Advanced Quantum Mechanics - Problem Set 6

Winter Term 2022/23
Due Date: Hand in solutions to problems marked with * to mailbox 39 with label "Advanced Quantum Mechanics" inside ITP room 105b before the lecture on Friday, 25.11.2022, 09:15. The problem set will be discussed in the tutorials on Monday 28.11.2022 and Wednesday 30.11.2022.

*1. Relativistic Landau Levels

The low-energy Hamiltonian for electrons in graphene is given by

$$
H=v_{F}\left(\begin{array}{cc}
-\boldsymbol{\sigma}^{*} \cdot \boldsymbol{p} & 0 \\
0 & \boldsymbol{\sigma} \cdot \boldsymbol{p}
\end{array}\right),
$$

where v_{F} is the Fermi velocity, \boldsymbol{p} the momentum and $\boldsymbol{\sigma}$ the vector of Pauli matrices. The eigenstates can be written as four-dimensional state vectors with contributions from the \boldsymbol{K} and \boldsymbol{K}^{\prime} points. That is, we write

$$
\chi=\left(\begin{array}{l}
\chi_{A}^{\prime} \\
\chi_{B}^{\prime} \\
\chi_{A} \\
\chi_{B}
\end{array}\right) .
$$

(a) Show that the eigenvalue equations decouple into

$$
\begin{aligned}
& E^{2} \chi_{A}=v_{F}^{2}\left(p_{x}-i p_{y}\right)\left(p_{x}+i p_{y}\right) \chi_{A}, \\
& E^{2} \chi_{B}=v_{F}^{2}\left(p_{x}+i p_{y}\right)\left(p_{x}-i p_{y}\right) \chi_{B},
\end{aligned}
$$

and similar for the primed parts of the eigenstates.
(b) Suppose now a magnetic field is switched on. Using the Landau gauge $\boldsymbol{A}=(-B y, 0)$, perform the minimal substitution $\boldsymbol{p} \rightarrow \boldsymbol{p}-\frac{e}{c} \boldsymbol{A}$ in the eigenvalue equations in part (a) and deduce the form of the eigenfunctions.
(c) What does the energy spectrum look like?

2. Representations of γ matrices

The γ matrices can be written as

$$
\begin{aligned}
\gamma_{i} & =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right), \quad i=1,2,3 \\
\gamma_{0} & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where σ_{i} denotes a Pauli matrix and $\mathbb{1}_{n}$ the $n \times n$ unit matrix. Consider the metric $\eta=$ $\operatorname{diag}(1,-1,-1,-1)$.
(a) Show that the γ matrices satisfy the Clifford algebra $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu} \mathbb{1}_{4}, \mu, \nu \in\{0,1,2,3\}$.
(b) A different representation is the Weyl representation where

$$
\gamma_{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2} \\
\mathbb{1}_{2} & 0
\end{array}\right) .
$$

Show that these still satisfy the Clifford algebra.
(c) Using only the Clifford algebra and properties of the trace show that $\operatorname{tr}\left(\gamma_{\mu}\right)=0, \operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu}\right)=4 \eta_{\mu \nu}$, and $\operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\right)=0$.

3. Continuity equation for the Dirac equation

Prove the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0
$$

with

$$
j=\Psi^{\dagger}\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right) \Psi
$$

and $\rho=\Psi^{\dagger} \Psi$ for all solutions Ψ of the Dirac equation.

