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Advanced Quantum Mechanics - Problem Set 10

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 10.01.2022, 12:00.
The problem set will be discussed in the tutorials on Wednesday, 12.01.2022, and
Friday, 14.01.2022

1. Addition of three angular momenta 4+4+2 Points
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Figure 1: Table of Clebsch-Gordan coefficients (from B. H. Bransden and C. J. Joachain). The
table should be understood as a matrix as discussed in the lecture, with the convention v 2 = z.

Consider three angular momenta L4, ﬁz, and Lg with l1 =l = I3 = 1.

(a) First, add the two angular momenta le and iz, with 1 = lo = 1 and mq, mo, to a total
angular momentum L, with [ and m. Use the above table to show that
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where |mi;me) = |l1 = 1,my;la = 1,mg). Compare these results to the results you

obtained for Problem 1 of Problem Set 9.

(b) Add all three angular momenta to get a state with total angular momentum I = 0.

Hint: First add L1 and Lz, and then add L3 to the resulting angular momentum. Use
the same basis for adding L1 and Ly as in Problem 1 of Problem Set 9, but don’t keep all
27 basis functions. Instead keep only the functions that together with Ls can add to 1 = 0.
The result from (a) might be helpful.



(c) Show that this state can be written as a 3 x 3 determinant and that it therefore is anti-
symmetric.

Hint: You can write |m1;ma;ms) = |m1) ® |ma) ® |ms) = |mq)|ma)|ms).

*2. Quantisation of the Radiation Field 2+3+3 Points

In the absence of charges, and in the Coulomb gauge V - A = 0, the electromagnetic field is
described by the Lagrangian

L(t) = ;/Qd% [eo (0,A)? + :OA-V2A .

Here ¢y denotes the vacuum dielectric constant, ug is the vacuum permeability, and 2 is a cuboid
with extensions L,, Ly, and L,. Note that the speed of light is ¢ = 1/, /€g 0.

(a) Write down the Lagrange equation for A.

b) Find eigenfunctions Ay and eigenvalues w? of the equation
k
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by using periodic boundary conditions. It may be useful to introduce, for each k, a set of
orthonormal vectors {&x 1,&k,2} which are both perpendicular to k. The time-dependent
solution then has a series expansion
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Insert this series expansion into the Lagrangian, and find the momenta
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canonically conjugate to the coordinates ay ;. Use the Legendre transform H = ) ki Tho,i Olle,i—
L(7y,i, ag ;) to obtain the Hamiltonian.

Hint: The first equation can be obtained from the Euler-Lagrange equation in (a) by using
that A(x,t) = e st A(x). Here, assume that A(x) is real. Using this it can be shown

that a_p, j = oz;rw.

(c) The classical Hamiltonian H ({7 ;, o, }) can be quantised by imposing canonical commu-
tation relations

(ki aqj] =0, [Tri Tl =0, [0k, 7q,;] = iAok q0i ;)

on the coordinates ag; and their canonically conjugate momenta g ;. In analogy to the
one-dimensional harmonic oscillator, we define photon creation and annihilation operators
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Show that ag; and a;rc ; obey the commutation relations of harmonic oscillator ladder

operators, and express the Hamiltonian in terms of aj ; and a}; i



