2(κ) = ℏ2v2
F [κxσx + κyσy]

2

= ℏ2v2
F [κ2

xσ
2
x

+ κ2
yσ

2
y

+ κxκy(σxσy + σ
y
σ
x
)︸ ︷︷ ︸

0

]

= ℏ2v2
F [κ2

x + κ2
y]1 = ℏ2v2

F κ
2
1 .

Hence, the energy eigenvalues are

⇒ Eκ = ±ℏvF |κ| .
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.

κy

κx

Eκ

K

Figure 2.7: Dispersion at the K-point

From a formal point of view, the Hamiltonian (*) is exactly that of an ultrarelativistic (or mass-
less) particle of spin 1

2 , such as the neutrino (neglecting the rest mass which is very small and
gives rise to neutrino oscillations).
However, the velocity of light c is here replaced by the Fermi-velocity vF , smaller by a factor
of about 300. The "left-handed neutrino described by (*) is not equivalent to the right-handed
anti-neutrino living near K ′.
This opens up the possibility of observing many phenomena predicted (but not experimentally
observed) in high energy physics in a solid state experiment. It is important to keep in mind that
the Dirac excitations near K are not the anti-particles of those near K ′. Instead, the possible
excitations near one Dirac point with energies ±ℏvF |κ| are one another’s anti-particles.
Eigenfunctions in the vicinity of the K-point are given by (homework problem)

ψ±
K(κ) = 1√

2

(
eiθκ/2

±e−iθκ/2

)
with θκ ≡ arctan

(
κy
κx

)
.

κx

κy

θ

Figure 2.8: If the momentum rotates by 2π the eiθκ/2 only gives a phase factor of −1, like known
from electron spin
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When κ rotates around the "Dirac-point" at K, the phase of ψ±
K changes by π, not by 2π, as

characteristic for spin 1
2 particles.

(We will find in a homework problem that in Graphene there exists a Landau level with En = 0.)

Remark
Assume electrons on A and B lattice sites had different energies. Then we can write

h(κ) =
(

∆ε/2 −t∆(κ)
−t∆∗(κ) −∆ε/2

)
= κ · σ + ∆ε

2 σ
z

= d(κ) · σ .

Are there corrections to this result, for instance due to second-nearest neighbor (next-nearest
neighbor) hopping with some matrix element t′? On the honeycomb lattice all next-nearest
neighbor (nnn) are on the same sub-lattice as the original atom. This gives rise to diagonal
terms in h(k). Importantly such a term

Ĥnnn = − t′

2
∑

i,j=nnn
(|i, A⟩⟨j, A| + |i, B⟩⟨j, B| + h.c.)

where i, j =̂n1a1+n2a2 is exactly symmetric between A and B sub-lattices. Its Fourier transform
−t′f(k) appears as diagonal element in h, it is proportional to the unit matrix.

h′(k) = h(k) − t′f(k)1 =⇒ ε′(k) = ε(k) − t′f(k)

⇒ only destroys the perfect symmetry of the solutions around ε = 0, but keeps the cones intact.
One finds

f(k) = 1
2
∑

ij=nnn

(
eik ·Rij + h.c.

)
≡

∑
i,j=nnn

cos(k ·Rij) = 2 cos(
√

3 kya)+4 cos
(√

3
2 ky a

)
cos

(3
2 kx a

)

(homework problem). It turns out that the value of −t′f(k) at the Dirac point is +3t′ and its
gradients vanish. As a consequence up to an additional constant 3t′, the form of the Hamilto-
nians h

K
(κ), h

K′(κ) does not change.
Expanding up to O(κ2), the function f(k + κ) is isotropic around K, but the original t-term
introduces a "trigonal" dependence ∼ sin(3θκ). With θκ = arctan(κy/κx) as before. However,
in the analysis of experiments, this term is usually neglected.
We now consider a shift of the energies of the sub-lattices.

.

A B

+∆ε/2 −∆ε/2

Figure 2.9: Shifts of the energies in the sub-lattices
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Any kind of asymmetry in the Hamiltonian between the A and B sub-lattice will lift the degen-
eracies at the Dirac points, since the Hamiltonian can be written in the following form

h
K

(κ) =
(

∆ε/2 ℏvF (κx + iκy)
ℏvF (κx − iκy) −∆ε/2

)
= d(κ) · σ with σ = (σ

x
, σ

y
, σ

z
)

with dx = ℏvFκx, dy = ℏvFκy, dz = ∆ε/2.
Here we have 1

2 {σ
i
, σ

j
} = δij and thus h2

K
(κ) = ℏ2v2

F κ
2 + (∆ε/2)2. The eigenvalues are given

by
E± = ±

√
(∆ε/2)2 + ℏ2v2

F κ
2 .

We compare with the relativistic dispersion relation E =
√
m2c4 + p2c2 and identify p = ℏκ and

mc2 = ∆ε/2. In the presence of a sub-lattice asymmetry, h
K

(κ) describes massive relativistic
particles.

.

κy

κx

Eκ

K
κy

κx

Eκ

K

∆ε∆ε=0
gap

∆ε/2

-∆ε/2

Figure 2.10: Dispersion relations in comparison

2.1.1 Symmetries of Graphene
In this section, we work with

h
K

(κ) = ℏvF

(
0 iκx − κy

−iκx − κy 0

)
and h

K′(κ) = ℏvF

(
0 iκx + κy

−iκx + κy 0

)
.

Time-Reversal Transformation
Time-reversal changes (homework problem)

h
K

(κ) T̂−→ (h−K(−κ))∗

and we have k = K + κ, −k = K ′ −G. From this we have

T̂ h
K

(κ) = h∗
K′(−κ) = ℏvF

(
0 −iκx − κy

iκx − κy 0

)∗

= ℏvF

(
0 iκx − κy

−iκx − κy 0

)
= h

K
(κ) .
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Our Hamiltonian has a time-reversal symmetry.

Parity Transformation
.

A

B

Figure 2.11: Action of a parity transformation on the Graphene lattice

A parity transformation changes k to −k and interchanges the A and B sub-lattice:(
⟨k,A|
⟨k,B|

)
sub-lat ch−→

(
⟨k,B|
⟨k,A|

)
= σ

x

(
⟨k,A|
⟨k,B|

)
.

Therefore the transformation equation of the Hamiltonian is given by

h
K

(κ) Π̂7−→ σ
x
h−K(−κ)σ

x
= σ

x
h
K′(−κ)σ

x
= σ

x

(
0 −iκx − κy

iκx − κy 0

)
σ
x

=
(

0 1
1 0

)(
0 −iκx − κy

iκx − κy 0

)(
0 1
1 0

)
=
(

0 1
1 0

)(
−iκx − κy 0

0 iκx − κy

)

=
(

0 iκx − κy
−iκx − κy 0

)
= h

K
(κ) .

Our Hamiltonian is indeed invariant under parity transformation.

2.1.2 Local Stability of Dirac Points with Inversion and Time-Reversal
Time-reversal and parity separately do not impose any constraints on the Hamiltonian h(k)
because they both link a generic k to −k, and thus do not impose any constraints for generic k.
Remark:
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.

kx
M

Γ

ky

Figure 2.12: In the Brillouin zone there could be k = −k + G thus k ∼= −k would be non-generic.
The M -points are time-reversal invariant momenta and Γ is trivially time-reversal
invariant. ⇒ This are the 4 time-reversal invariant points on the Graphene reciprocal
lattice

However the combination of time-reversal T̂ and parity Π̂ relates a momentum k to k, and does
impose a constraint on the Bloch-Hamiltonian for each k separately.

T̂ : h(k) T̂−→ T̂ h(k)T̂−1 = h∗(−k)

Π̂ : h(k) Π̂−→ Π̂h(k)Π̂−1 = σ
x
h(−k)σ

x

From the combined action of T̂ and Π̂ we find

h(k) = σ
x
h∗(k)σ

x
.

For a generic 2 × 2 Bloch-Hamiltonian of the form

h(k) =
3∑
i=1

di(k)σ
i
+ ε(k)1

with real di(k) the above condition implies (dropping the explicit k dependence)

∑
i

diσi+ε
!= σ

x

(∑
i

diσi + ε

)∗

σ
x

= σ
x

(
dxσx − dyσy + dzσz + ε

)
σ
x

= dxσx+dyσy−dzσz+ε .

This implies
dz(k) = −dz(k) ≡ 0 .

As a consequence, no σ
z

term can arise and open a gap directly. However, (small) additional σ
x

and σ
y

terms are allowed, giving rise to the generalized Hamiltonian

h′
K

(k) = κxσx + κyσy + a1σx + a2σy = (κx + a1)σ
x

+ (κy + a2)σ
y

which only shifts the center of the Dirac cone to K − a1êx − a2êy in the Brillouin zone as long
as a1 and a2 are small. For large perturbations obeying T̂ and Π̂ it is possible that the Dirac
points merge and disappear.
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2.1.3 Global Stability of Dirac Points
In this section we will only state the results. The calculations can be found in the book of B.
Andrei Bernevig ("Topological Insulators and Topological Superconductors", Princeton Univer-
sity Press).
If additionally the threefold rotational symmetry of the honeycomb lattice is preserved, one can
show that the location of the Dirac points at K and K ′ is fixed.

2.2 Relativistic Dirac Fermions
In this chapter (following the Book by Sakurai) we use so called natural units with ℏ = c = 1.
Time is measured in length units. Velocity becomes a dimensionless number typically denoted by
β. In addition, both momentum and mass are measured in units of energy, e.g. eV or MeV. Due
to ℏ = 1, units of length and energy are tied together. For instance, the canonical commutation
relation [x̂ , p̂] = i tells us that the product of length and momentum is dimensionless and length
is measured in units of inverse energy.

2.2.1 Klein-Gordon Equation
The Schrödinger equation can be obtained by using the non-relativistic dispersion relation
E = p2

2m + V (x) and making the replacements E 7→ i∂t and p 7→ −i∇x from looking at plane
waves eik ·x−iωt.
The relativistic dispersion relation is E =

√
p2 +m2. Making the same substitution

i∂tψ =
√

−∇2 +m2 ψ yields a differential equation with infinitely high derivatives which is not
useful for our purposes. Considering the squared relation E2 = p2 +m2 → −∂2

t ϕ = (−∇2 +m2)ϕ
this can be written as the Klein-Gordon equation

(∂2
t − ∇2 +m2)ϕ = 0

We use the 4-vector notation t =̂x0, x =̂xi

xµ =̂ (x0, x) .

The relativistic metric is given by

ηij =
(

1 0
0 −1

)
.

Remark:
In 3d we know:

• Scalars/scalar products are invariant under rotations

a · b = a1b1 + a2b2 + a3b3 = (a1, a2, a3)

1 0 0
0 1 0
0 0 1


b1
b2
b3


→ 13 can be called a metric for the Euclidean R3. (This can change in other coordinate
systems.)
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• Formal definition: Rotation leaves metric invariant

For our 4-vector holds:

• Metric is η

• Lorentz transformation L̂ keeps the metric invariant L̂−1ηL̂ = η

Using the metric we differentiate between upper and lower indices: ∂µ = ηµν∂ν where the sum
is implicit. Upper indices denote coordinates xν , and ∂ν = ∂

∂xν
.

We have that ∂µ∂µ is invariant under Lorentz transformation since it is a scalar product, η is
invariant, and

∂µ∂µ = ηµν∂µ∂ν = ∂2
0 − ∇2 = ∂2

t − ∇2 .

The Klein-Gordon equation can be expressed as

(∂µ∂µ +m2)ϕ = 0

which is manifestly relativistically invariant.
In non-relativistic quantum mechanics, a state is completely described by the wave function
ψ(x, t). As the Klein-Gordon equation is 2nd order in time, this does not work anymore, because
as initial condition we need to know both ϕ(x, t) and ∂tϕ(x, t), in contradiction to the postulate
that ϕ(x, t) completely describes the state.
Introducing ∂tϕ = χ, one has ∂tχ = −(−∇2+m2)ϕ, and can write a off-diagonal matrix equation

∂t

(
ϕ
χ

)
=
(

0 1
∇2 −m2 0

)(
ϕ
χ

)
.

2.2.2 Dirac Equation
We consider a multi-component wave function Ψ(x, t) which satisfies(

iγµ∂µ −m
)

Ψ(x, t) = 0 (*)

with yet undetermined matrices γµ, µ ∈ {0, 1, 2, 3}. (This is similar to the Graphene case using
κi = −i∂i.) Demanding that

1
2
(
γµγν + γνγµ

)
≡ 1

2 {γµ, γν} = ηµν

we find as before

(−iγµ∂µ −m)(iγµ∂µ −m)Ψ(x, t) = (∂µ∂µ +m2)Ψ(x, t) = 0 .

⇒ Ψ(x, t) satisfies the Klein-Gordon equation, in addition to satisfying the Dirac equation.
⇒ E2 = p2 + m2 is obeyed. The four quantities γµ, µ ∈ {0, 1, 2, 3} are elements of a Clifford
algebra defined by

i) (γ0)2 = 1

ii) (γi)2 = −1, i ∈ {1, 2, 3}
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iii) γµγν = −γνγµ if µ ̸= ν.

Due to the anti-commutation property, the matrices γµ are traceless (homework problem).
We now substitute a relativistic plane wave into the Dirac equation

Ψ(x, t) = Ψp e
−i pµxµ = Ψpe

i (p ·x−Et) with pµ = (E, p)
(γµpµ −m)Ψp = 0 = (γ0E − γipi −m)Ψp .

Multiplying by γ0 we find

EΨp =
(
γ0γ · p+ γ0m

)
Ψp ,

and identify the Dirac-Hamiltonian

Ĥ = α · p+ βm

with αi ≡ γ0γi and β = γ0. We have again, using E → i∂t, a eigenproblem i∂tΨp = ĤΨp.
In the presence of a electrostatic potential, we find

Ĥ = α · p+ βm+ eϕ(x, t) .

A vector potential is included by making the usual substitution

p 7→ p− eA .

Remark:
1
2{γµ, γν} = ηµν cannot be realized using 2 × 2 matrices. We will use 4 × 4 matrices

αi =
(

0 σi

σi 0

)
and β =

(
1 0
0 −1

)
.

2.2.2.1 Conserved Current

We argue that ϱ = Ψ†Ψ can be interpreted as a probability density. There we have

Ψ =


Ψ1
Ψ2
Ψ3
Ψ4

 and Ψ† = (Ψ∗
1,Ψ∗

2,Ψ∗
3,Ψ∗

4) .

One can show (homework problem): If Ψ solves the Dirac equation, the continuity equation
holds

∂ϱ

∂t
+ ∇ · j = 0 with j = Ψ†αΨ .

That implies that ϱ changes only by flow into or out of a given region, and is conserved for this
reason

0 = ∂t

∫
d3 x ϱ(x, t) .

Remark:
In the non-relativistic case we had j = i/m Re[ψ∗(−i∇)ψ]. In the relativistic case we need only
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a matrix and no derivative because the Hamiltonian is only of first order in momentum and the
current is one order lower. Some of the components of the vector Ψ have already the meaning
of derivatives.

Instead of Ψ†, the standard Hermitian adjoint of a column vector, one often uses Ψ ≡ Ψ†β =
Ψ†γ0 when forming the probability density and current. For simpler notation we will leave out
the underlines Ψ ≡ Ψ, γµ ≡ γµ, ....
Then

ϱ = Ψ†Ψ = Ψ†γ0γ0Ψ = Ψγ0Ψ and j = Ψ†γ0γ0αΨ = Ψγ0γΨ = ΨγiΨ

such that
∂

∂t

(
Ψγ0Ψ

)
+ ∇ ·

(
ΨγΨ

)
= ∂µj

µ = 0

with jµ = ΨγµΨ in a covariant notation.
The Dirac equation in momentum space is

0 = (γµpµ −m)Ψ .

We take the adjoint and insert a factor of γ0

0 = Ψ(γµpµ −m) ,

and find the following interpretation of the free particle current using associativity

jµ = 1
2
[
(Ψγµ)Ψ + Ψ(γµΨ)

]
.

Using the Dirac equation, we obtain

jµ = 1
2m

[
(Ψγµ)γνpνΨ + Ψγνpν(γµΨ)

]
.

