Advanced Quantum Mechanics - Problem Set 1

Winter Term 2022/23

Due Date: Hand in solutions to problems marked with * to mailbox 39 with label "Advanced Quantum Mechanics" inside ITP room 105b before the lecture on Friday, 21.10.2022, 09:15. The problem set will be discussed in the tutorials on Monday 24.10.2022 and Wednesday 26.10.2022.

Internet: http://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2223.html

*1. Two-level system II

2+1+1+1 Points

Consider the Hamiltonian \hat{H} of a quantum mechanical system with two eigenstates $|1\rangle$ and $|2\rangle$:

$$\hat{H}|1\rangle = E_1|1\rangle$$

$$\hat{H}|2\rangle = E_2|2\rangle$$
.

Assume that $\{|1\rangle, |2\rangle\}$ is an orthonormal basis of a two-dimensional Hilbert space, such that an arbitray operator from the Hilbert space can be written as

$$|\psi\rangle = \alpha |1\rangle + \beta |2\rangle, \quad \alpha, \beta \in \mathbb{C} \ .$$

(a) Compute the norm $\langle \psi | \psi \rangle$. Express \hat{H} in spectral representation and compute the expectation value of \hat{H} in state $|\psi\rangle$.

Hint: The spectral representation of an operator \hat{A} with orthonormal eigenvectors $\{|e_n\rangle\}$ and eigenvalues $\{\lambda_n\}$ is defined as

$$\hat{A} = \sum_{n} \lambda_n |e_n\rangle \langle e_n| .$$

- (b) Define the operators $\hat{R} = |2\rangle\langle 1|$ and $\hat{L} = |1\rangle\langle 2|$. Compute the action of these operators on the basis states and on $|\psi\rangle$.
- (c) Compute $\hat{R}\hat{R}$ and $\hat{L}\hat{L}$. What are the properties of the operators $\hat{R}\hat{L}$ and $\hat{L}\hat{R}$?
- (d) Express the Hamiltonian \hat{H} in terms of the operators \hat{R} , \hat{L} and the eigenvalues E_1 , E_2 .

2. Commutators

2+2+2+2 Points

Because operators do not commute in general, it is helpful to define the commutator $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ for the operators \hat{A} and \hat{B} . It can also be useful to define the anti-commutator $\{\hat{A}, \hat{B}\} = \hat{A}\hat{B} + \hat{B}\hat{A}$. Let in the following \hat{A}, \hat{B} , and \hat{C} be arbitrary operators and \hat{x} is the position and \hat{p} the momentum operator. Show that:

(a)
$$[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}.$$

- (b) If \hat{A} and \hat{B} are Hermitian operators, so are $i[\hat{A},\hat{B}]$ and $\{\hat{A},\hat{B}\}$.
- (c) For integers $n \ge 1$ holds $[\hat{A}, \hat{B}^n] = n[\hat{A}, \hat{B}]\hat{B}^{n-1}$ assuming that $[\hat{B}, [\hat{A}, \hat{B}]] = 0$.
- (d) $[\hat{p}, f(\hat{x})] = -i\hbar f'(\hat{x})$. Assume here that f(x) can be expressed as a power series $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n$ and use the commutation relation $[\hat{x}, \hat{p}] = i\hbar$.

3. Expectation values for the harmonic oscillator 4 Points

Compute the expectation values of the operators \hat{x} , \hat{p} , \hat{x}^2 , and \hat{p}^2 in the state

$$\Phi(x) = \frac{1}{\sqrt{2}} (\psi_0(x) + \psi_2(x)) ,$$

where ψ_0 and ψ_2 are wave functions for the ground state and the second excited state of the one-dimensional harmonic oscillator, respectively. Use the relations

$$\psi_{n+1}(x) = \frac{1}{\sqrt{n+1}} \hat{a}^{\dagger} \psi_n(x)$$
$$\psi_{n-1}(x) = \frac{1}{\sqrt{n}} \hat{a} \psi_n(x),$$

where \hat{a}^{\dagger} and \hat{a} are the creation and annihilation operators for the harmonic oscillator.