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Advanced Quantum Mechanics - Problem Set 10

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 10.01.2022, 12:00.
The problem set will be discussed in the tutorials on Wednesday, 12.01.2022, and
Friday, 14.01.2022

1. Addition of three angular momenta 4+4+2 Points

Figure 1: Table of Clebsch-Gordan coefficients (from B. H. Bransden and C. J. Joachain). The
table should be understood as a matrix as discussed in the lecture, with the convention

√
x2 = x.

Consider three angular momenta L̂1, L̂2, and L̂3 with l1 = l2 = l3 = 1.

(a) First, add the two angular momenta L̂1 and L̂2, with l1 = l2 = 1 and m1,m2, to a total
angular momentum L̂, with l and m. Use the above table to show that

|l = 1,m = 1⟩ = 1√
2

(
+ |m1 = 1;m2 = 0⟩ − |m1 = 0;m2 = 1⟩

)
|l = 1,m = −1⟩ = 1√

2

(
+ |m1 = 0;m2 = −1⟩ − |m1 = −1;m2 = 0⟩

)
|l = 1,m = 0⟩ = 1√

2

(
+ |m1 = 1;m2 = −1⟩ − |m1 = −1;m2 = 1⟩

)
|l = 0,m = 0⟩ = 1√

3

(
+ |m1 = 1;m2 = −1⟩ − |m1 = 0;m2 = 0⟩+ |m1 = −1;m2 = 1⟩

)
,

where |m1;m2⟩ ≡ |l1 = 1,m1; l2 = 1,m2⟩. Compare these results to the results you
obtained for Problem 1 of Problem Set 9.

(b) Add all three angular momenta to get a state with total angular momentum l = 0.

Hint: First add L̂1 and L̂2, and then add L̂3 to the resulting angular momentum. Use
the same basis for adding L̂1 and L̂2 as in Problem 1 of Problem Set 9, but don’t keep all
27 basis functions. Instead keep only the functions that together with L̂3 can add to l = 0.
The result from (a) might be helpful.
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(c) Show that this state can be written as a 3 × 3 determinant and that it therefore is anti-
symmetric.

Hint: You can write |m1;m2;m3⟩ = |m1⟩ ⊗ |m2⟩ ⊗ |m3⟩ = |m1⟩|m2⟩|m3⟩.

*2. Quantisation of the Radiation Field 2+3+3 Points

In the absence of charges, and in the Coulomb gauge ∇ · A = 0, the electromagnetic field is
described by the Lagrangian

L(t) =
1

2

∫
Ω
d3x

[
ϵ0 (∂tA)2 +

1

µ0
A · ∇2A

]
.

Here ϵ0 denotes the vacuum dielectric constant, µ0 is the vacuum permeability, and Ω is a cuboid
with extensions Lx, Ly, and Lz. Note that the speed of light is c = 1/

√
ϵ0µ0.

(a) Write down the Lagrange equation for A.

(b) Find eigenfunctions Ak and eigenvalues ω2
k of the equation

−∇2A(x) =
ω2
k

c2
A(x),

by using periodic boundary conditions. It may be useful to introduce, for each k, a set of
orthonormal vectors {ξ̂k,1, ξ̂k,2} which are both perpendicular to k. The time-dependent
solution then has a series expansion

A(x, t) =
1√
Ω

∑
k,j

αk,j(t)e
ik·xξ̂k,j .

Insert this series expansion into the Lagrangian, and find the momenta

πk,i =
∂L

∂α̇k,i
,

canonically conjugate to the coordinates αk,i. Use the Legendre transformH =
∑

k,i πk,iα̇k,i−
L(πk,i, αk,i) to obtain the Hamiltonian.

Hint: The first equation can be obtained from the Euler-Lagrange equation in (a) by using
that A(x, t) = e−iωktA(x). Here, assume that A(x) is real. Using this it can be shown

that α−k,j = α†
k,j.

(c) The classical Hamiltonian H({πk,i, αk,i}) can be quantised by imposing canonical commu-
tation relations

[αk,i, αq,j ] = 0, [πk,i, πq,j ] = 0, [αk,i, πq,j ] = iℏδk,qδi,j ,

on the coordinates αk,i and their canonically conjugate momenta πk,j . In analogy to the
one-dimensional harmonic oscillator, we define photon creation and annihilation operators

a†k,j =

√
ϵ0ωk

2ℏ

(
α−k,j −

i

ϵ0ωk
πk,j

)
, ak,j =

√
ϵ0ωk

2ℏ

(
αk,j +

i

ϵ0ωk
π−k,j

)
.

Show that ak,j and a†k,j obey the commutation relations of harmonic oscillator ladder

operators, and express the Hamiltonian in terms of ak,j and a†k,j .
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