Using pµ = ηµνpν , we find

⇒ jµ = 1
2m Ψ [γµγν + γνγµ]︸ ︷︷ ︸

2ηµν

Ψpν = pµ

m
ΨΨ .

That is

j0 = E

m
ΨΨ , j =

p

m
ΨΨ .

Taking into account relativistic mass enhancement by a Lorentz contraction factor γ(v) = 1√
1−(v/c)2

m(v) = m√
1 − (v/c)2 = γ(v)m , p = m(v) v = γ(v)mv and E

m
= E

γ(v)mγ(v) = γ(v)

where m(v)c2 = E =
√
m2 + p2 and p/m = p/(γ(v)m)γ(v) = vγ(v)

and we have

j0 = γ(v)ΨΨ j = vγ(v)ΨΨ
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γ(v) can be interpreted as describing the Lorentz contraction of the volume element.

Decomposing the four spinor components


Ψ1
Ψ2
Ψ3
Ψ4

 into
(

Ψup
Ψdown

)
with Ψup =

(
Ψ1
Ψ2

)
and Ψdown =

(
Ψ3
Ψ4

)
,

we obtain the final result

j0 = E

m
ΨΨ = γ(v) [Ψ†

upΨup − Ψ†
downΨdown]

j =
p

m
ΨΨ = γ(v)v[Ψ†

upΨup − Ψ†
downΨdown] .

2.2.2.2 Free Particle Solutions

We first consider a free particle at rest with p = 0. The Dirac equation simplifies to
i∂tΨ = βmΨ = γ0mΨ where γ0 is diagonal such that the components of Ψ are uncoupled. There
are four independent solutions

Ψ1 = e−imt


1
0
0
0

 , Ψ2 = e−imt


0
1
0
0

 , Ψ3 = eimt


0
0
1
0

 , Ψ4 = eimt


0
0
0
1

 .

The eimp is quite unusual because we had e−iEt/ℏ with E(p = 0) =
√
m2 + p2

∣∣
m=0 = m factors.

It seems that the solutions Ψ3 and Ψ4, spanning the space of Ψdown, have a negative energy −m.
Next we look at free particle solutions with finite momentum p = pêz. The eigenvalue problem
ĤΨ = EΨ is no longer diagonal.

m 0 p 0
0 m 0 −p
p 0 −m 0
0 −p 0 −m



u1
u2
u3
u4

 = E


u1
u2
u3
u4


Both the equations for u1, u3 and u2, u4 couple together, but the two pairs of components are
independent of each other. For the two pairs of components u1, u3 and u2, u4 we find eigenvalues
E = ±

√
m2 + p2 = ±Ep.

We now construct the free particle spinors. For E = +Ep we can start with u1 = 1 (and
u2 = u4 = 0), and obtain u3 = p

Ep+m or u2 = 1 (and u1 = u3 = 0) with u4 = −p
Ep+m .

In both cases, the upper component dominate in the non-relativistic limit.
Similarly, for negative energy solution E = −p, the nonzero components are either u3 = 1 and
u1 = −p

Ep+m or u4 = 1 and u2 = p
Ep+m .

For negative energy solutions, the lower component dominates in the non-relativistic limit.

We now consider the following operator Σ · p̂ = Σz (in our case p = pêz, p̂ = êz) where Σ is a
vector of 4 × 4 matrices

Σ ≡
(
σ 0
0 σ

)
with Σz =

(
σz 0
0 σz

)
.

We expect this operator to project onto the spin in the direction of momentum (in the relativistic
case we are not free to choose the quantization direction of spin but the spin is fully coupled
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to p ; maximal spin-orbit coupling ; orbital angular momentum is not a good quantum number
anymore). Spin is quantized in the direction of momentum, the states with positive and negative
eigenvalues are called to have positive and negative helicity, respectively. Indeed, is is easy to
see, by realizing the block-diagonal form, that the spin operator s = ℏ

2 Σ projects out positive
(negative) helicity for the positive-energy solution with u1 ̸= 0 (u2 ̸= 0). In combination, we
find

u
(+)
R (p) =


1
0
p

Ep+m
0

 and u
(+)
L (p) =


0
1
0

−p
Ep+m

 for E = Ep

with the subscript R (L) denoting right (left) handedness (and upper ± denotes positive/negative
energy solutions), i.e. positive or negative helicity . The negative energy solutions are given by

u
(−)
R (p) =


−p

Ep+m
0
1
0

 and u
(−)
L (p) =


0
p

Ep+m
0
1

 for E = −Ep

Normalization is achieved dividing by 2Ep

Ep+m , and the free particle wave functions are obtained
multiplying by e−pµxµ .

2.2.2.3 Interpretation of Negative Energy Solutions

The problem is that there are infinitely many negative energy solutions, and the Hamiltonian is
not bounded from below. The system could emit photons and lower its energy ad infinitum.
To make progress, we think about Graphene with a Fermi energy EF = 0.

.

py

px

EF=0

E

filled states

occupied valence band

empty conduction band

empty states

hole

excited e-

Figure 2.13: Graphene dispersion near the K point for Fermi energy EF = 0, there is a lowest end
of the band, at zero temperature the positive energy states are all empty (conduction
band) and the negative energy states are all occupied (valence band), excitation of
an electron into the conduction band leaves a hole in the valence band with opposite
charge, mass and momentum

Removing an electron with momentum p from the occupied valence band creates a hole with
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momentum −p and charge −e. If the electron has energy E = −Ep, its excitations to the Fermi
level costs energy +Ep, i.e. the hole created in the process has a positive energy +Ep. Dirac
made use of the Pauli exclusion principle to argue that each of the infinitely many negative en-
ergy states is occupied by an electron, and that removal of the electron creates a positron ("hole",
anti-particle of the electron) with positive energy. A high energy photon can promote an electron
out of the "Dirac sea" (filled valence band) into the region of positive energies (conduction band).

.
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–m0c2

   m0c2

excited e-

positron

γ

filled negative energy states D
ir

ca
 S

e
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Figure 2.14: Dirac sea and excitation of an electron by a high energy photon γ

The positron was experimentally discovered by Carl Anderson in 1933. After this discovery, the
Dirac equation was accepted as the correct relativistic wave equation.

2.2.2.4 Electromagnetic Interaction

A vector potential is introduced into the Dirac-Hamiltonian via the standard substitution

ˆ̃p = p̂− eA

such that the Dirac equation becomes(
m σ · ˆ̃p

σ · ˆ̃p −m

)(
u
v

)
= E

(
u
v

)

with Ψ = (u, v) = (Ψ1,Ψ2,Ψ3,Ψ4). The two component spinor u represents the "upper" or
"particle" component, whereas v represents the "lower" or "hole" component. At non-relativistic
energies E = K + m, the kinetic energy K ≪ m (the rest energy), and the lower equation
becomes σ · ˆ̃pu = (E +m)v ≈ 2mv, which allows us to write the upper equation as

(σ · ˆ̃p)(σ · ˆ̃p)
2m u = Ku
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We find (a · σ)(b · σ) = aiσibjσj = ∑
ij [(1 − δij)aibjiεijkσk + δij1aibi] = a · b+ iσ · (a× b) and

1
2m (σ · ˆ̃p)(σ · ˆ̃p) =

ˆ̃p2

2m + iσ
2m (ˆ̃p× ˆ̃p)

(ˆ̃p× ˆ̃p)u = (i∇ + eA) × (i∇u+ eAu)
= ie[∇ × (Au) + (A× ∇u)]
= ie(∇ ×A)u = ieBu

where B = ∇ ×A is the magnetic field. Hence, we find the equation[ ˆ̃p2

2m − µ · B
]
u = Ku with µ = ge

2m S and S = ℏ
2 σ and g = 2 .

This is the derivation for the electron spin and the way how it couples to a magnetic field.

2.2.2.5 Symmetries in the Dirac Equation

Consider a situation with external potential

i∂tΨ(x, t) = ĤΨ(x, t) with Ĥ = α · p+ βm+ V (x)

for some potential energy function V (x). Due to the external potential, the Dirac equation
cannot be brought into a covariant form.

Angular Momentum

In non-relativistic quantum mechanics, rotational invariance in 3 dimensions is centered on the
observation that [Ĥ , L̂] = 0 with L̂ = x̂ × p̂ for a "central potential". This observation is
based on the fact that L̂ commutes with p̂2, and hence with the kinetic energy. In addition L̂

commutes with x̂2, and hence with every potential V (|x̂|). We now compare the commutator of
L̂ with the free Dirac Hamiltonian Ĥ = α · p̂ + βm. Since obviously [β , L̂] = 0, we focus on
the commutator, using [p̂k , p̂j ] = 0 and [p̂l , x̂j ] = −iδlj ,

[α · p̂ , L̂i] = [αlp̂l , εijkx̂j p̂k] = εijkαl[p̂l , x̂j ]p̂k = −iεijkαj p̂k ̸= 0

⇒ L̂ does not commute with Ĥ, and orbital angular momentum is not a good quantum number
for spin-1

2 electrons (the reason is spin-orbit coupling in the relativistic case).
Next we consider the commutator of the spin operator Σ with the Hamiltonian. Using the
definition

Σ =
(
σ 0
0 σ

)
one sees that βΣi = Σiβ ,

and [αi , Σj ] = 2iεijkαk (homework problem) and using [p̂l , Σi] = 0 since Σi is only a number
in momentum space we have

[α · p̂ , Σi] = [αl , Σi]p̂l = 2iεijkαj p̂k .

We found

[Ĥ , L̂i] = −iεijkαj p̂k
[Ĥ , Σi] = 2iεijkαj p̂k .

Although neither L̂ nor Σ by them self commute with Ĥ, the combined operator

48



Ĵ = L̂+ ℏ
2 Σ = L+ S

does commute with Ĥ (ℏ is reinserted here). The Dirac Hamiltonian conserves total angular
momentum Ĵ , but not L̂ or Ŝ individually ("spin-orbit coupling").

Parity

For a potential V (x̂) = V (|x̂|) we expect solutions to be parity symmetric which means they are
even or odd functions of x: Ψ(−x) = ±Ψ(x). However, parity not only changes x̂ 7→ −x̂ but
also p̂ 7→ −p̂, and hence Ĥ = α · p̂+ βm changes its form under parity. Previously we defined
Π̂ with Π̂†x̂Π̂ = −x̂ and Π̂†p̂Π̂ = −p̂ and Π̂†L̂Π̂ = L̂.
The full parity operator P̂ needs to contain a unitary operator which acts in spinor space (due
to spin-orbit coupling), and can hence be represented by a 4 × 4 matrix. We consider the form

P̂ ≡ Π̂Up

and require to have the Dirac Hamiltonian independent under P̂ transformation. We need
UpαU

†
p = −α and UpβU

†
p = β and P̂2 = 1, since Π̂2 = 1 this is U2

p = 1. Since β = γ0 and
α = γ0γ, the choice Up = γ0 is consistent with this requirement and

P̂ = Π̂γ0 , i.e. Ψ(x) P̂7−→ βΨ(−x) .

Charge Conjugation

Motivation: We know that the "particle-like" solutions have positive energy Ψpart(x, t) = ΨE>0(x, t)
and we propose that the "anti-particle" (charge −e) solutions are Ψanti−part(x, t) = Ψ∗

E<0(x, t).
Complex conjugations can be motivated by the Klein-Gordon equation with a vector potential
p̂− eA = −i∇ − eA = −i (∇ − ieA) given by[

(∂µ − ieAµ) (∂µ + ieAµ) +m2
]

Ψpart = 0 .

Complex conjugation changes the sign of the electric charge, such that[
(∂µ − i (−e)Aµ) (∂µ + i (−e)Aµ) +m2

]
Ψanti−part = 0 .

The anti-particle wave function behaves like that of a particle, but with opposite electric charge.

We consider the Dirac equation in presence of a vector potential A

[iγµ∂µ − eγµAµ −m] Ψ(x, t) = 0 . (*)

We look for a new equation with e 7→ −e that relates the new wave function to the old one.
Taking the complex conjugate of (*) yields

[−i (γµ)∗∂µ − e(γµ)∗Aµ −m] Ψ∗(x, t) = 0 .

To only change the sign in front of the e (and change the wave function), we need to find a
matrix C̃ such that

C̃(γµ)∗C̃−1 = −γµ .
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Therefore, we need to insert 1 = C̃−1C̃ in front of the wave function, and multiply the equation
by C̃ from the left to obtain the result

[iγµ∂µ − (−e)γµAµ −m] C̃Ψ∗(x, t) = 0 .

Hence, C̃Ψ∗(x, t) satisfies the "positron equation", if Ψ(x, t) satisfies the "electron equation".
We note that γ0, γ1, γ3 are real matrices, but (γ2)∗ = −γ2. Using 1

2 {γµ, γν} = ηµν we see that
γ2 anti-commutes with γ0, γ1, γ3. We choose C̃ = iγ2 where the phase is a convenient choice
for later. ⇒ The positron wave function corresponds to iγ2Ψ∗(x, t).

Remark: An alternative way to express the "positron wave function" is

Ψ = Ψ†γ0 ⇒ C̃Ψ∗(x, t) = iγ2(Ψγ0)t = Uc(Ψ)t

with Uc ≡ iγ2γ0 because (γ0)t = γ0.

We define the charge conjugation operator Ĉ by

ĈΨ(x, t) = Uc(Ψ)t which here is Ĉ = C̃K̂ = iγ2K̂ .

Considering Ψ(x, t) ∝ e−ipµxµ we see that Ĉ effectively takes x 7→ −x and t 7→ −t since
pµxµ = Et− p · x.

Time Reversal

For the Schrödinger equation we had the anti-unitary operator T̂ = ÛK̂ with complex conjuga-
tion K̂ and unitary Û . T̂ takes an arbitrary state ket |α⟩ into the time-reversed (motion-reversed)
state

T̂ |α⟩ = |α̃⟩ with T̂ p̂T̂−1 = −p̂ , T̂ x̂T̂−1 = x̂ and T̂ Ĵ T̂−1 = −Ĵ .

Since we are in a spin-1
2 state, if [Ĥ , T̂ ] = 0 we say that the Hamiltonian is time-reversal

invariant and every energy eigenstate has the same energy eigenvalue as its time-reversed partner
T̂ |n⟩. Acting twice on a spin-1

2 state yields T̂ 2 = −1, and we found the explicit representation
T̂ = −iσyK̂

⇒ T̂ 2 = −iσyK̂(−iσyK̂) = −iσy(+i )σ∗
yK̂

2 = σyσ
∗
y = −1

since σ2
y = 1 and σ∗

y = −σy.
Consider the time dependent Dirac equation

i∂tΨ(x, t) =
[
−iγ0γ · ∇ + γ0m

]
Ψ(x, t) ,

and denote the time-reversal operator for the Dirac equation as T̂ = UT K̂. Inserting T̂ T̂ −1

with T̂ −1 = (UT K̂)−1 = K̂−1U−1
T = K̂U−1

T in front of the wave function and multiplication by
T̂ yields for the left hand site

T̂ (i∂t)T̂ −1T̂ Ψ(x, t) = UT K̂(i∂t)K̂U−1
T UTΨ∗(x, t)

= −i∂tUTΨ∗(x, t) = i∂−t [UTΨ∗(x, t)] .

We want that the right hand site stays the same except Ψ 7→ UTΨ∗, i.e. the Hamiltonian is
T̂ -invariant, and on the left hand site we want ∂t 7→ ∂−t and Ψ 7→ UTΨ∗ (which propagates
"back" in time). For UTΨ∗(x, t) to satisfy the time-reversed form of the Dirac equation, the
operator on the right hand site needs to satisfy (due to [Ĥ , T̂ ] != 0)
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T̂ (iγ0γT̂ −1) = iγ0γ and T̂ γ0T̂ −1 = γ0 .

First apply T̂ −1 from the left, and T̂ from the right to both of the equations. Next, apply K̂
on both the left and right hand sites. Then we have

K̂(iγ0γ)K̂ = K̂T̂ −1(iγ0γ)T̂ K̂ = U−1
T (iγ0γ)UT

K̂γ0K̂ = K̂T̂ −1γ0T̂ K̂ = U−1
T γ0UT .

