
Institut für Theoretische Physik Prof. Dr. B. Rosenow
Universität Leipzig M. Thamm

Advanced Quantum Mechanics - Problem Set 4

Winter Term 2022/23

Due Date: Hand in solutions to problems marked with * to mailbox 39 with label “Ad-
vanced Quantum Mechanics” inside ITP room 105b before the lecture on Friday,
11.11.2022, 09:15. The problem set will be discussed in the tutorials on Monday
14.11.2022 and Wednesday 16.11.2022.

1. Eigenspinors 4+1 Points

Consider a spin 1/2 system in the presence of an external magnetic field B = Bn̂, where n̂ is a
unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

Ĥ = − e

mc
Ŝ ·B,

where e < 0 is the electron charge, m the electron mass, c the speed of light, and Ŝ the vector
of spin 1/2 operators.

(a) Calculate the eigenvalues and normalized eigenspinors of the Hamiltonian.

(b) Why does the direction of the eigenspinors only depend on n̂?

2. Time- and spin-reversal 2+3 Points

(a) Denote the wave function of a spinless particle corresponding to a plane wave in three
dimensions by ψ(x, t). Show that ψ∗(x,−t) is the wave function for the plane wave if the
momentum direction is reversed.

(b) Let χ(n̂) be the eigenspinor you calculated in the previous problem, with eigenvalue +1.
Using the explicit form of χ(n̂) in terms of the polar and azimuthal angles which define
n̂, verify that the eigenspinor with spin direction reversed is given by −iσyχ∗(n̂).

*3. Nearly free electron model 3+2+2+3 Points

Often it is sufficient to treat the periodic potential on a lattice as a small perturbation. For
such problems it is useful to expand the periodic potential in a plane wave expansion which only
contains waves with the periodicity of the reciprocal lattice, such that

U(x) =
∑
G

UGe
iG·x,
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where G is a reciprocal lattice vector which satisfies eiG·R = 1, with R denoting a point on the
lattice. We moreover expand the wave functions in terms of a set of plane waves which satisfy
the periodic boundary conditions of the problem

ψ(x) =
∑
k

cke
ik·x.

(a) Using the expansions above, show that the Schrödinger equation

[
−ℏ2∇2

2m
+ U(x)

]
ψ(x) = Eψ(x),

can be written as

(
ℏ2k2

2m
− E

)
ck +

∑
G

UGck−G = 0.

(b) Perform the shift q = k+K, where K is a reciprocal lattice vector which ensures that we
can always find a q which lies in the first Brillouin zone1, and show that the Schrödinger
equation now gives

(
ℏ2

2m
(q −K)2 − E

)
cq−K +

∑
G

UG−Kcq−G = 0.

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the
leading Fourier component contributes to the potential

U(x) = 2U0 cos
2πx

a
.

Explain how your result in (b) can be used to calculate the energy of the system.

(d) Suppose now that U0 is very small. Near q = π/a the Schrödinger equation reduces to

(
ℏ2
2m

(
q − 2π

a

)2 − E U0

U0
ℏ2q2
2m − E

)(
c1
c0

)
= 0.

Calculate and plot the energy eigenvalues. What happens at q = π/a?

1As an example of a Brillouin zone consider the simple cubic lattice with sides of length a. The lattice vectors
can be written as R1 = ax̂, R2 = aŷ, and R3 = aẑ. In reciprocal space the basis vectors become b1 = 2π

a
x̂,

b2 = 2π
a
ŷ, and b3 = 2π

a
ẑ. In this case the first Brillouin zone is the region −π/a ≤ ki < π/a (where i = x, y, z).

The reziprocal lattice vectors can be written as K =
∑

i nibi (where ni ∈ Z). Therefore, for arbitrary k it is
possible to find q = k +K so that q lies in the first Brilloin zone.
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