Prof. Dr. B. Rosenow
M. Thamm

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 8

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 07.12.2023, 15:15. The problem set will be discussed in the tutorials on Monday 11.12.2023 and Wednesday 13.12.2023.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746

*1. Chiral Symmetry

$$
1+1+2+1+2+3 \text { Points }
$$

Define the fifth γ-matrix as $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and consider the Dirac Hamiltonian

$$
H_{D}=\boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta m
$$

with

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
\beta & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right) .
\end{aligned}
$$

(a) Show that $\left\{\gamma^{\mu} \partial_{\mu}, \gamma^{5}\right\}=0$. The first term in the anti-commutator is known as the Dirac operator. Since the Dirac Hamiltonian can be constructed using $\gamma^{0} \gamma^{i}=\alpha^{i}$ and $\gamma^{0}=\beta$, the Hamiltonian anti-commutes with the operator $i \gamma^{1} \gamma^{2} \gamma^{3}$.
(b) Show that $\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4}$.
(c) Using that $\sigma^{l} \sigma^{m}=i \varepsilon_{l m k} \sigma^{k}+\delta_{l m} \mathbb{1}_{2}$ show that $\gamma^{l} \gamma^{m}=-i \varepsilon_{l m k} \Sigma^{k}-\delta_{l m} \mathbb{1}_{4}$ for $l, m=1,2,3$ and explicitly compute $\gamma^{1} \gamma^{3}$. Here $\Sigma^{k}=\left(\begin{array}{cc}\sigma^{k} & 0 \\ 0 & \sigma^{k}\end{array}\right)$.
(d) Consider now an operator \hat{C} with the property that $\hat{C}^{2}=\mathbb{1}$ and $\{\hat{H}, \hat{C}\}=0$. Show that if $\left|E_{n}\right\rangle$ is an eigenstate of the Hamiltonian H with eigenvalue E_{n}, then $\left|-E_{n}\right\rangle=C\left|E_{n}\right\rangle$ is also an eigenstate of the Hamiltonian with eigenvalue $-E_{n}$.
(e) Consider now a two-level system with energy eigenvalues $\pm E_{n}$. Write down the matrix representations of \hat{C} and \hat{H}, and show that H is anti-diagonal in the basis where C is diagonal.
(f) Generalize your result in (e) to N non-degenerate levels. That is show that it is possible to diagonalize C in such a way that H becomes anti-diagonal. What happens qualitatively when there are degenerate eigenstates?

Hint: Diagonalize C (you know its eigenvalues). You can construct H using your result in (e). Write down a suitable basis. Think about how to rearrange the rows and columns of your matrices such that the diagonal elements in C are sorted with the positive eigenvalues coming before the negative eigenvalues.

2. Klein Tunneling in graphene

$1+3+6$ Points

Figure 1: Left: Schematic drawing of a Dirac electron incident on a potential barrier. Right: Definition of the angles used in the problem. Assume that the sample is infinite in the y direction.

Consider a Dirac electron with energy E incident on a potential barrier of size V as shown in the figure.
(a) Why is it sufficient to only require continuity of the wave-function and not its derivative?
(b) Assume the electron is incident at some angle ϕ in regions I and III and θ in region II, such that $k_{x}=k \cos \phi, k_{y}=k \sin \phi$ in regions I and III, while $\theta=\arctan \left(k_{y} / q_{x}\right)$ with $q_{x}=\sqrt{(V-E)^{2} / v^{2}-k_{y}^{2}}$ and $v=|\boldsymbol{k}| / m$ in region II. Explain why the wave-functions in the different regions can be written as

$$
\begin{aligned}
\psi_{\mathrm{I}}(x) & =\frac{1}{\sqrt{2}}\binom{1}{s e^{i \phi}} e^{i\left(k_{x} x+k_{y} y\right)}+\frac{r}{\sqrt{2}}\binom{1}{s e^{i(\pi-\phi)}} e^{i\left(k_{y} y-k_{x} x\right)} \\
\psi_{\mathrm{II}}(x) & =\frac{a}{\sqrt{2}}\binom{1}{s^{\prime}} e^{i\left(q_{x} x+k_{y} y\right)}+\frac{b}{\sqrt{2}}\binom{1}{s^{\prime} e^{i(\pi-\theta)}} e^{i\left(k_{y} y-q_{x} x\right)} \\
\psi_{\mathrm{III}}(x) & =\frac{t}{\sqrt{2}}\binom{1}{s e^{i \phi}} e^{i\left(k_{x} x+k_{y} y\right)}
\end{aligned}
$$

Here $s=\operatorname{sgn}(E)$ and $s^{\prime}=\operatorname{sgn}(E-V)$. What is the physical significance of r, a, b, and t ?
(c) Use the continuity of the wave-function to calculate the transmission through the barrier $T\left(\theta, \phi, D q_{x}\right)=|t|^{2}$. What do you get for $D q_{x}=n \pi$ with n integer? For general values of $D q_{x}$, investigate what happens when $\phi, \theta \rightarrow 0$.

Hint: You might want to use a computer algebra system to solve the resulting linear equation system for t, and to compute $|t|^{2}$.