The second equation is equivalent to

(γ0)∗ = γ0 = U−1
T γ0UT .

and the first one is
−i (γ0)∗(γ)∗ = i U−1

T γ0UT︸ ︷︷ ︸
(γ0)∗

U−1
T γUT .

Multiplying with (γ0)∗ yields

−(γ)∗ = U−1
T γUT .

γ2 is imaginary and γ0, γ1, γ3 are real ⇒ We need to find UT which commutes with γ0 and γ2

and anti-commutes with γ1 and γ3.

[UT , γ0,2] = 0 and {UT , γ1,3} = 0

can be accomplished by UT = γ1γ3 up to a phase factor. One finds (homework problem)

γ1γ3 = i
(
σy 0
0 σy

)
.

So we have

T̂ = γ1γ3K̂ .

CPT -Symmetry

It is interesting to consider the operator ĈP̂T̂ given by

ĈP̂T̂ Ψ(x, t) = iγ2
[
P̂T̂ Ψ(x, t)

]∗
= iγ2γ0

[
T̂ Ψ(−x, t)

]∗
= iγ2γ0γ1γ3Ψ(−x, t)
= iγ0γ1γ2γ3Ψ(−x, t) ≡ γ5Ψ(−x, t)

We defined
γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
.

γ5 exchanges the upper two "particle like" with the down "anti-particle like" components of the
wave functions. Such an operator is called a "chiral"-operator.
In context of the Dirac equation ĈP̂T̂ converts a free electron wave function into a positron wave
function (datails as homework problem). In relativistic quantum field theory, ĈP̂T̂ is equivalent
to a total symmetry between matter and anti-matter. ĈP̂T̂ can be shown to be equivalent to
Lorentz symmetry.
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3 Review of Angular Momentum Addition

As a motivation we will consider two examples before generalizing the results in a semi-classical
model. We are interested in the addition of angular momentum because terms like L̂ · Ŝ often
appear in Hamiltonians we consider.

3.1 Examples
A. One Spin-1

2 Particle with Orbital and Spin Angular Momentum
We denote spin-up and -down with ± and decompose kets in orbital part |x′⟩, and spin part |±⟩
via a direct product ⊗ of two vector spaces

|x′,±⟩ = |x′⟩ ⊗ |±⟩ or |j1,m1⟩ ⊗ |j2,m2⟩ = |j1, j2;m1,m2⟩ .

The rotation operator with angular momentum Ĵ for rotation around axis n by an angle φ is
given as

D(φ) = exp
[
− i
ℏ
Ĵ · nφ

]
with φ = φn

where we write
Ĵ = L̂+ Ŝ = L̂⊗ 1s + 1o ⊗ Ŝ .

10 is the identity in orbital space and 1s is identity in spin space, i.e. they only act on orbital
kets and spin kets, respectively. Obviously we have [L̂ , Ŝ] = 0 because the operators act on
different spaces and using the Baker-Hausdorff formula we find

D(φ) = exp
[
− i
ℏ
L̂ · nφ

]
⊗ exp

[
− i
ℏ
Ŝ · nφ

]
= D(orb)(φ) ⊗D(spin)(φ) .

We write wave functions as vectors with spin-up and spin-down component

⟨x′,±|α⟩ = Ψ±(x′) "="
(

Ψ+(x′)
Ψ−(x′)

)
.

Then |Ψ±(x′)|2 is the probability of finding the particle with spin ± at x = x′.

B. Two Spin-1
2 Particles without Orbital Angular Momentum

The total spin is denoted by Ŝ and given by

Ŝ = Ŝ1 + Ŝ2 = Ŝ1 ⊗ 12 + 11 ⊗ Ŝ2

where 11 and 12 is identity for subspace 1 and 2, respectively. Hence, we again have [Ŝ1 , Ŝ2] = 0.
Within one and the same subspace, we have the usual commutator algebra for angular momen-
tum

[Ŝ1,i , Ŝ1,j ] = iℏεijkŜ1k

[Ŝ2,i , Ŝ2,j ] = iℏεijkŜ2k .
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We see that in this case the total spin (added) from two spins is again a spin imbedded in the
known algebra, since using Ŝi = Ŝ1,i + Ŝ2,i we have

[Ŝi , Ŝj ] = iℏεijkŜk .

Hence, we already know the eigenvalues of Ŝ2 and Ŝz because they were deduced only using the
commutator algebra:

Ŝ
2 = (Ŝ1 + Ŝ2)2 has eigenvalues s(s+ 1)ℏ2

Ŝz = Ŝ1,z + Ŝ2,z has eigenvalues mℏ
Ŝ1,z has eigenvalues m1ℏ
Ŝ2,z has eigenvalues m2ℏ

To describe a general spin state one can pick any two compatible observables. In this case, we
have two choices

i) Use eigenstates of Ŝ1,z, Ŝ2,z (|m1,m2⟩ representation) with basis

|+,+⟩ , |+,−⟩, |−,+⟩, |−,−⟩ .

ii) Use eigenstates of Ŝ2 and Ŝz (in |s = s1 ± s2,m = m1 ±m2⟩ representation) with
• Triplet state s = 1:

|s = 1,m = 1⟩ = | + +⟩

|s = 1,m = 0⟩ = 1√
2

(| + −⟩ + | − +⟩)

|s = 1,m = −1⟩ = | − −⟩

• Singlet state s = 0:
|s = 0,m = 0⟩ = 1√

2
(| + −⟩ − | − +⟩)

The coefficients in the basis transformation between i) and ii) are (simple) Clebsch-Gordon
coefficients.
We define ladder operator Ŝ± as

Ŝ± = Ŝ1,± + Ŝ2,± = (Ŝ1,x ± iS1,y) + (Ŝ2,x ± iS2,y)

where Ŝi,± only affects the ith entry in the ket since it only acts on the i-subspace.
The action on our state kets in ii) is

Ŝ−| + +⟩ = Ŝ−|s = 1,m = 1⟩ =
√

(1 + 1)(1 − 1 + 1)|s = 1,m = 0⟩ =
√

2|s = 1,m = 0⟩

and in i) we have

Ŝ−| + +⟩ = (Ŝ1− + Ŝ2,−)| + +⟩ =
√(1

2 + 1
2

)(1
2 − 1

2 + 1
)

| − +⟩ +
√(1

2 + 1
2

)(1
2 − 1

2 + 1
)

| + −⟩

= | − +⟩ + | + −⟩
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which coincides with our considerations above.
We see that using the ladder operators we can express

Ŝ
2 = (Ŝ1 + Ŝ2)2 = Ŝ

2
1 + Ŝ

2
2 + 2Ŝ1 · Ŝ2

= Ŝ
2
1 + Ŝ

2
2 + 2 [Ŝ1,xŜ2,x + Ŝ1,yŜ2,y + Ŝ1,zŜ2,z]

= Ŝ
2
1 + Ŝ

2
2 + 2Ŝ1,zŜ2,z + Ŝ1,+Ŝ2,− + Ŝ1,−Ŝ2,+ .

Formal Theory for Addition of Angular Momentum

We want to consider the formal theory in a general case of two angular momenta Ĵ1, Ĵ2 in the
semi-classical model. We have the commutator algebra

[Ĵ1,i , Ĵ1,j ] = iℏεijkJ1,k

[Ĵ2,i , Ĵ2,j ] = iℏεijkJ2,k

[Ĵ1,i , Ĵ2,j ] = 0 .

The operator for infinitesimal rotations around the axis n by an angle ϕ is given by(
1− i Ĵ1 · nφ

ℏ

)
⊗
(
1− i Ĵ1 · nφ

ℏ

)
+ O(φ2) = 1− i (Ĵ1 ⊗ 12 + 11 ⊗ Ĵ2) · nφ

ℏ
+ O(φ2)

≡ 1− i Ĵ · nφ
ℏ

+ O(φ2) .

We identify the total angular momentum, the generator of rotation, as

Ĵ = Ĵ1 ⊗ 12 + 11 ⊗ Ĵ2 = Ĵ1 + Ĵ2 .

For finite rotation angles φ we use the commutator [Ĵ1,i , Ĵ2,j ] = 0 in the Baker-Hausdorff
formula to obtain

D1(φ) ⊗D2(φ) = exp
[
− i Ĵ1 · nφ

ℏ

]
⊗ exp

[
− i Ĵ2 · nφ

ℏ

]
= exp

[
− i Ĵ · nφ

ℏ

]
= D(φ) .

We again have the commutator algebra

[Ĵ i , Ĵ j ] = iℏεijkĴk

which is why Ĵ is again a angular momentum.
We have two choices of bases:

i) Use eigenstates of Ĵ2
1 , Ĵ

2
2 , Ĵ1,z , Ĵ2,z and find

Ĵ
2
1|j1, j2;m1,m2⟩ = j1(j1 + 1)ℏ2|j1, j2;m1,m2⟩

Ĵ
2
2|j1, j2;m1,m2⟩ = j2(j2 + 1)ℏ2|j1, j2;m1,m2⟩

Ĵ1,z|j1, j2;m1,m2⟩ = m1ℏ|j1, j2;m1,m2⟩
Ĵ2,z|j1, j2;m1,m2⟩ = m2ℏ|j1, j2;m1,m2⟩
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ii) Use eigenstates of Ĵ2, Ĵ2
1, Ĵ2

2 and Ĵz

Ĵ
2
1|j1, j2; j,m⟩ = j1(j1 + 1)ℏ2|j1, j2; j,m⟩

Ĵ
2
2|j1, j2; j,m⟩ = j2(j2 + 1)ℏ2|j1, j2; j,m⟩

Ĵ
2|j1, j2; j,m⟩ = j(j + 1)ℏ2|j1, j2; j,m⟩
Ĵz|j1, j2; j,m⟩ = mℏ|j1, j2; j,m⟩

We want again to consider the base transformation i)↔ ii) inserting an identity (completeness
relation)

|j1, j2; j,m⟩ =
∑
m1

∑
m2

|j1, j2;m1,m2⟩⟨j1, j2;m1,m2|︸ ︷︷ ︸
1

|j1, j2; j,m⟩ .

Here 1 is the identity in ket-space with fixed j1, j2.
The elements of the transformation matrix ⟨j1, j2;m1,m2|j1, j2; j,m⟩ are the Clebsch-Gordon
coefficients.

Claim: The coefficients vanish unless m = m1 +m2.
Proof: We consider

(Ĵz − Ĵ1,z − Ĵ2,z)|j1, j2; j,m⟩ = 0 .

Applying ⟨j1, j2;m1,m2| from the left and letting Ĵz act to the right on the ket, and Ĵ†
1,z = Ĵ1,z,

Ĵ†
2,z = Ĵ2,z to the left yields

⟨j1, j2;m1,m2|(Ĵz − Ĵ1,z − Ĵ2,z)|j1, j2; j,m⟩ = 0
(m−m1 −m2)⟨j1, j2;m1,m2|j1, j2; j,m⟩ = 0 . □

Claim: The Clebsch-Gordon coefficients vanish unless

|j1 − j2| ≤ j ≤ j1 + j2 .

Proof: Can be found in Sakurai.

The matrix formed by the Clebsch-Gordon coefficients is unitary due to the properties of the
kets. We pick the elements to be real. Hence, the matrix is orthogonal (At = A−1) and we have∑

j

∑
m

⟨j1, j2;m1,m2|j1, j2; j,m⟩ ⟨j1, j2;m′
1,m

′
2|j1, j2; j,m⟩︸ ︷︷ ︸

(⟨j1,j2;j,m|j1,j2;m′
1,m

′
2⟩)∗

= δm1,m′
1
δm2,m′

2

∑
m1

∑
m2

⟨j1, j2;m1,m2|j1, j2; j,m⟩⟨j1, j2;m1,m2|j1, j2; j′,m′⟩ = δj,j′δm,m′ .

Picking j = j′ and m′ = m = m1 +m2 we find∑
m1

∑
m2

|⟨j1, j2;m1,m2|j1, j2; j,m⟩|2 = 1 .
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In the literature one finds alternative notations for ⟨j1, j2;m1,m2|j1, j2; j,m⟩ like

⟨j1,m2; j2,m2|j1, j2; j,m⟩ , C(j1, j2, j;m1,m2,m) , Cj1,j2(j,m;m1,m2)

or the Wigner 3-j-symbol:

⟨j1, j2;m1,m2|j1, j2; j,m⟩ = (−1)j1−j2+m
(
j1 j2 j
m1 m2 −m

)
.

3.2 Recursion Relation for the Clebsch-Gordon Coefficients
For fixed j1, j2 and j, the coefficients with different m1, m2 and m are related by recursion
relations:

Ĵ±|j1, j2; j,m⟩ = (Ĵ1,± + Ĵ2,±)
∑

m1,m2

|j1, j2;m1,m2⟩⟨j1, j2;m1,m2|j1, j2; j,m⟩ .

We use that

Ĵ+|j,m⟩ =
√

(j −m)(j +m+ 1)ℏ|j,m+ 1⟩

Ĵ−|j,m⟩ =
√

(j +m)(j −m+ 1)ℏ|j,m− 1⟩

to obtain√
(j ∓m)(j ±m+ 1)|j1, j2; j,m± 1⟩ =

∑
m′

1,m
′
2

[√
(j1 ∓m′

1)(j,±m′
1 + 1)|j1, j2;m′

1 ± 1,m′
2⟩

+
√

(j2 ∓m′
2)(j2 ±m′

2 + 1)|j1, j2;m′
1,m

′
2 ± 1⟩

]
· ⟨j1, j2;m1,m2|j1, j2; j,m⟩

We relabeled m1,m2 just to indicate that −j1 ≤ m1 ≤ j1 might not hold anymore. We now
multiply by ⟨j1, j2;m1,m2| from the left hand site, and use orthonormality, i.e. non-vanishing
contributions from right hand site only possible with

first term m1 = m′
1 ± 1 , m2 = m′

2
second term m1 = m′

1 , m2 = m′
2 ± 1 .

This is√
(j ∓m)(j ±m+ 1)⟨j1, j2;m1,m2|j1, j2; j,m± 1⟩

=
√

(j1 ∓m1 + 1)(j1 ±m1)⟨j1, j2;m1 ∓ 1,m2|j1, j2; j,m⟩

+
√

(j2 ∓m2 + 1)(j2 ±m2)⟨j1, j2;m1,m2 ∓ 1|j1, j2; j,m⟩ . (*)

The condition on the sum of z-components has now become m1 +m2 = m± 1 due to the action
of Ĵ±. We interpret (*) graphically in the m1-m2-plane .
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m2
J+

J−

RHS

RHS

RHS

RHS

LHS

LHS

m1

(m1-1,m2)

(m1+1,m2)

(m1,m2+1)(m1,m2)

(m1,m2)(m1,m2-1)

Figure 3.1: Graphic representations of the recursion relation where the points represent the three
sums in (*)

The recursion relation (*) together with normalization condition, uniquely determines the Clebsch-
Gordon coefficients up to a phase factor.

Strategy
Due to the fact that j1, j2, and j are fixed, the allowed region in the m1-m2-plane is limited by
the inequalities

|m1| ≤ j1 , |m2| ≤ j2 and − j ≤ m1 +m2 ≤ j .

.
m2

m2=j2

m
1=

-j
1

m
1=

j1

m2=-j2

m
1+m

2=j

m
1+m

2=-j

m1

A

B
forbidden

Figure 3.2: Allowed regions where the sums are not vanishing determined by the inequalities above

We may start with the upper right hand corner, denoted by A.
.

m2

m1

A

B
E

D

J−J−

J+

J+

J−

forbidden

Figure 3.3: Forbidden region, iterative calculation of the points starting from A
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We first apply the Ĵ− recursion relation with (m1,m2 ± 1) corresponding to A. The recursion
relation connects A to B only, as the site (m1 + 1,m2) is forbidden by the constraint m1 ≤ j1.
We obtain the Clebsch-Gordon coefficient of B in terms of the coefficient of A. In the next
step, we consider the triangle defined by the points A, B, and D. Application of Ĵ+ allows to
determine the coefficient of D, than E, and so on. After some afford, we know all the coefficients
expressed in terms of the coefficient in A. The overall normalization is provided by∑

m1,m2

|⟨j1, j2;m1,m2|j1, j2; j,m⟩|2 = 1 ,

and the overall sign is fixed by convention.

