Prof. Dr. B. Rosenow

Universität Leipzig

M. Thamm

Advanced Quantum Mechanics - Problem Set 3

Winter Term 2022/23
Due Date: Hand in solutions to problems marked with * to mailbox 39 with label "Advanced Quantum Mechanics" inside ITP room 105b before the lecture on Friday, 04.11.2022, 09:15. The problem set will be discussed in the tutorials on Monday 07.11.2022 and Wednesday 09.11.2022.

1. Translation Operator

Consider a free particle with Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m},
$$

and define the translation operator \hat{T}_{l}.
(a) Show that $\left[\hat{H}, \hat{T}_{l}\right]=0$.
(b) Due to the result in (a), the Hamiltonian and translation operator have a common set of eigenstates. For such a state $|k\rangle$, calculate the eigenvalue of \hat{T}_{l}. That is calculate λ_{k} in the expression $\hat{T_{l}}|k\rangle=\lambda_{k}|k\rangle$.

2. Landau levels

A spinless particle of charge q is confined to the $x-y$ plane and subjected to a magnetic field in the z-direction, $\boldsymbol{B}=(0,0, B)$.
(a) Using the Landau gauge $\boldsymbol{A}=(0, B x, 0)$ show that the Schrödinger equation can be written as

$$
\frac{-\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\left(\frac{\partial}{\partial y}-i \frac{q B}{\hbar} x\right)^{2}\right) \Psi(x, y)=E \Psi(x, y) .
$$

Hint: You can use the minimal coupling rule to obtain the canonical momentum.
(b) Show that a solution of the Schrödinger equation above can be written as $\Psi(x, y)=$ $e^{i k y} u(x-a)$, and find an expression for a in terms of k. What does $u(x-a)$ look like? Explain why the energy eigenvalues are given by

$$
E=\frac{\hbar q B}{m}\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots
$$

(c) The particles are now confined to an area of length X in the x -direction and Y in the y -direction. Using periodic boundary conditions, $\Psi(y)=\Psi(y+Y)$ in the y -direction, calculate the maximum value of n per unit area.
Hint: Don't forget that $a \leq X$.

Figure 1: The SSH model. The red and blue circles symbolise different types of sites. The thin lines denote couplings with strength $t(1-\delta)$ whilst the thick lines are couplings with strength $t(1+\delta)$. The dashed square denotes a unit cell.

In this problem we consider the Su-Schrieffer-Heeger (SSH) model which describes spinless fermions hopping on a one-dimensional lattice with staggered hopping amplitudes (see the figure). The model contains two sub-lattices, A and B and has the following Hamiltonian

$$
H=\sum_{n} t(1+\delta)|n, A\rangle\langle n, B|+t(1-\delta)|n+1, A\rangle\langle n, B|+\text { h.c.. }
$$

Here h.c. stands for hermitian conjugate and $|n, A\rangle$ describes a state of site n, in sublattice A. t and δ are taken to be real parameters.
(a) By Fourier transforming, $|n\rangle=\frac{1}{\sqrt{N}} \sum_{k} e^{-i n k}|k\rangle$, show that the Hamiltonian can be written as $H(k)=\boldsymbol{d}(k) \cdot \boldsymbol{\sigma}$, where $\boldsymbol{\sigma}$ is the vector of Pauli matrices, and $d_{x}(k)=t(1+\delta)+t(1-$ $\delta) \cos (k), d_{y}(k)=t(1-\delta) \sin (k)$, and $d_{z}(k)=0$.
Hint: Write the wave function as a vector with two components describing the amplitudes on the A and B sublattices, respectively.
(b) Calculate the energy eigenvalues of the system.
(c) Plot your result from (b) for $\delta>0$ and $\delta<0$. What happens when $\delta=0$?

