Prof. Dr. B. Rosenow

Universität Leipzig

M. Thamm

Advanced Quantum Mechanics - Problem Set 7

Winter Term 2022/23

Due Date: Hand in solutions to problems marked with * to mailbox 39 with label "Advanced Quantum Mechanics" inside ITP room 105b before the lecture on Friday, 02.12.2022, 09:15. The problem set will be discussed in the tutorials on Monday 05.12.2022 and Wednesday 07.12.2022.

1. Graphene

The Hamiltonian for graphene near the \boldsymbol{K}^{\prime} point is given by

$$
H=\hbar v_{F}\left(\begin{array}{cc}
0 & q_{x}+i q_{y} \\
q_{x}-i q_{y} & 0
\end{array}\right)
$$

where v_{F} is the Fermi velocity.
(a) Calculate the normalized eigenstates of this Hamiltonian.
(b) We now consider next-nearest neighbors. The Hamiltonian is then modified by

$$
H_{\mathrm{nnn}}=-\frac{t^{\prime}}{2} \sum_{\langle\langle i, j\rangle\rangle}(|i, A\rangle\langle j, A|+|i, B\rangle\langle j, B|+\text { h.c }),
$$

where A and B denote different sub-lattices and the sum is over next-nearest neighbors. Write down the next-nearest neighbor lattice vectors.
(c) Show that the next-nearest neighbors give rise to an extra contribution to the spectrum of $-t^{\prime} f(\boldsymbol{q})$ with

$$
f(\boldsymbol{q})=2 \cos \left(\sqrt{3} q_{y} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} q_{y} a\right) \cos \left(\frac{3}{2} q_{x} a\right)
$$

2. Free particle solutions of the Dirac equation

Calculate the eigenvalues of the free-particle Dirac equation

$$
\left(\begin{array}{cccc}
m & 0 & p & 0 \\
0 & m & 0 & -p \\
p & 0 & -m & 0 \\
0 & -p & 0 & -m
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)=E\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)
$$

Consider the Dirac matrices

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
\beta & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where $\boldsymbol{\sigma}$ is the vector of Pauli matrices and $\mathbb{1}_{2}$ is the 2 -dimensional unit matrix. Define also

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{\sigma}
\end{array}\right)
$$

Show that (i) $\beta \Sigma_{i}=\Sigma_{i} \beta$, and that (ii) $\left[\alpha_{i}, \Sigma_{j}\right]=2 i \epsilon_{i j k} \alpha_{k}$.

*4. Four-current for the free particle solutions of the Dirac equation

The free particle solutions of the Dirac equation can be written using

$$
\boldsymbol{u}_{R}^{(+)}(p)=\left(\begin{array}{c}
1 \\
0 \\
\frac{p}{E_{p}+m} \\
0
\end{array}\right), \quad \boldsymbol{u}_{L}^{(+)}(p)=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-p}{E_{p}+m}
\end{array}\right)
$$

for solutions with positive energy $E=E_{p}$, and

$$
\boldsymbol{u}_{R}^{(-)}(p)=\left(\begin{array}{c}
\frac{-p}{E_{p}+m} \\
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{u}_{L}^{(-)}(p)=\left(\begin{array}{c}
0 \\
\frac{p}{E_{p}+m} \\
0 \\
1
\end{array}\right)
$$

for solutions with negative energy $E=-E_{p}$.
(a) What are the free-particle wave-functions?
(b) Calculate the four-current $j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi$, where $\bar{\Psi}=\Psi^{\dagger} \beta$. Interpret your result.