As an example, we consider the addition of orbital and spin momentum of a single angular
spin-1

2 particle. We have

j1 = l (integer) , m1 = ml

j2 = s = 1
2 , m1 = ms = ±1

2 .

The allowed values for j are given by j = l± 1
2 or j = 1

2 only if l = 0 which can be deduced from
|j1 − j2| ≤ j ≤ j1 + j2. ⇒ There are two possible j-values. As an example we consider l = 1 and
obtain in the spectroscopic notation p3/2, p1/2 where p denotes l = 1.
Using m = m1 +m2 ⇒ m1 = m−m2 we can write

|j1, j2; j,m⟩ =
∑

m1,m2

⟨j1, j2;m1,m2|j1, j2; j,m⟩|j1, j2;m1,m2⟩

=
∑
m2

⟨j1, j2;m−m2,m2|j1, j2; j,m⟩|j1, j2;m−m2,m2⟩ .

Goal: Find the transformation matrix in(
|j1 = l + 1

2 ,m⟩
|j1 = l − 1

2 ,m⟩

)
=
(

cosα sinα
− sinα cosα

)(
|ml = m− 1

2 ,ms = 1
2⟩

|ml = m+ 1
2 ,ms = −1

2⟩

)
(*)

where we used the notation |j1 = l, j2 = 1
2 ; j = l + 1

2 ,m⟩ ≡ |j = l + 1
2 ,m⟩.

Strategy: Using the recursion relation
.

ms

m

1/2

-1/2

lmake up

             in

the matrix

formula

recursion relation

only connects two

points

l

J− J−

cos(α)

Figure 3.4: Recursion relation in ms-ml-plane for j1 = l and j2 = s = 1
2
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We focus on the case j = l + 1
2 (the upper row) here. Since ms ≤ 1

2 , we use the Ĵ−-recursion
relation in such a way that we always stay in the upper row ms = m2 = +1

2 , while the ml-value
changes by one unit within each Ĵ−-triangle. This is√

(j +m)(j −m+ 1)⟨ml,ms = 1
2 |j,m− 1⟩ =

√
(j1 +m1 + 1)(j1 −m1)⟨ml + 1,ms = +1

2 |j,m⟩

Note that on the left we have ml + 1
2 = m − 1 and on the right ml + 1 + 1

2 = m which is the
same. Substitute m → m+ 1 and use j = l + 1

2 , and j1 = l to obtain√
(j +m+ 1)(j −m)⟨ml,

1
2 |l + 1

2 ,m⟩ =
√

(l +ml + 1)(l −ml)⟨ml + 1, 1
2 |l + 1

2 ,m+ 1⟩

We now use ml = m− 1
2 due to ml + 1

2 = m in the upper row. We consider√
(l + 1

2 +m+ 1)(l + 1
2 −m)⟨m− 1

2 ,
1
2 |l + 1

2 ,m⟩ =
√

(l +m+ 1
2)(l −m+ 1

2)⟨m+ 1
2 ,

1
2 |l + 1

2 ,m+ 1⟩√
l + 1

2 +m+ 1⟨m− 1
2 ,

1
2 |l + 1

2 ,m⟩ =
√
l +m+ 1

2⟨m+ 1
2 ,

1
2 |l + 1

2 ,m+ 1⟩ .

Hence, we have

⟨m− 1
2 ,

1
2 |l + 1

2 ,m⟩ =

√√√√ l +m+ 1
2

l +m+ 3
2

⟨m+ 1
2 ,

1
2 |l + 1

2 ,m+ 1⟩ .

Next we can express ⟨m+ 1
2 ,

1
2 |l+ 1

2 ,m+ 1⟩ in terms of ⟨m+ 3
2 ,

1
2 |l+ 1

2 ,m+ 2⟩ and so on. This
can be continued until ml reaches l, the maximum possible value

⟨m− 1
2 ,

1
2 |l + 1

2 ,m⟩ =

√√√√ l +m+ 1
2

l +m+ 3
2

√√√√ l +m+ 3
2

l +m+ 5
2

⟨m+ 3
2 ,

1
2 |l + 1

2 ,m+ 2⟩

=

√√√√ l +m+ 1
2

l +m+ 3
2

√√√√ l +m+ 3
2

l +m+ 5
2

√√√√ l +m+ 5
2

l +m+ 7
2

⟨m+ 5
2 ,

1
2 |l + 1

2 ,m+ 3⟩

=

√
l +m+ 1

2
l + l + 1 ⟨l, 1

2 |l + 1
2 , l + 1

2⟩ .

We used that the denominator always cancels the next nominator, so we are only left with the
first numerator and last denominator with ml = l = m + 1

2 . This is the maximum value of ml

and ms, i.e. ml = l and ms = 1
2 ⇒ m = ml + ms = l + 1

2 . This is possible only for j = l + 1
2 ,

not for j = l − 1
2 .

The recursion relations stop since

|j1, j2;m1 = j1,m2 = j2⟩ = |j1, j2; j = j1 + j2,m = j⟩
|j1, j2;m1 = −j1,m2 = −j2⟩ = |j1, j2; j = j1 + j2,m = −j⟩

due to the missing of a partner (see Fig. 2.18) at the ends.

⇒ |m1 = l,m2 = +1
2⟩ = eiδ|j = l + 1

2 ,m = l + 1
2⟩
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We take eiδ = 1 by convention and have ⟨l, 1
2 |l + 1

2 , l + 1
2⟩ = 1.

Using this, we have

⟨m− 1
2 ,

1
2 |l + 1

2 ,m⟩ =

√
l +m+ 1

2
2l + 1 .

We are close to finding the desired transformation (*): (The z component of the angular mo-
mentum needs to be conserved: m = m1 +m2 = m+ 1

2 − 1
2 = m− 1

2 + 1
2)

|j = l + 1
2 ,m⟩ =

√
l +m+ 1

2
2l + 1 |ml = m− 1

2 ,ms = +1
2⟩+ ? |ml = m+ 1

2 ,ms = −1
2⟩

|j = l − 1
2 ,m⟩ = ? |ml = m− 1

2 ,ms = +1
2⟩+ ? |ml = m+ 1

2 ,ms = −1
2⟩ .

We know comparing with the matrix relation (*) that

cosα =

√
l +m+ 1

2
2l + 1 =⇒ sin2 α = 1 − cos2 α =

2l + 1 − (l +m+ 1
2)

2l + 1 =⇒ sin2 α =
l −m+ 1

2
2l + 1 .

We now use the idea that the coefficient represented by sinα: ⟨ml = m+ 1
2 ,ms = −1

2 |j = l+ 1
2 ,m⟩

has to be positive because all j = l + 1
2 states can be reached by applying Ĵ− sucessively to

|j = l+ 1
2 ,m = l+ 1

2⟩, and the matrix elements of Ĵ− are positive by convention. ⇒ We choose
the positive sign when taking the square root.
The transformation matrix is thus given by

√
l+m+ 1

2
2l+1

√
l−m+ 1

2
2l+1

−
√

l−m+ 1
2

2l+1

√
l+m+ 1

2
2l+1

 .

We can use this result to define spin angular wave functions in two component notation χ+ = (1, 0),
χ− = (0, 1):

Yj=l± 1
2 ,m

l (θ, φ) = ±

√
l ±m+ 1

2
2l + 1 Ym− 1

2
l (θ, φ)χ+ +

√
l ∓m+ 1

2
2l + 1 Ym+ 1

2
l (θ, φ)χ−

= 1√
2l + 1

±
√
l ±m+ 1

2 Ym− 1
2

l (θ, φ)√
l ∓m+ 1

2 Ym+ 1
2

l (θ, φ)

 .

The Yj=l± 1
2 ,m

l are simultaneous eigenfunctions of L̂2
, Ŝ

2
, Ĵ

2 and Ĵz. As a consequence, they are
also eigenfunctions of L̂2 · Ŝ2 since L̂ · Ŝ = 1

2

(
Ĵ

2 − L̂
2 − Ŝ

2). (→ Ĵ is a good quantum number
as we have spin-orbit coupling L̂ · Ŝ in the Hamiltonian). The eigenvalues of L̂ · Ŝ are

ℏ2

2
[
j(j + 1) − l(l + 1) − s(s+ 1)︸ ︷︷ ︸

3/4

]
=
{
lℏ2

2 for j = l + 1
2

− (l+1)2ℏ2

2 for j = l − 1
2
.
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4 Identical Particles

Due to the Heisenberg uncertainty principle, it is not possible to keep track of individual parti-
cles:

.
∆x

p+∆p

p–∆p
particle 2

particle 1

Figure 4.1: If the spacial resolution is good enough to differentiate the particles then we cannot say
which one goes up and down after the scattering, due to momentum uncertainty. If the
momentum resolution is good enough then we cannot track the particle in the marked
region due to the position uncertainty.

When they perform a scattering process and come close to each other, ∆xi ∆pi ≥ ℏ/2 tells us
that we don’t know the particle’s locations well enough to keep them apart, and/or know their
momenta well enough to predict where they will go.
To describe a two-particle system in ket-space, we use a direct product |k′⟩ ⊗ |k′′⟩ or short
|k′⟩|k′′⟩. Since particles are indistinguishable, |k′′⟩|k′⟩ has to classify the same state, and all kets

c1|k′⟩|k′′⟩ + c2|k′′⟩|k′⟩

have to be considered. To derive c1 and c2, we define the permutation operator

P̂12|k′⟩|k′′⟩ = |k′′⟩|k′⟩ .

We have P̂12 = P̂21 and (P̂12)2 = 1. We now introduce observables Â1 and Â2 representing the
state of particle 1 or particle 2. Examples are the spins Ŝ1 or Ŝ2.

Â1|a′⟩|a′′⟩ = a′|a′⟩|a′′⟩
Â2|a′⟩|a′′⟩ = a′′|a′⟩|a′′⟩

From the first equation, we obtain by application of P̂12 and insertion of 1 = P̂−1
12 P̂12

P̂12Â1|a′⟩|a′′⟩ = a′P̂12|a′⟩|a′′⟩ = a′|a′′⟩|a′⟩
= P̂12Â1P̂

−1
12 P̂12|a′⟩|a′′⟩ = P̂12Â1P̂

−1
12 |a′′⟩|a′⟩ .

This is consistent with the eigenvalue equation for Â2 only if P̂12Â1P̂
−1
12 = Â2.

The Hamiltonian of two interacting identical particles is given by

Ĥ = p̂2
1

2m + p̂2
2

2m + Vpair(|x̂1 − x̂2|) + Vext(x̂1) + Vext(x̂2) .

We find P̂12ĤP̂
−1
12 = Ĥ ⇒ [P̂12 , Ĥ] = 0. As a consequence of the Heisenberg equation of

motion, P̂12 is a constant of motion. Because P̂ 2
12 = 1, the allowed eigenvalues are ±1. ⇒ If

61



the two particle state ket is anti-symmetric or symmetric initially, it will remain so at all times.
The eigenstates of P̂12 are

|k′k′′⟩+ ≡ 1√
2
[
|k′⟩|k′′⟩ + |k′′⟩|k′⟩

]
|k′k′′⟩− ≡ 1√

2
[
|k′⟩|k′′⟩ − |k′′⟩|k′⟩

]
.

In addition we can define symmetrizer and anti-symmetrizer

Ŝ12 ≡ 1
2
[
1 + P̂12

]
Â12 ≡ 1

2
[
1 − P̂12

]
.

Applying this operators to an arbitrary two-particle state yields

Ŝ12
Â12

}[
c1|k′⟩|k′′⟩ + c2|k′′⟩|k′⟩

]
= 1

2
[
c1|k′⟩|k′′⟩ + c2|k′′⟩|k′⟩

]
± 1

2
[
c1|k′′⟩|k′⟩ + c2|k′⟩|k′′⟩

]
= c1 ± c2

2
[
|k′⟩|k′′⟩ ± |k′′⟩|k′⟩

]
.

4.1 Symmetrization Postulate
We describe interchange of particles by a π-rotation of one particle around the other (followed
by a translation).

.

2

2

2π rotation

1 1

2

π rotation

translation

1 1

Figure 4.2: π-rotation and translation (we often consider translational invariant systems) as a way
to describe interchanging the particles; 2π rotation is identity in three dimensions

In three spacial dimension the loop corresponding to the two-fold interchange of two particles
can be contracted to a point, i.e. it is topological equivalent to the identity operation. ⇒ Phys-
ical interchanging particles can be identified with the action of P̂12 with P̂ 2

12 = 1.
The indistinguishability of quantum particles makes it plausible that many particle states should
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be eigenstates of P̂12, and due to P̂ 2
12 = 1 there are only two possibilities:

P̂ij |N identical bosons⟩ = +|N identical bosons⟩
P̂ij |N identical fermions⟩ = −|N identical fermions⟩ .

Particles whose wave function is symmetric under exchange are called bosons, particles with an
anti-symmetric wave function are called fermions.

Note:
If the motion of particles is restricted to two spatial dimension, a two-fold exchange is no longer
equivalent to the identity. This gives the possibility for

|r1, r2⟩ = e±iθ|r2, r1⟩ with θ ̸= {0, π} .

Particles satisfying such generalized statistics are called anyons and are believed to exist in the
fractional quantum Hall state.

.
σxy

[e2/h]

ν

classical

integer QHE state

fractional QHE state

1

1

2

1/3

2/3

2

Figure 4.3: The Hall conductivity in the QHE state is quantized σxy = ν e
2

ℏ where ν ≈ p
2q+1 , p, q ∈ N

is the filling fraction (for ν = 1 all states in each Landau level are filled, and e.g.
ν = 1/3 says that 1/3 of the states in the Landau level are filled). Classically we have
σxy = ν e

2

h = 2πnℏ
eB

e2

h = ne
B where we used that ν is here the electron density divided

by the number of the places in the Landau level ν = n
1/(2πl2B) . The quasi-particles are

anyons with charge 1
2q+1 e which is a fraction of the elementary charge.

In addition there exists an even more exotic possibility of non-Abelian exchange statistics. In
the presence of N quasi-particles (N ∈ 2N), the ground state has a 2n-fold degeneracy for fixed
particle positions (we do not mean the translational degeneracy), i.e. there are (for N = 4) 4
different ground state wave functions with energy E0 where Ei ≥ E0 +∆ with excitation gap ∆:

φ1(R1, R2, R3, R4) , Ĥφ1 = E0φ1

φ2(R1, R2, R3, R4) , Ĥφ2 = E0φ2

φ3(R1, R2, R3, R4) , Ĥφ3 = E0φ3

φ4(R1, R2, R3, R4) , Ĥφ4 = E0φ4 .
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The exchange of two particles corresponds to unitary operations in the 4-dimensional ground
state sector of the Hilbert space.

.

21

43

W31
^

W21
^

Figure 4.4: Rotations/interchanges Ŵ32, Ŵ21 of the particles in the ground state space with wave
functions φ = c1φ1 + c2φ2 + c3φ3 + c4φ4 interpreted as 4 × 4 matrix actions W3,1,W2,1
on φ = (c1, c2, c3, c4)

The unitary transformations Ŵ32, Ŵ21 can be represented as 4 × 4 unitary matrices W3,1,W2,1.
Since in general matrix multiplication is non-commutative (matrices form a non-Abelian group),
such particles are called non-Abelian anyons. The transformations Ŵ31 and Ŵ21 are topological
in nature ("topological protected") since they do not depend on the detail of the particular path
but only on its topology ("which particle goes around which other particle"). Non-Abelian anyons
are believed to be realized in the fractional quantum Hall state at ν = 5

2 and in superconductor-
semiconductor-heterostructures with strong spin orbit coupling.

