Advanced Quantum Mechanics - Bonus Problem Set

Winter Term 2019/20

Due Date: Only if you are below 50% of the total points, hand in solutions to problems marked with * before the lecture on Friday, 07.02.2020, 09:15.

This exercise sheet is not mandatory, but you can solve it to get additional points. In case that you already have at least 50% of the points from the exercises, it will not be marked. You need a total of at least 121.5 points to be admitted to the exam.

The exam will take place on February 26 at 10:00 a.m. in the Theoretical Lecture Hall. (Please also check the official website from the faculty in case that there are any updates: https://www.physgeo.uni-leipzig.de/en/study/exams/)

*36. Casimir Effect

As shown in problem 28, the Hamiltonian of the quantized radiation field confined to a box with volume $V=L_{1} L_{2} L_{3}$ and with periodic boundary conditions, is given by

$$
H=\sum_{\boldsymbol{k}} \sum_{\lambda= \pm} \hbar \omega_{\boldsymbol{k}}\left(a_{\boldsymbol{k}, \lambda}^{\dagger} a_{\boldsymbol{k}, \lambda}+\frac{1}{2}\right), \quad \omega_{\boldsymbol{k}}=c|\boldsymbol{k}|, \quad k_{i}=\frac{\pi}{L_{i}} n_{i}, \quad n_{i} \in \mathbb{N}
$$

In particular we found that the ground state, in which no modes are excited, has a divergent energy. Whilst this divergent vacuum zero-point energy is not observable, the dependence on the boundaries does lead to observable phenomena.
To investigate this, we consider in the following two conducting plates with surface areas $A=L_{1} L_{2}$ seperated by a distance L_{3}. In the plane
 of the plates we will still be using periodic boundary conditions and consider the limit $L_{1}, L_{2} \rightarrow \infty$. Since the electric field \boldsymbol{E} on the plates vanishes, only modes with $|\boldsymbol{E}| \propto \sin \left(k_{3} x_{3}\right)$ are possible. Here $k_{3}=n_{3} \pi / L_{3}$ with $n_{3}=1,2, \ldots$ To get a finite vacuum energy we will moreover introduce an exponential cutoff $e^{-\epsilon \omega_{k}}$ with $\epsilon>0$, and take the limit of $\epsilon \rightarrow 0$ at the end of the calculation. The energy density per unit plate area between the plates is given by

$$
\begin{aligned}
\sigma_{E}\left(L_{3}\right) & =\lim _{L_{1}, L_{2} \rightarrow \infty} \frac{1}{L_{1} L_{2}} \sum_{\boldsymbol{k}} \hbar \omega_{\boldsymbol{k}} e^{-\epsilon \omega_{\boldsymbol{k}}} \\
& =\hbar c \sum_{n_{3}=1}^{\infty} \int \frac{d^{2} k}{(2 \pi)^{2}} \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}} e^{-\epsilon c \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}}}
\end{aligned}
$$

(a) Using polar coordinates and a suitable subsitution show that $\sigma_{E}\left(L_{3}\right)$ can be written as

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}} \sum_{n=1}^{\infty} \int_{n \pi c / L_{3}}^{\infty} d \omega e^{-\epsilon \omega}
$$

(b) Calculate the integral over ω and perform the sum to show that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}}\left(\frac{1}{\epsilon} \frac{1}{e^{\epsilon \pi c / L_{3}}-1}\right)
$$

Show further that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}}\left(\frac{6}{\epsilon^{4}} \frac{L_{3}}{\pi c}-\frac{1}{\epsilon^{3}}-\frac{1}{360}\left(\frac{\pi c}{L_{3}}\right)^{3}+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

(c) The energy density calculated in the previous part diverges as the distance between the plates increases $\left(L_{3} \rightarrow \infty\right)$. This will be our reference point. We therefore consider two plates separated by a fixed distance a, together with two external plates which are places a further distance $(L-a) / 2$ away. The relevant energy density is then given by

$$
\sigma_{E}(a, L)=\sigma_{E}(a)+2 \sigma_{E}\left(\frac{L-a}{2}\right)
$$

Find an expression for $\sigma_{E}(a, L)$ using your result in (b).

(d) Since the energy density varies with the distance between plates, the plates experience a pressure which is given by

$$
p_{\mathrm{vac}}=-\lim _{L \rightarrow \infty} \frac{\partial}{\partial a} \sigma_{E}(a, L)
$$

How large is this pressure for $A=1 \mathrm{~cm}^{2}$ and $a=1 \mu \mathrm{~m}$?

*37. Zitterbewegung

In this problem we will consider the Dirac Hamiltonian

$$
\hat{H}_{D}=c \boldsymbol{\alpha} \cdot \hat{\boldsymbol{p}}+\beta m c^{2}
$$

where m is the mass of the particle, c is the speed of light, and $\boldsymbol{\alpha}$ and β are matrices given by

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right) \\
\beta & =\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right)
\end{aligned}
$$

with $\boldsymbol{\sigma}$ denoting the vector of Pauli matrices and I_{2} denoting the 2×2 unit matrix. The Pauli matrices are

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Show that the velocity operator is given by $\hat{\boldsymbol{v}}=c \boldsymbol{\alpha}$.

Hint: You may use the Heisenberg equation of motion which states that an operator \hat{A} which does not explicitly depend on time satisfies $-i \hbar \dot{\hat{A}}=[\hat{H}, \hat{A}]$.
(b) Consider now a Dirac particle at rest in a volume V. A general eigenspinor can then be written as

$$
\psi=\frac{1}{\sqrt{2 V}}\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) e^{-i m c^{2} t / \hbar}+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) e^{i m c^{2} t / \hbar}\right]
$$

Give a physical interpretation of the two terms in the spinor.
(c) Derive an expression for $\left\langle\hat{z}_{z}\right\rangle=\langle\psi| \hat{v}_{z}|\psi\rangle$ using the spinor defined in the previous part of the problem. Comment on your result.