Back to fermions and bosons: there exists a remarkable connection between the spin and the
statistics of particles. Half-integer-spin particles are fermions and integer-spin particles are
bosons.
In this context, particles can be composites: a 3He nucleus is a fermion in the same way as a
electron e− or a proton is, and a 4He nucleus is a boson such as a photon, the π-meson or the
Z0 gauge boson. The spin-statistics theorem is believed to be an exact law of nature with no
known exceptions. In relativistic quantum field theory it can be proved that half-integer-spin
particles cannot be bosons and that integer-spin particles cannot be fermions.
A consequence of fermionic statistics is the Pauli exclusion principle: two electrons (fermions)
cannot occupy the same quantum state. This follows because a state like |k′⟩|k′⟩ is automatically
symmetric, which is not possible for fermions.
The important difference between fermions, bosons and "classical" particles can be illustrated
by considering two free particles which occupy states |k′⟩, |k′′⟩:

• Fermions: 1√
2 (|k′⟩|k′′⟩ − |k′′⟩|k′⟩)

• Bosons: |k′⟩|k′⟩, |k′′⟩|k′′⟩ or 1√
2 (|k′⟩|k′′⟩ + |k′′⟩|k′⟩)

• "Classical:" |k′⟩|k′⟩, |k′′⟩|k′′⟩, |k′⟩|k′′⟩, |k′′⟩|k′⟩
(Entropy of classical particles is not extensive)
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4.2 Two Electron System
We specify base kets and bras by x1, x2, and the spin quantum numbers ms1 , and ms2 such that

Ψ =
∑

ms1 ,ms2

C(ms1 ,ms2) ⟨x1,ms1 ;x2,ms2 |α⟩ .

If the Hamiltonian commutes with Ŝ2
tot with Ŝtot = Ŝ1+Ŝ2, i.e. [Ŝ2

tot , Ĥ] = 0, energy eigenstates
can be chosen as eigenstates of Ŝ2

tot, and if expressed as Ψ = ϕ(x1, x2)χ(ms1 ,ms2), the spin
function χ is one of the following possibilities

χ(ms1 ,ms2) =



χ++
1√
2(χ+− + χ−+)

χ−−

 triplet (sym.) Stot = 1

1√
2(χ+− − χ−+)

}
singlet (anti-sym.) Stot = 0

Here χ+− = δms1 ,
1
2
δms2 ,−

1
2
, and so on. Fermi-Dirac statistics for the electrons require

⟨x1,ms1 ;x2,ms2 |α⟩ = −⟨x2,ms2 ;x1,ms1 |α⟩ .

We decompose the permutation operator P̂12 according to P̂
(space)
12 P̂

(spin)
12 , interchanging the

position and the spin coordinates, respectively. We can express P̂ (spin)
12 as

P̂
(spin)
12 = 1

2

(
1 + 4

ℏ2 Ŝ1 · Ŝ2

)
,

due to

Ŝ1 · Ŝ2 =
{
ℏ2/4 triplet
−3ℏ2/4 singlet

=⇒
P̂

(spin)
12 |triplet⟩ = (+1)|triplet⟩

P̂
(spin)
12 |singlet⟩ = (−1)|single⟩

.

Using this decomposition, the transformation |α⟩ 7→ P̂12|α⟩ gives rise to

ϕ(x1, x2) P̂127−→ ϕ(x2, x1) and χ(ms1 ,ms2) P̂127−→ χ(ms2 ,ms1) .

⇒ If the space part of the wave function is symmetrical (anti-symmetrical), then the spin part
must be anti-symmetrical (symmetrical). ⇒ The spin triplet part has to be combined with an
anti-symmetrical space part, the spin singlet part has to be combined with a symmetrical space
part.
The probability for finding electron 1 within a volume element d3x1 around position x1, and
electron 2 within a volume element d3x2 around x2 is |ϕ(x1, x2)|2d3x1d3x2.
What influence does the statistics of particles have on observable quantities? If the interaction
of particles is not important, and in the absence of a Zeeman field, the Schrödinger equation is
given by [

− ℏ2

2m ∇2
1 − ℏ2

2m ∇2
1 + Vext(x1) + Vext(x2)

]
Ψ(x1, x2) = EΨ(x1, x2) .

The spatial part of the wave function Ψ(x1, x2) is now separable into the form ωA(x1)ωB(x2).
Since Ŝ2

tot trivially commutes with the Hamiltonian, we can choose the spin part of the wave
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function to be an eigenstate of the total spin Ŝtot, i.e. a singlet or triplet state, which both have
a definite symmetry property under P̂ (spin)

12 . Accordingly, the space part must be a symmetrical
or anti-symmetrical combination

ϕ(x1, x2) = 1√
2

[ωA(x1)ωB(x2) ± ωA(x2)ωB(x1)]

where the upper sign applies for the spin singlet, and the lower sign for the triplet.
The probability for observing the two electrons around x1 and x2 is given by

|ϕ(x1, x2)|2 = 1
2

{
|ωA(x1)|2|ωB(x2)|2 + |ωA(x2)|2|ωB(x1)|2 ± 2Re

[
ωA(x1)ωB(x2)ω∗

A(x2)ω∗
B(x1)

]
︸ ︷︷ ︸

"Exchange density" due to the
exchange of coordinates x1 and x2

in ωA and ω∗
A, ωB and ω∗

B

}

For electrons in a spin triplet state, the probability of finding both electrons in the same point
in space x1 = x2 vanishes. Electrons in a spin triplet state tend to avoid each other. However,
when the two electrons are in a singlet state, there is an enhanced probability of finding the
electrons at the same point in space.
Remark:
If ωA and ωB are non-zero only in spatially well separated regions, there is no need to (anti-)
symmetrize the wave function, as the exchange density vanishes.

4.3 The Helium Atom
The Hamiltonian for two electrons moving in the Coulomb field of two protons is given by

Ĥ =
p̂2

1
2m +

p̂2
2

2m − 2e2

r1
− 2e2

r2
+ e2

r12

with r1 ≡ |x1|, r2 ≡ |x2| and r12 ≡ |x1 − x2| where the positive nucleus has the charge 2e and
is located at (0,0,0).

.
-e

r2r1

x1

r12 -e

2e
nucleus

electron 2electron 1 x2

Figure 4.5: Definitions of quantities for the helium atom

We first assume that the e2/r12 term is absent. Then the wave functions would just be the prod-
uct of two hydrogen wave functions with Z = 1 changed into Z = 2. Ŝ2

tot commutes with Ĥ, so
we choose the spin state to be either singlet or triplet. We consider the case where one electron
is in the ground state, and the other one in an excited state with quantum numbers (n, l,m)

⇒ ϕ(x1, x2) = 1√
2

[Ψ100(x1)Ψnlm(x2) ± Ψ100(x2)Ψnlm(x1)] . (*)
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For the ground state, both electrons are in the state n = 1, l = 0 . ⇒ The space function is
necessarily symmetrical, and only the spin singlet wave function is allowed:

Ψ100(x1)Ψ100(x2)χsinglet = Z3

πa3
0

e−Z(r1+r2)/a0χsinglet with Z = 2.

The energy of this "unperturbed" wave function is

E = 2 · 4︸︷︷︸
Z2

·
(

− e2

2a0

)
= −108.8eV ,

about 30% larger than the experimental value: Eexp = −78.8eV since we neglected e2/r12.
We now treat the Coulomb interaction between the electons in first order perturbation theory,
i.e. we compute the expectation value of e2/r12 with regards to the wave function (*). In this
way, one finds the energy shift

∆(1s)2 = ⟨ e
2

r12
⟩(1s)2 =

∫∫
Z6

π2a6
0

e− 2Z(r1+r2)
a0︸ ︷︷ ︸

Ψ100(x1)Ψ100(x2)

e2

r12
d2x1d2x2 .

The term under the integral can be understood as interaction of different charge densities
ϱC(x1)ϱC(x2)/r12 (but electrons in the "charge clouds" are not interacting).

.
-e

γ r2r1

x1

r12 -e

2e
nucleus

electron 2electron 1 x2

Figure 4.6: Definitions of the angle and the distances

A useful coordinate system to calculate the integral uses the angle γ between x1 and x2, and
x1 · x2 = r1r2 cos γ to obtain

r12 = |x1 − x2| =
√

(x1 − x2)2 =
√
r2

1 + r2
2 − 2r1r2 cos γ .

Denoting r< = min{r1, r2} and r> = max{r1, r2} we can write

r12 = r>

√
1 − 2r<

r>
cos γ +

(
r<
r>

)2

⇒ 1
r12

= 1
r>

1√
1 − 2 r<

r>
cos γ +

(
r<

r>

)2
.

Comparison with the generating function of the Legendre polynomials 1√
1−2xt+t2 = ∑∞

n=0 Pn(x)tn
yields

⇒ 1
r12

=
∞∑
l=0

rl<
rl+1
>

Pl(cos γ) .
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To perform the angular integration, it is useful to use the addition theorem for spherical har-
monics

Pl(cos γ) = 4π
2l + 1

l∑
m=−l

Ym∗
l (θ1, ϕ1)Ym

l (θ2, ϕ2) .

Interpret the "constant factor" in the integral as Y0
0 = 1√

4π . Due to the orthogonality between
spherical harmonics, the angular integration is straight forward∫

Ym
l (θi, ϕi)dΩi =

√
4π
∫ 1√

4π
Ym
l (θi, ϕi)dΩi =

√
4πδl,0δm,0 .

The radial integration is elementary but tedious, it leads to
∞∫

0

 r1∫
0

1
r1

e− 2Z
a0

(r1+r2)
r2

2dr2 +
∞∫
r1

1
r1

e− 2Z
a0

(r1+r2)
r2

2dr2

 r2
1dr1 = 5

128
a5

0
Z5 .

Combining everything, we obtain for Z = 2:

∆(1s)2 = Z6e2

π2a6
0︸ ︷︷ ︸

Normalization

4π︸︷︷︸
Ad.Th.

(
√

4π)2︸ ︷︷ ︸
1/Y0

0

5
128

a5
0
Z5︸ ︷︷ ︸

Radial integral

= 5
2
e2

2a0
.

Adding this energy shift to the zeroth order energy, we find

Ecalc. =
(

−8 + 5
2

)
e2

2a0
≈ −74.8eV .

However, we can do even better when treating the nuclear charge Z in the wave function as a
variational parameter, i.e. use the wave function

⟨x1, x2|0̃⟩ =
(
Z3

eff
πa3

0

)
e−Zeff(r1+r2)/a0

to compute the expectation value of the Hamiltonian and then minimizing with regards to Zeff .
This is the Ritz variation method.

⟨Ĥ⟩ = ⟨0̃| p̂
2
1

2m + p̂2
2

2m |0̃⟩ − ⟨0̃|Ze
2

r1
+ Ze2

r2
|0̃⟩ + ⟨0̃| e

2

r12
|0̃⟩

where we have to distinguish Z in the Hamiltonian from Zeff in the wave function. We can write
Z
Zeff

⟨0̃|Zeffe
2

r1
+ Zeffe

2

r2
|0̃⟩ to make use of the assumed eigenfunction. One finds in the end

⟨Ĥ⟩ =
(

2Z
2
eff
2 − 2ZZeff + 5

8Zeff

)
e2

a0

with the minimum found for Zeff = 2 − 5
16 = 1.6875 which is smaller than Z as expected

from the argument that one electron partially "screens" the nuclear charge seen by the other
electron. Using Zeff = 2 − 5

16 , we find for the energy Ecal = −77.5eV, already quite close to
Eexp = −78.8eV, given the crudeness of the trial wave function. [A. Unsöld, Ann. Phys. 82,
355 (1927)]
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For the discussion of excited states, we consider symmetrized wave functions with the building
block (1s)(nl), and write the energy of such states as

En,l,± = E100 + Enlm + ∆E± with ∆E± = In,l ± Jn,l .

In first-order perturbation theory, ∆E is obtained by evaluating the expectation value of e2

r12
,

which we can decompose according to

⟨ e
2

r12
⟩ = In,l ± Jn,l,

where I and J are called Coulomb integral and exchange integral, respectively. The upper
(lower) sign goes with the singlet (triplet) state. I and J are given by

I =
∫

d3x1d3x2|Ψ100(x1)|2|Ψnlm(x2)|2 e
2

r12

where we can think of |Ψ100(x1)|2 = ϱ100(x1) and |Ψnlm(x2)|2 = ϱnlm(x2) as charge densities,
and

J =
∫

d3x1d3x2Ψ100(x1)Ψnlm(x2) e
2

r12
Ψ∗

100(x2)Ψ∗
nlm(x1)

which cannot be interpreted using charge densities, its due to the exchange statistics. Obviously
I is non-negative, and it can be shown that J is non-negative as well.
⇒ For the same configuration of orbitals the spin singlet states lies energetically higher than
the triplet state.

.

E100+Enlm

I

J

singlet

triplet

J

Figure 4.7: Shift of the unperturbed energy states by the exchange and Coulomb integral

In the singlet case, the space wave function is symmetrical and the electrons can get close to
each other ⇒ have a strong mutual Coulomb repulsion ⇒ high energy.
In the triplet case, the space wave function is anti-symmetrical, and the electrons avoid each
other ⇒ have a weaker Coulomb repulsion ⇒ smaller energy.
Helium in the singlet state is known as para-helium, helium in the triplet state is known as
ortho-helium. Although the original Hamiltonian was spin-independent without an explicit
Ŝ1 · Ŝ2-term, the electrons with parallel spins have lower energy due to the effects of Fermi-
Dirac statistics.
The explanation of the apparent spin dependence of the helium energy levels is due to Heisen-
berg. Along similar lies, Heisenberg could explain the occurrence of ferromagnetism in solids.
Electrons with parallel spins avoid each other spatially and heave a lower energy for this reason.
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4.4 Multiparticle States
We now define the action of the permutation operator for states with N identical particles

P̂ij = |k′⟩|k′′⟩ · · · |ki⟩ · · · |kj⟩ · · · = |k′⟩|k′′⟩ · · · |kj⟩|ki+1⟩ · · · |ki⟩ · · · .

We still have P̂ 2
ij = 1 as before, such that the allowed eigenvalues are ±1. In general, [P̂ij , P̂kl] ̸= 0 .

We work out explicitly the example of three identical particles: There are 3! = 6 possible kets
of the form |k′⟩|k′′⟩|k′′′⟩, where k′, k′′, and k′′′ are all different from each other. However, there
is only one totally symmetrical (+), and one totally anti-symmetrical (-) linear combination

|k′k′′k′′′⟩± = 1√
6

{
|k′⟩|k′′⟩|k′′′⟩ ± |k′′⟩|k′⟩|k′′′⟩ + |k′′⟩|k′′′⟩|k′⟩ ± |k′′′⟩|k′′⟩|k′⟩ + |k′′′⟩|k′⟩|k′′⟩ ± |k′⟩|k′′′⟩|k′′⟩

}

which are simultaneous eigenkets of P̂12, P̂13, and P̂23. It follows that there are four independent
kets which are neither totally symmetrical nor totally anti-symmetrical (six ways to choose the ±
but only all + is symmetrical and all − is anti-symmetrical). So far we assumed that k′, k′′, and
k′′′ are all different from each other. When two coincide, we can only form a totally symmetrical
state

|k′k′k′′⟩+ = 1√
3
{
|k′⟩|k′⟩|k′′⟩ + |k′⟩|k′′⟩|k′⟩ + |k′′⟩|k′⟩|k′⟩

}
where the normalization factor can be interpreted as

√
2!
3! . In a more general case, the normal-

ization factor is
√

N1!N2!···Nn!
N ! where N is the total number of particles, and Ni is the number of

times |ki⟩ occurs.

4.4.1 Second Quantization
Second quantization is a different approach to keeping track of multi-particle states, which is
also the foundation of quantum field theory. Historically the term was coined to describe the
idea that the wave function of single-particle quantum mechanics is turned into an operator,
which is subject to its own canonical quantization, such that the quantization rule is enforced
a second time. However, "second quantization" is completely equivalent to solving the many
particle Schrödinger equation (but allows for powerful approximation to be found). We define
a multi-particle state vector as |n1, n2, ..., ni, ...⟩, where ni defines the number of particles with
eigenvalue ki for some operator. Such state vectors are element of a new typ of vector space,
called Fock-space, which has the necessary permutation symmetry built in.
We begin by describing two special cases of states in Fock-space, the first of which is |0, ..., 0⟩ ≡ |0⟩,
which does not contain any particles and is called "vacuum". The second special case is
|0, ..., 0, ni = 1, 0, ...⟩ = |ki⟩, which has exactly one particle in the state with eigenvalue ki.
We now need to build multi-particle states in such a way that permutation symmetry is re-
spected. It turns out that the creation and annihilation (ladder) operators as defined for the
harmonic oscillator are the right tool for this. We define a "field operator" â†

i that increases the
number of particles in the state with eigenvalue ki by one, i.e.

â†
i |n1, ..., ni, ...⟩ ∝ |n1, ..., ni + 1, ...⟩,
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where the correct normalization will be determined later. We postulate that applying a particle
creation operator â†

i to the vacuum creates a properly normalized single-particle state â†
i |0⟩ = |ki⟩

(and ⟨0|âi = ⟨ki|).

1 = ⟨ki|ki⟩ = (⟨0|âi)(â†
i |0⟩) = ⟨0|âiâ†

i |0⟩ = ⟨0| âi|ki⟩︸ ︷︷ ︸
|0⟩

We see that âi|k⟩i = |0⟩, so that âi is a particle annihilation operator.

âi|n1, ..., ni, ...⟩ ∝ |n1, ..., ni − 1, ...⟩

with âi|0⟩ = 0 and âi|kj⟩ = δij |0⟩. These postulates almost fully define the field operator, but
do not incorporate permutation symmetry yet. For discussing permutation symmetry, we create
a two-particle state by applying two creation operators and demand

|kikj⟩ = â†
i â

†
j |0⟩ = ±â†

j â
†
i |0⟩ = |kjki⟩ .

Here, the + (−) sign applies for bosons (fermions). Using the same logic for the application of
two creation operators to a general multi-particle states leads to

â†
i â

†
j − â†

j â
†
i = 0 = [â†

i , â
†
j ] (bosons)

â†
i â

†
j + â†

j â
†
i = 0 = {â†

i , â
†
j} . (fermions *)

Taking the adjoint of the relations yields

0 = [âi , âj ] (bosons)
0 = {âi , âj} (fermions)

We note that the Pauli exclusion principle is incorporated into this formalism since (*) implies
â†
i â

†
i = 0.

What are the commutation rules between âi and â†
i? We would like to define a number operator

N̂i = â†
i âi counting the number of particles in single-particle state |ki⟩. From working with

the harmonic oscillator, we know that this is possible when [âi , â†
i ] = 1. We claim that a self-

consistent picture for both bosons and fermions can be built this way, replacing the commutator
with the anti-commutator for fermions:

δij = [âi , â†
j ] (bosons)

δij = {âi , â†
j} . (fermions)

n̂i = â†
i âi is the number of particles in state k̂i, and N̂ = ∑

i â
†
i âi the total number of particles

in the system.

4.4.1.1 Single Particle Operators in Second Quantization

We assume that the single-particle states |ki⟩ are eigenstates of an "additive" single particle
operator K̂ = ∑N

j=1 k̂j , e.g. momentum or kinetic energy.
For a multi-particle state |Ψ⟩ = |n1, n2, ..., ni, ...⟩, we expect the eigenvalue of K̂ to be ∑i niki
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where the sum is over states in the single particle Hilbert space (not over particles). This can
be easily accomplished when using

K̂ =
∑
i

kiN̂i =
∑
i

kiâ
†
i âi .

If needed, this can be transformed to a different basis.

• Tight binding Hamiltonian

Ĥ =
∑
k

ε(k)â†
kâk (**)

from |n⟩ = ∑
l eikl|l⟩, ĉk = ∑

k eiklĉl, and

Ĥ = −t
∑
l

(
|l + 1⟩⟨l| + |l⟩⟨l + 1|

)
=
∑
k

ε(k) |k⟩⟨k|

is equivalent to (**) in the single particle subspace

Ĥ = −t
∑
l

(
ĉ†
l+1ĉl + ĉ†

l ĉl+1
)
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5 Time Dependent Perturbation Theory

5.1 Sudden Perturbation
We decompose the Hamiltonian according to Ĥ = Ĥ0 +λĤ1(t), and assume that Ĥ0 has known
eigenstates |m⟩, |n⟩ with eigenvalues Em, En. λ is a small number, and we are interested in
finding the solution to linear order in λ. We assume that Ĥ1(t) vanishes for t ≤ t0. Hence, for
t ≤ t0, the system is described by the Schrödinger equation

iℏ ∂
∂t

|Ψ(0)(t)⟩ = Ĥ0|Ψ(0)(t)⟩ ,

with the initial condition |Ψ(t)⟩ = |Ψ(0)(t)⟩ for t ≤ t0.

Brief reminder:

• Schrödinger picture |ΨS(t)⟩, ÂS

• Heisenberg picture |ΨH⟩, ÂH(t)

These pictures are related by the transformation

|ΨS(t)⟩ = e− i
ℏ Ĥ |ΨH⟩ and ÂH(t) = e

i
ℏ Ĥ tÂSe− i

ℏ Ĥ t = Û †ÂSÛ ,

if Ĥ does not explicitly depend on time.
If Ĥ does depend explicitly on time, one finds

Û(t, t0 = 0) = e−i Ĥ t
ℏ −→ T̂ e

−i
t∫

0
dt′ Ĥ(t′)/ℏ

where T̂ is the time ordering operator

T̂ Â(t1)B̂(t2) =
{
Â(t1)B̂(t2) for t1 > t2

B̂(t2)Â(t1) for t2 > t1
.

The sign in Û can be remembered by noting that the time evolution has to satisfy the Schrödinger
equation

iℏ∂te−i Ĥt/ℏ = ℏi (−i ) Ĥ
ℏ

e−i Ĥt/ℏ = Ĥ e−i Ĥt/ℏ

so it needs to be a (−).
Using

|ΨS(t)⟩ = e−i Ĥt/ℏ|ΨH⟩ , ⟨ΨS(t)| = ⟨ΨH |ei Ĥt/ℏ

the expectation value in the Schrödinger picture

⟨Â⟩ = ⟨ΨS(t)|Â|ΨS(t)⟩ = ⟨ΨH |ei Ĥt/ℏÂe−i Ĥt/ℏ|ΨH⟩ = ⟨ΨH |ÂH(t)|ΨH⟩

coincides with the one in the Heisenberg picture.
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• Dirac interaction picture Ĥ(t) = Ĥ0 + Ĥ1(t)

ÂD(t) = ei Ĥ0,St/ℏÂSe−Ĥ0,St/ℏ and |ΨD(t)⟩ = ei Ĥ0,St/ℏ|ΨS(t)⟩ = e
−i

t∫
0

dt′ Ĥ1,D(t′)/ℏ
|ΨD(0)⟩

with |ΨD(0)⟩ = |ΨS(0)⟩ = |ΨH⟩, where we used the time evolution in the Dirac picture
and the fact that Ĥ1 can depend on time where Ĥ0 is time independent (Ĥ0,D = Ĥ0,S
and time evolution ÛD|ΨD(0)⟩ = |ΨD(t)⟩ satisfies the Schrödinger equation in the Dirac
picture). Transforming the Schrödinger equation into the interaction picture yields

iℏ d
dt

|ψD(t)⟩ = H1,D(t)|ψD(t)⟩ ,

where H1,D(t) = eiH0,St/ℏH1,Se−iH0,St/ℏ.

We now transform into the interaction picture

|ΨD(t)⟩ = ei Ĥ0t/ℏ|Ψ(t)⟩ .

As an example we consider a system which was initially, at t = t0, in an eigenstate |m⟩ of Ĥ0.

|m(t ≤ t0)⟩ = e−i Ĥ0t/ℏ|m⟩ = e−iEmt/ℏ|m⟩ .

The action of Ĥ1 for times t > t0, gives rise to a time evolution |Ψm(t)⟩ = ∑
n⟨n(t)|Ψm(t)⟩|n(t)⟩

where ⟨n(t)|Ψm(t)⟩ is the amplitude to find |Ψm(t)⟩ in state |n⟩. |⟨n(t)|Ψm(t)⟩|2 is the probability
to find |Ψm(t)⟩ in state |n(t)⟩, called the "transmission probability from |m⟩ to |n⟩".

⟨n(t)|Ψm(t)⟩ = ⟨n|ei Ĥ0t/ℏ|Ψm(t)⟩ = ⟨n|Ψm,D(t)⟩ .

Expanding the time evolution of |Ψm,D(t)⟩ to first order in λ, we find usign the notation

|Ψm,D(0)⟩ = |m⟩ that |Ψm,D(t)⟩ = |m⟩ − i
ℏ
λ

t∫
t0

dt̃ Ĥ1,D(t̃)|m⟩, and since |m⟩ is eigenstate

of Ĥ0 and H1,D(t) = eiH0,St/ℏH1,Se−iH0,St/ℏ:

⟨n(t)|Ψm(t)⟩ = δnm − i
ℏ
λ

t∫
t0

dt̃ ei (En−Em)t̃/ℏ⟨n|Ĥ1(t̃)|m⟩ .

The transition probability is given by

Pm,n(t) = |⟨n(t)|Ψm(t)⟩|2 =

∣∣∣∣∣∣λℏ
t∫

t0

dt̃ ei (En−Em)t̃/t⟨n|Ĥ1(t̃)|m⟩

∣∣∣∣∣∣
2

.

We now set λ = 1. We first specialize in Ĥ1(t) = V̂ θ(t), t0 = 0 and λ = 1.

⇒ Pm,n(t) = 1
ℏ2

∣∣∣∣∣∣
t∫

0

dt̃ ei (En−Em)t̃/ℏ⟨n|V̂ |m⟩

∣∣∣∣∣∣
2

= 1
ℏ2

∣∣∣∣∣eiωnmt − 1
iωnm

∣∣∣∣∣
2 ∣∣∣⟨n|V̂ |m⟩

∣∣∣2
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with ωnm = En−Em
ℏ

⇒ Pm,n(t) = 1
ℏ2

∣∣∣e i ωnm
2ℏ

∣∣∣2 ·
∣∣∣∣∣eiωnmt/2 − e−iωnmt/2

iωnm

∣∣∣∣∣
2 ∣∣∣⟨n|V̂ |m⟩

∣∣∣2
= 1

ℏ2

(sin(ωnmt/2)
ωnm/2

)2 ∣∣∣⟨n|V̂ |m⟩
∣∣∣2 .

For t → ∞ the expression sin2(αt)
πα2t is a representation of the delta function δ(α). For large times

t (actually large ωnmt while Pmn ≪ 1, i.e.
∣∣∣⟨n|V̂ |m⟩

∣∣∣2 small) we find

Pmn(t) ∼= t
π

ℏ2 δ

(
ωnm

2

) ∣∣∣⟨n|V̂ |m⟩
∣∣∣2

= t
2π
ℏ
δ(En − Em)

∣∣∣⟨n|V̂ |m⟩
∣∣∣2 .

The transition rate, i.e. the transition probability per unit time is given by

Γmn = 2π
ℏ
δ(En − Em)

∣∣∣⟨n|V̂ |m⟩
∣∣∣2 .

There δ(En − Em) ensures energy conservation.
If the eigenvalues En form a continuum (or quasi-continuum) and if the matrix element ⟨n|V̂ |m⟩
depends only weakly on n, we can introduce the density of states (number of states per unit
energy ϱ) and obtain for the total transition rate

∑
n

Γmn =
∫

dEn ϱ(En) Γmn = ϱ(Em)2π
ℏ

∣∣∣⟨n|V̂ |m⟩
∣∣∣2 . (!)

This relation is known as Fermi’s golden rule. It was derived in 1928 by Wolfgang Pauli and
because of the usefulness of the relation E. Fermi coined the term golden rule in 1950.
Next, we consider the case of periodic perturbations.

Ĥ1(t) = θ(t)
[
F̂ e−iωt + F̂ †eiωt

]
⟨n(t)|Ψm(t)⟩ = − i

ℏ

t∫
0

dt̃
[
ei (ωnm−ω)t̃⟨n|F̂ |m⟩ + ei (ωnm+ω)t̃⟨n|F̂ †|m⟩

]
And hence

|⟨n(t)|Ψm(t)⟩|2 = t
2π
ℏ

[
δ(ωnm − ω)

∣∣∣⟨n|F̂ |m⟩
∣∣∣2 + δ(ωnm + ω)

∣∣∣⟨n|F̂ †|m⟩
∣∣∣2] .

The mixed term does not contribute due to the incompatible delta-functions.

⇒ Γnm = 2π
ℏ

[
δ(En − Em − ℏω)︸ ︷︷ ︸

absor.

∣∣∣⟨n|F̂ |m⟩
∣∣∣2 + δ(En − Em + ℏω)︸ ︷︷ ︸

stm. em.

∣∣∣⟨n|F̂ †|m⟩
∣∣∣2 ] .

In addition spontaneous emission of an excited atomic state due to vacuum fluctuations in the
electromagnetic field is possible and discussed in the problem sets.
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5.2 Adiabatic Theorem
Adiabatic Process:
The Hamiltonian of the system changes gradually, such that the system can adopt its con-
figuration to the changed Hamiltonian. If the system starts in an eigenstate of the original
Hamiltonian, it will end in the corresponding eigenstate of the final Hamiltonian.

Diabatic Process:
A rapid change of the Hamiltonian ("quench") preserves the system from adapting its config-
uration during the process, hence the spacial and spin probability density remains unchanged
(same state but no longer an eigenstate).

Reminder:
For a time independent Hamiltonian, the time-dependent Schrödinger equation iℏ∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩
can be turned into the time-independent Schrödinger equation via a product ansatz

|Ψn(t)⟩ = e− i
ℏ Ent|Ψn⟩ , with Ĥ|Ψn⟩ = En|Ψn⟩,

and the general solution of the time-dependent problem is

|Ψ(t)⟩ =
∑
n

cn|Ψn⟩e− i
ℏ Ent with cn = ⟨Ψn|Ψ(t = 0)⟩ .

A time-dependent Hamiltonian Ĥ(t) has at every instance of time eigenfunctions and eigenvalues

Ĥ(t)|Ψn(t)⟩ = En(t)|Ψn(t)⟩ (*)

with ∑n |Ψn(t)⟩⟨Ψn(t)| = 1 and ⟨Ψn(t)|Ψn(t)⟩ = δnm. Note that the |Ψn(t)⟩ are not solutions
of the time-dependent Schrödinger equation in general.
Ansatz:

|Ψ(t)⟩ =
∑
n

cn(t)|Ψn(t)⟩eiθn(t) with θn(t) = −1
ℏ

t∫
0

En(t′)dt′

to determine cn(t). Substitution into the Schrödinger equation iℏ∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ yields∑
n

cnĤ|Ψn(t)⟩eiθn(t) = iℏ
∑
n

[
ċn|Ψn⟩ + cn ˙|Ψn⟩ + i cn|Ψn⟩θ̇n

]
eiθn(t)

with ˙|Ψn⟩ = ∂t|Ψn(t)⟩ and θ̇n = −En/ℏ and Ĥ|Ψn(t)⟩ = En(t)|Ψn(t)⟩ due to (∗). We are left
with ∑

n

ċn|Ψn(t)⟩eiθn = −
∑
n

cn ˙|Ψn(t)⟩eiθn .

We multiply by ⟨Ψm(t)| from the left

ċm = −
∑
n

cn⟨Ψm(t)|Ψ̇n(t)⟩ ei (θn−θm) . (**)

We now compute the time derivative of (*) as(
∂tĤ(t)

)
|Ψn(t)⟩ + Ĥ ˙|Ψn(t)⟩ = Ėn(t) + En ˙|Ψn(t)⟩ .
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We again multiply from the left with ⟨Ψm(t)|, assuming m ̸= n, and obtain

⟨Ψm(t)|(∂tĤ)|Ψn(t)⟩ + Em⟨Ψm(t)| ˙Ψn(t)⟩ = Ėn(t) ⟨Ψm|Ψn⟩︸ ︷︷ ︸
=0

+En⟨Ψm(t)| ˙Ψn(t)⟩

⟨Ψm(t)| ˙Ψn(t)⟩ = ⟨Ψm(t)|(∂tĤ(t))|Ψn(t)⟩
En(t) − Em(t)

Inserting this into (**) gives (we have to consider m = n in the sum separately) the exact result

ċm = −cm⟨Ψm(t)| ˙Ψm(t)⟩ −
∑
n̸=m

cn
⟨Ψm(t)|(∂tĤ)|Ψn(t)⟩

En(t) − Em(t) ei (θn−θm) .

In the adiabatic approximation, we assume that the time derivative of the Hamiltonian ∂tĤ
is extremely small, and the sum will not contribute (small means that the matrix element
⟨Ψm(t)|(∂tĤ)|Ψn(t)⟩ ≪ En − Em which depends on the spacing of the energy levels). Then,

ċm(t) = −cm(t)⟨Ψm(t)| ˙Ψm(t)⟩

which can be solved yielding

cm(t) = cm(0) e−
∫ t

0 dt′ ⟨Ψm(t′)| ˙Ψm(t′)⟩ ≡ cm(0) eiγm(t) .

In the last step, the geometric phase

γm(t) = i
t∫

0

dt′ ⟨Ψm(t′)| ˙Ψm(t′)⟩

was defined.

Remarks:
In the adiabatic approximation, the system is always in an instantaneous eigenstate. (|Ψ(m)(t)⟩
is an eigenstate of the time dependent Schrödinger equation, cm(0) = 1 and cn̸=m(0) = 0 and
|Ψm(t)⟩ is instantaneous eigenstate)

|Ψ(m)(t)⟩ = |Ψm(t)⟩eiγm(t) eiθm(t) and |Ψ(m)(0)⟩ = |Ψm⟩ ,

where Ĥ(t)|Ψm(t)⟩ = Em(t)|Ψm(t)⟩. The phase convention for |Ψm(t)⟩ is chosen in the ansatz
|Ψ(t)⟩ = ∑

n cn(t)|Ψn(t)⟩e− i
ℏ

∫ t

0 dt′ En(t′) so that the |Ψn(t)⟩ evolve explicitly in time. This is
contained in the eiγm(t) phase at the end.

γm(t) is real, since ⟨Ψm|Ψ̇m⟩ is imaginary which can be shown by taking the time-derivative of
1 = ⟨Ψm(t)|Ψm(t)⟩

⇒ 0 = ⟨Ψ̇m|Ψm⟩ + ⟨Ψm|Ψ̇m⟩ = ⟨Ψm|Ψ̇m⟩ + ⟨Ψm|Ψ̇m⟩∗ = 2Re⟨Ψm|Ψ̇m⟩ .
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5.3 Berry Phase
We now consider the example of a spin with magnitude S in a time-dependent magnetic field
B(t). The spin has a magnetic momentum gµB

ℏ Ŝ, and Ĥ(B) = −gµBB(t) · Ŝ/ℏ, with energy
eigenvalues Em = −gµBBm, and −S ≤ m ≤ S using a quantization axis parallel to the B field.
Under adiabatic changes of the magnetic field direction, the spin keeps its quantum number
m, but the quantization axis rotates with the magnetic field. We denote the spin-quantization
direction by n (with B = nB), and instantaneous eigenstates by |m(t)⟩ (but the quantum
number m does not depend on time, better would be |m,n(t)⟩ ≡ |m(t)⟩) with Ŝz′ (z′ axis is
parallel to n) ⇒ Ŝz′ |m(t)⟩ = mℏ|m(t)⟩. We move the direction of B along a closed loop C, and
compute γm.

γm(C) = i
T∫

0

⟨m(t)| (∂t|m(B(t))⟩) dt = i
T∫

0

⟨m(t)|∇B|m(B(t))⟩dB
dt dt

⇒ γm(C) = i
∮

C
⟨m|∇Bm(B)⟩ dB

where |∇Bm(B)⟩ ≡ ∇B|m(B)⟩. Hence, γm(C) depends only on the geometry.
We use Stokes theorem to write this as a surface integral

γm(C) = −
∫∫

S(C)
V m(B) · dS

with V m(B) = Im (∇B × ⟨m(B)|∇Bm(B)⟩) where we used that the matrix element is fully
imaginary. We use ∇ × [f(x)∇g] = (∇f) × (∇g) to write

V m(B) = Im (⟨∇Bm(B)| × |∇Bm(B)⟩) = Im
∑
m ̸=m′

⟨∇Bm(B)|m′(B)⟩ × ⟨m′(B)|∇Bm(B)⟩ .

Here we used that ⟨m|∇Bm⟩ is purely imaginary so that the product will not contribute taking
the imaginary part. We now compute ⟨m′|∇Bm⟩ by taking the gradient of the eigenvalue
equation

Ĥ(B)|m(B)⟩ = Em|m(B)⟩
⇒ (∇BĤ)|m(B)⟩ + Ĥ|∇Bm(B)⟩ = (∇BEm)|m(B)⟩ + Em|∇Bm(B)⟩

Multiply from the left with ⟨m′(B)|, m ̸= m′

⇒ ⟨m′(B)|∇Bm(B)⟩ = ⟨m′(B)|∇BĤ|m(B)⟩
Em − Em′

.

Using ∇BĤ = −gµBŜ/ℏ with ∇x(x · a) = a yields

V m(B) = Im
∑
m′ ̸=m

⟨m(B)|Ŝ/ℏ|m′(B)⟩ × ⟨m′(B)|Ŝ/ℏ|m(B)⟩
B2(m′ −m)2 .

We now use the direction of the magnetic field as instantaneous z-axis ("z′-axis") for spin
quantization. Then, Ŝz′ does not contribute to the sum, as it leaves mz′ unchanged, due to

78



Ŝz′ |m(B)⟩ = mz′ℏ|m(B)⟩.
Only Ŝx′ and Ŝy′ give rise to contributions for m′ = m± 1. We now use the matrix elements

⟨S,m± 1|Ŝx′/ℏ|S,m⟩ = 1
2

√
(S ∓m)(S ±m+ 1)

⟨S,m± 1|Ŝy′/ℏ|S,m⟩ = ∓i
2

√
(S ∓m)(S ±m+ 1)

In this way, we obtain for the components of V m

(V m(B))x′ = 0 , (V m(B))y′ = 0 and (V m(B))z′ = m

B2 .

The x′ and y′ component are easy, because they are ∼ Ŝz′ in the cross product.
We check the z′ component for the case S = 1

2 , m = 1
2 , m

′ = −1
2

⟨1/2,m− 1|Ŝy′/ℏ|1/2,m⟩ = i
2

√
(1/2 + 1/2) · (1/2 − 1/2 + 1) = i

2
⟨1/2,m|Ŝx′/ℏ|1/2,m− 1⟩ = 1

2

√
(1/2 + 1/2) · (1/2 − 1/2 + 1) = 1

2 .

There are two contributions Ŝx′ × Ŝy′ and Ŝy′ × Ŝx′ . ⇒ in total one finds Im(2 · 1/2 · i/2) =
1/2 = m = m/B2.
We now established that

γm(C) = −m
∫∫

S(C)

B̂

B2 · dB = −m
∫

C
dΩ = −mΩ(C)

where Ω(C) denotes the solid angle which is enclosed by the trajectory C.
Mathematically, it is important that there exists a degenerate point of the Hamiltonian at the
origin of the coordinate system.

In the problem sets we show that the Aharonov–Bohm phase can be understood as a Berry
phase with γm = 2πΦB

Φ0
, where Φ0 = h/e is the flux quantum.
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6 Topological Phases and Anions

6.1 Introduction
Consider a regular lattice with N sites in one spatial dimensions, and wave functions ψj defined
on the sites. The Fourier-representation of the wave functions is given by

ψj = 1
N

∑
kn

ei jknψ(kn) .

We use periodic boundary conditions ψ1 = ψN+1 ⇒ ei (N+1)kn = eikn which is satisfied for
eiNkn = 1

⇒ Nkn = 2πn ⇒ kn = 2πn
N

.

.

1

1

2

2

N-1

N-1

N

N

j

Figure 6.1: Visualization of the periodic boundary conditions, in the one dimensional case, as lattice
points lying on a circle

For N lattice sites we thus have N different values of kn, and we choose N even:

n = −N

2 , −N − 2
2 , ...,

N − 4
2 ,

N − 2
2 and kn = −π, −N − 2

N
π, ...,

N − 4
N

π,
N − 2
N

π .

In the limit of infinite lattice sites N → ∞ we have kn ∈ [−π, π). Changing kn 7→ kn + 2π does
not change ei jkn . ⇒ We identify k = −π with k = π and the Brillouin zone is a circle.

.

0

0

k
-π

-π

π

Figure 6.2: Brillouin zone for the infinite lattice with periodic boundary conditions
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For infinite lattices, the Fourier sum turns into a Fourier integral ψj =
π∫

−π
dk
2π ei jkψ(k).

For a two-dimensional lattice, we use periodic boundary conditions in both x- and y-direction.
.

y

y

x

x

Figure 6.3: Visualization of the periodic boundary conditions in the two dimensional case as lattice
points lying on a torus

There are now two momentum components kx and ky in a Fourier transform, defined modulo
2π, in the range kx = [−π, π), ky = [−π, π), which can be visualized as lying on a torus as well.

6.2 SSH Model
We consider a one dimensional lattice with A and B sub-lattices.

.
A sub-lattice

unit cell

j

-t -t-s -t -t -t

j-1 j+1 j+2 j+3

B sub-lattice

-s -s -s

Figure 6.4: SSH Model with unit cell for translational invariance and hopping matrix elements

Now a wave function has two components Ψj = (ψj,A, ψj,B). The action of the Hamiltonian is
given by

Ĥ

(
ψj,A
ψj,B

)
=
(

−tψj,B − sψj−1,B
−tψj,A − sψj+1,A

)
.

We know from Bloch’s theorem that the wave function has the form

Ψk,j = eikj
(
uA(k)
uB(k)

)
.
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(We previously discussed the Bloch theorem ψ(r) = eikruk(r) with a lattice periodic function u.
Here we have two possible values in the unit cell as a two component vector.) This yields

ĤΨk,j = Ĥ

(
eikjuA(k)
eikjuB(k)

)
=
(

−teikjuB(k) − seik(j−1)uB(k)
−teikjuA(k) − seik(j+1)uA(k)

)

=
(

0 −t− se−ik

−t− seik 0

)
eikj

(
uA(k)
uB(k)

)
≡
(

0 −γ(k)
−γ∗(k) 0

)
Ψk,j .

Dividing the eigenvalue equation ĤΨk,j = EkΨk,j by eikj leaves us with(
0 −t− se−ik

−t− seik 0

)
︸ ︷︷ ︸

Bloch Hamiltonian

(
uA(k)
uB(k)

)
︸ ︷︷ ︸

Bloch wave fnc.

= Ek

(
uA(k)
uB(k)

)
.

For each wave vector k from the Brillouin zone, we define a two-dimensional Hilbert space
of complex two-component vectors u(k), and a Hermitian 2 × 2 Hamiltonian Ĥ(k), and the
eigenvalue problem Ĥ(k)u(k) = Eku(k).
Clearly, Ek = ±|t+ seik|. We now define the curce γ(k) = t+ se−ik : [−π, π) 7→ C with

Ĥ(k) =
(

0 −γ(k)
γ(k) 0

)
.

.

t

s

s<t
Im(γ)

Re(γ)
t

s

s>t
Im(γ)

Re(γ)

Figure 6.5: For s > t the curve γ(k) encloses the the origin, for s < t it does not.

The two curves have different winding numbers

W ≡ 1
2πi

∮
γ

dz
z

=
{

−1 , s > t

0 , s < t
.

W is undefined for the case s = t, which also corresponds to an eigenvalue 0 for Ek = |γk| at
k = ±π.

82



.

∆

band gap

k
  -π

s = t s ≠ t

    π 

E(k)E(k)

k

00

  -π     π 

Figure 6.6: Dispersion for the different cases

A Hamiltonian is called gapped if there is a finite interval of energies which does not contain
eigenvalues of Ĥ.
Claim: If a chain is finite there exists a zero energy state localized at each end of the chain
(bound state with exponentially decaying wave function; zero energy up to e−N corrections) for
the case s > t, W = −1.

.
A sub-lattice

-s

s>0, t=0

B sub-lattice

-s -s -s -s

Figure 6.7: Zero energy state at the end of finite chains with s > t, t = 0

Example: In the case s > 0, t = 0, Ĥ has two eigenvalues E = 0, N−2
2 eigenvalues E = s, and

N−2
2 eigenvalues E = −s.

.

k

-s

  s

0

E(k)

two states

Figure 6.8: Special case of finite chain with s > 0, t = 0

83



Every Ĥ =
(

0 −γ(k)
−γ∗(k) 0

)
anti-commutes with C =

(
1 0
0 −1

)
= σ2 since

Ĥ = −Re[γ]σx + Im[γ]σy where σx =
(

0 1
1 0

)
and σy =

(
0 −i
i 0

)

with {σx/y , σz} = 0 ⇒ {Ĥ , C} = 0.
The reversed statement is true as well: Every Hamiltonian satisfying {Ĥ , C} = 0 has the form(

0 −γ(k)
−γ∗(k) 0

)
(since (σx, σy, σz) is a maximum set of anti-commuting, Hermitian 2 × 2

matrices) and can be characterized by its winding number.

6.3 Chern Numbers and TKNN Invariant
Consider spinless (spin-polarized) electrons on a two dimensional square lattice.

.
magnetic unit cell

F0
A0

B

Ey

jx

Figure 6.9: Two dimensional square lattice

In the presence of an external magnetic field perpendicular to the plane of the lattice the small-
est possible unit cell encloses a flux quantum Φ = Φ0 = A0B = h/e.
Consider a Hamiltonian Ĥ and a N -component wave function Ψk (where N is the number of
lattice points in the unit cell) which satisfies the Schrödinger equation

Ĥ(k)Ψk = EkΨk with Ψk =

ψk,1...
ψk,N

 .

Application of the time-reversal Operator yields T̂ ĤT̂−1 = Ĥ∗(−k) ̸= Ĥ(k).
Claim: If all bands are either completely filled or completely empty, the conductivity is given
by

σxy = e2

ℏ
C with C ∈ Z .
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.
E

µ=0 kx

many eigenstates

di�er by ky

gaps between 

bands

!lled

empty

n=1

n=2

n=3

n=4

n=5

Figure 6.10: Band structure, only completely full and completely empty bands with gaps between
each oter

Using the Bloch theorem Ψk(l) = eik · luk one can write C as

C =
∑
n

∫
BZ

d2k

2π
[(
∂kxu

(n)∗
j (k)

) (
∂kyu

(n)
j (k)

)
−
(
∂kyu

(n)∗
j (k)

) (
∂kxu

(n)
j (k)

)]
.

Our aim is to show that C is an integer. Thouless, Kohmoto, Nightingale, Nijis (TKNN) were
able to show this in 1982.
We will start from jx = σxyEy where σxy is the conductivity, Ey is the electric field pointing in
y-direction, and jx is the current in x-direction.

6.3.1 Theory of Linear Response
We consider an unperturbed Hamiltonian Ĥ and eigenkets |ψS(t)⟩ which satisfies the Schrödinger
equation

iℏ∂t|ψS(t)⟩ = Ĥ|ψS(t)⟩ .
At t = t0 a time-dependent external perturbation Ĥex is switched on. The new eigenstates
|ψS(t)⟩ are solutions to the new Schrödinger equation

iℏ∂t|ψS(t)⟩ =
[
Ĥ + Ĥex

]
|ψS(t)⟩ .

In the interaction picture time-dependence due to Ĥex is in the wave function, and time depen-
dence due to Ĥ in operators

|ψS(t)⟩ = e− i
ℏ Ĥ t ÛI(t, t0)|ψS(t0)⟩︸ ︷︷ ︸

|ψI(t)⟩

(*)

⇔ |ψI(t)⟩ = e
i
ℏ Ĥ t|ψS(t)⟩

where the time evolution operator is

ÛI(t, t0) = T̂ exp

− i
ℏ

t∫
t0

Ĥex,I(t′) dt′
 .

Ĥex,I(t) = e
i
ℏ Ĥ tĤex(t)e− i

ℏ Ĥ t

85



Expending (*) to lowest order yields

|ψS(t)⟩ = e− i
ℏ Ĥ t

1− i
ℏ

t∫
t0

dt′ Ĥex,I(t′)

 |ψS(t0)⟩ .

The expectation value of an operator B̂S is given by

⟨B̂⟩(t) = ⟨ψS(t)|B̂S |ψS(t)⟩

= ⟨ψS(t0)|

1− 1
iℏ

t∫
t0

dt′ Ĥex,I(t′)

 e
i
ℏ Ĥ tB̂e− i

ℏ Ĥ t︸ ︷︷ ︸
B̂I(t)

1+ 1
iℏ

t∫
t0

dt′ Ĥex,I(t′)

 |ψS(t0)⟩ + O(H2
ex)

= ⟨ψS(t0)|B̂|ψS(t0)⟩ − 1
iℏ

t∫
t0

dt′ ⟨ψS(t0)|[Ĥex,I(t′) , B̂I(t)]|ψS(t0)⟩

Taking t0 → −∞ and denoting the initial unperturbed state as |ψ0⟩ yields

δ⟨B̂⟩(t) = 1
ℏ

∞∫
−∞

dt′ −iθ(t− t′)⟨ψ0|[B̂I(t) , Ĥex,I(t′)]|ψ0⟩︸ ︷︷ ︸
retarded Green function

.

6.3.2 Conductivity Calculation
We want to calculate the current. We have

Ĥ = 1
2m(p̂− qÂ)2

ĵ = ∂Ĥ

∂Â
= −q

p̂

m
= −qv̂

Ĥex = −q
p̂

m
· Â = −qv̂ · Â

and

E = −∂tA(t), A = A0e−iωt, E = iωA0e−iωt, E = E0e−iωt, A(t) = E0
iω e−iωt, A0 = E0

iω .

Hence, jx = −qvx and Ĥex = −qEyiω e−iωtv̂y.
With the "volume" of the rectangular system Ω = LxLy, we find

⟨jx(0)⟩ = − i
ℏ

1
Ω
∑
α

f(Eα)
0∫

−∞

dt′ ⟨α|[−qv̂x(0) , −qEye
−iωt′

iω v̂y(t′)]|α⟩

where α = (k, n), f(Eα) is the Fermi-distribution, and the sum runs over all eigenstates
Ĥ|α⟩ = Eα|α⟩. We introduce a regularization η which is needed for convergence, and take
η → 0 after performing the sum:

⟨jx(0)⟩ = ie2

ℏ
∑
α

f(Eα)
0∫

−∞

dt′ Eye
−iωt′+ηt′

i (ω + iη) ⟨α|[v̂y(t′) , v̂x(0)]|α⟩

86



We insert 1 = ∑
β |β⟩⟨β| and use v̂y(t′) = e i

ℏ Ĥt
′
v̂y(0)e− i

ℏ Ĥt
′ . We denote Eα = ωαℏ. The

integrand is given by

et′(−iω+η)e t
ℏ (iEα−iEβ)

i (ω + iη) (⟨α|v̂y|β⟩⟨β|v̂x|α⟩ − ⟨α|v̂x|β⟩⟨β|v̂y|α⟩)

The time integration yields a factor 1
−iω+η+i (Eα−Eβ)/ℏ . We thus find

σxy = e2

i (ω + iη)
1
Ω
∑
α,β

f(Eα)
[

⟨α|v̂y|β⟩⟨β|v̂x|α⟩
−ℏω − iη + Eα − Eβ

− ⟨α|v̂x|β⟩⟨β|v̂y|α⟩
−ℏω − iη + Eβ − Eα

]
.

We use the expansion

1
±ℏω + Eα − Eβ

= 1
Eα − Eβ

(
1 ∓ ℏω

Eα − Eβ

)
+ O(ω2) .

Let the first-order term be denoted by σ1 and the second-order term by σ2.

σ1 = e2

i (ω + iη)
∑
α,β

f(Eα) ⟨α|v̂x|β⟩⟨β|v̂y|α⟩ − ⟨α|v̂y|β⟩⟨β|v̂x|α⟩
Eα − Eβ

We use v̂x = d
dx x̂ = i

ℏ [Ĥ0 , x̂] to obtain

⟨α|v̂x|β⟩ = i
ℏ

⟨α|Ĥ0x̂− x̂Ĥ0|β⟩ = i
ℏ

(Eα − Eβ)⟨α|x̂|β⟩

⇒ ⟨α|v̂x|β⟩⟨β|v̂y|α⟩ + ⟨α|v̂y|β⟩⟨β|v̂x|α⟩ = (Eα − Eβ) [⟨α|x̂|β⟩⟨β|v̂y|α⟩ − ⟨α|v̂y|β⟩⟨β|x̂|α⟩] .

Since factors Eα − Eβ cancel each other in numerator and denominator, we use ∑β |β⟩⟨β| = 1

and obtain

σ1 = e2

i (ω + iη)
∑
α

f(Eα) ⟨α| x̂v̂y − v̂yx̂︸ ︷︷ ︸
[x̂ , v̂y ]=0

|β⟩ = 0 .

The second order term is

σ2 = e2ℏ
i
∑
α,β

f(Eα)−⟨α|v̂x|β⟩⟨β|v̂y|α⟩ + ⟨α|v̂y|β⟩⟨β|v̂x|α⟩
(Eα − Eβ)2 .

This is the starting point in D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs
[Phys. Rev. Lett. 49, 405 (1982)].

v = ∇kĤ(k)1
ℏ from vg = ∇kω(k) = 1

ℏ ∇kE(k). The sums contain
∫ d2k

(2π)2 =̂ ∑
α, and

⟨α|(∂kxĤ)|β⟩ =
∑
j,l

(u∗
α,j)(∂kyĤjl(k))uβl .
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With integration by parts we have

⟨α|(∂kxĤ)|β⟩ = −
∑
j,l

Ĥjl[(∂kxu
∗
αj)uβl + u∗

αj(∂kyuβl)]

= −
∑
j

[
(∂kxu

∗
αj)Eβuβj + Eαu

∗
αj(∂kxuβj)

]
.

Use again integration by parts to get the derivative in the second term acting on u∗
αj

⟨α|(∂kxĤ)|β⟩ = (Eα − Eβ)
∑
j

(∂kxu
∗
αj)uβj = (Eβ − Eα)

∑
j

u∗
αj(∂kxuβj) .

We do the same for action of ∂kx on bra and ket using integration by parts, and let only act
derivatives on |α⟩, and ⟨α| respectively. This yields (α = (n, k)):

σxy = ie2

ℏ
∑

n,En<0

∫ d2k

(2π)2

[
(∂kxu

∗
αj)(∂kyuαj) − (∂kyu

∗
αj)(∂kxuαj)

]
.

Rewrite this expression in terms of a Berry connection and Berry flux:
Berry connection:

Ãx = i ⟨n, k|∂kx |n, k⟩

Berry flux:

Fxy = ∂Ãx
∂kx

− ∂Ãx
∂ky

= i (∂kx⟨n, k|)(∂ky |n, k⟩) − (∂ky ⟨n, k|)(∂kx |n, k⟩)

⇒ σxy = e2

2πℏ
∑

n,En<0

1
2π

∫
d2k Fxy .

We focus on the contribution of a single occupied band in the following.
Stokes theorem states that the integral of Fxy over the Brillouin zone is equal to the line integral
of Ã along the border of the BZ:

1
2π

∫
d2kFxy = 1

2π

∮
dk Ã(k) .

.

kx

(0,0)

(0,2π) (2π,2π)

(2π,0)

ky

Figure 6.11: Border of the BZ for line integration

• Complex ψ(k) is periodic, ψ(k) = eiφψ0(k)
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• eiφ∂lψl(k) ⇒ Ã(k) is not periodic in general.

We have reciprocal lattice vectors Gx = (2π, 0) and Gy = (0, 2π), and

ψk,j(l) = eik · luk,j

ψk+G,j(l) = eiϕk,Gψk,j(l)

}
uk+G j = e−iG · leiϕk,Gukj ,

where we used ψk+G,j = eiG · leik · luk+G j .
For the integral over the contour, we thus find

∮
dk · Ã =

Gx∫
0

[
Ãx(kx, 0) − Ãx(kx, Gy)

]
dkx +

Gy∫
0

[
Ãy(Gx, ky) −Ay(0, ky)

]
dky

=
Gx∫
0

(∂kxϕkx,Gy )dkx −
Gy∫
0

(∂kyϕky ,Gx)dky

= ϕGx,Gy − ϕ0,Gy − ϕGy ,Gx + ϕ0,Gy ≡ −2πC .

However, by using ψk+G,j = eiϕk,Gψk,j , we see that the wave functions at the corners of the BZ
are related in the following way

ψGx+Gy = eiϕGx,GyψGx = eiϕGx,Gy eiϕ0,Gxψ0

ψGx+Gy = eiϕGy,GxψGy = eiϕGy,Gx eiϕ0,Gyψ0

⇒ 2πn = ϕGx,Gy + ϕ0,Gx − ϕ0,Gy − ϕGy ,Gx with n ∈ Z

⇒ C ∈ Z ⇒ σxy = e2

2πℏ C .

Since C is an integer, it cannot change continuously and it will not change at all if we make
a small change in the Hamiltonian or its associated wave functions. C can only change when
there is a degeneracy between bands. In this case, the Berry curvature becomes singular at the
degeneracy point, and the integral over the Brillouin zone changes continuously.
C is called Chern number, it is a Z topological invariant.

6.4 Kitaev Toric Code and Anyons
We consider interacting quantum spins on a two dimensional lattice with periodic boundary
conditions ("on a torus"). σxi , σ

y
i are spin 1

2 at each lattice site i ⇒ 2D complex Hilbert space.
.

(n,l)

spin variables

Figure 6.12: Spins are associated with links between lattice sites
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Two links, a horizontal and a vertical one, are associated with each lattice site. The total Hilbert
space is a direct product of the individual site spin-states. Spins are localized at specific lat-
tice sites and are hence distinguishable. ⇒ Spins at different links commute with each other.
⇒ [σαi , σ

β
j ] = 0 if i ̸= j, and {σαi , σ

β
i } = 2δα,β, where α, β ∈ {x, y, z}.

We understand for i ̸= j : σαi σαj = σαi ⊗ σαj . In addition we have

[σαi σαj , σ
β
i σ

β
j ] = 0 ∀i, j . (*)

.

s

p

Figure 6.13: Points s lie on the lattice and the associated links are the connections to the four
neighbors (star s), points p lie on the dual lattice and associated links lie around p
(bound p)

We consider a Hamiltonian

Ĥ = −
∑
s

As −
∑
p

Bp with As =
∏

j∈star(s)
σxj and Bp =

∏
j∈bound(p)

σzj .

Possible eigenvalues of As and Bp are ±1.∏
s

As =
∏
p

Bp = +1 (**)

for periodic boundary conditions (each link belongs to exactly two stars in this case. ⇒ Prod-
ucts are one since (σxj )2 = (σzj )2 = 1). Each spin (link) occurs twice in the product. In
addition we know, [As , As′ ] = 0 = [Bp , Bp′ ] ∀s, s′; p, p′. Consider the commutator between As
and Bp : [As , Bp] = 0 ∀s, p as the As and Bp have either zero or two common links, and thus
commute with each other due to (*). ⇒ The As and Bp commute with Ĥ and can be diagonal-
ized simultaneously with Ĥ (are good quantum numbers).
The ground state is characterized by As = 1 = Bp (smallest energy in Ĥ) with E0 = −2N2.
Due to (**), any excited state must have at least two As or two Bp reversed. ⇒ Emin = 4 is the
minimum excitation energy.

Surprisingly, the ground state is four-fold degenerate. Due to the constraint (**) only N2 − 1
of the As and N2 − 1 of the Bp are independent variables. ⇒ Two degrees of freedom are left.
⇒ 2 · 2 = 4-fold degeneracy. This is a heuristic argument, and looking at Ĥ there is no freedom
in choosing As and Bp for the ground state. We will provide a better argument in the following.

To understand the nature of the ground state degeneracy, we work in the σz-basis and associate
with σzj = 1 (−1) the quantity zj = 0 (1).
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.

p

z1

z2

z3

z4

Figure 6.14: Labeling of the links around a dual lattice point

Then the ground state constraint Bp = 1 is equivalent to

φp ≡ mod2
∑

j∈bound(C(p))
zj = 0 .

.

p

z1

z2

z3

z4 p

z5

z6

z7 ‚

z8

z1

z3

z4

z5

z6

z7 ‚‚

Figure 6.15: Two neighboring patches can be combined since the z of the shared links appear twice
and mod22 = 0 = mod20

We combine two neighboring parquets and consider

φC′′ = mod2
∑
j∈C′′

zj = mod2(z1 + z2 + z3 + z5 + z6 + z7)

= mod2(z1 + z2 + z3 + z4) + mod2(z5 + z6 + z7 + z8)
= φp + φp′ = 0 in the ground state

⇒ φC = 0 for any closed path C.
.

e
d

g
e

 1

edge 2

edge 3

e
d

g
e

 4

Figure 6.16: We iterate the combining procedure

Iterating the procedure, we are led to consider φtot corresponding to the whole array and have
in the ground state

φtot ≡ mod2
∑
j∈Ctot

zj = 0 .

Due to periodic boundary conditions we have edge 1 =edge 4 and edge 2 =edge 3 . ⇒ Each edge
occurs twice in the sum. This leaves the possibility that the sum along one edge characterizes
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the ground state.

v1 ≡ mod2
∑

j∈edge 1
zj =

{
0
1

, v2 ≡ mod2
∑

j∈edge 2
zj =

{
0
1

.

We define "string operators" of the type
ZC ≡

∏
j∈C

σzj and XC′ ≡
∏
j∈C′

σxj .

.
labeling non-contractable loops    contractable loops

Figure 6.17: We consider paths C on the lattice where the associated links are along the path, and
paths C′ on the dual lattice where the associated links are the ones crossed by the path

According to the above, a contactable Z-loop yields∏
p inside C

Bp =̂1

(here defined p are inside the loop and we can contract as before). There are two independent
uncontractable Z-loops and X-loops: Z1 and Z2 encircling the torus in horizontal and vertical
directions, respectively. The same holds for X1 and X2.
C1/2 and C′

1/2 go in the same direction and share an even number of links (commute) whereas,
C1/2 and C′

2/1 go in orthogonal directions and share an odd number of links (anti-commute).

[X1 , Z1] = 0 , [X2 , Z2] = 0
{X1 , Z2} = 0 , {X2 , Z1} = 0

⇒ We can make correspondence Z1 → σz1 , Z2 → σz2 , X1 → σx2 , X2 → σx1 , such that the Zi and
Xi form Pauli matrices in a 2-qubit (4 dimensional) ground state manifold.
These operators are non-local, and cannot be perturbed by local perturbations.

Elementary excitations: Consider string operators associated with open contours t, t′.
Sz(t) ≡

∏
j∈t

σzj , Sx(t′) ≡
∏
j∈t′

σxj .

.

t

t‘

Figure 6.18: Open paths on the lattice and dual lattice, respectively
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The operator Sz(t) commutes with all the As, except for the end-point sites, where the sign of
the As gets inverted. Similarly, Sx(t′) commutes with all the Bp except the end ones, which get
inverted.

.

t

t‘

Figure 6.19: We move one end-point around another by extending the path with a closed loop C
which adds 1 shared link.

We now consider moving an X-quasi-particle (end of a X-string) around a Z-quasi-particle (end
of a Z string). This will result in a single link shared by the two strings ⇒ {Sx(C) , Sz(t)} = 0.
Initial state:

|ψi⟩ = Sz(t)Sx(t′)|0⟩ ≡ Sz(t)|ψt′⟩

Final state:

|ψf ⟩ = Sx(C)Sz(t)Sx(t′)|0⟩
= −Sz(t)Sx(t′)Sx(C)|0⟩
= −Sz(t)Sx(t′)|0⟩ = −|ψi⟩

Since a closed loop applied to the vacuum is the identity applied to the vacuum, Sx(C)|0⟩ = |0⟩.
As the X-loop gives rise to sign change −1 = eiπ, a particle exchange, which is a half loop,
and a translation (translational invariant system), gives rise to eiπ/2 = i . ⇒ Anyonic statistics,
neither fermion (-1) nor boson (1). This particular type of anyonic statistics with phase i is called
semionic. Such a state as considered is called a topological phase of matter. It is characterized
by a energy gap, a ground state degeneracy on the torus, and fractional quasi-particles.
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