Advanced Quantum Mechanics - Problem Set 12

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on Friday, 24.01.2020, 09:15. The problem set will be discussed in the tutorials on Wednesday, 29.01.2020, and Friday, 31.01.2020.

*31. Number operator

Consider an operator \hat{a} which satisfies $\left\{\hat{a}, \hat{a}^{\dagger}\right\}=\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} a=1$ and $\{a, a\}=\left\{a^{\dagger}, a^{\dagger}\right\}=0$. Show that the operator $\hat{N}=\hat{a}^{\dagger} \hat{a}$ has eigenvalues 0 and 1 . What would you get if the anti-commutator is replaced by a commutator?

*32. Tight-binding model

$2+2+2+2$ Points

In this problem we consider a tight-binding model defined on a one-dimensional lattice with N sites. The Hamiltonian can, in second quantised notation, be written as

$$
H=-t \sum_{i} c_{i+1}^{\dagger} c_{i}+\text { h.c. }
$$

where the sum is over lattice sites $i \in \mathbb{Z}, c_{i}^{\dagger}$ and c_{i} are creation and annihilation operators satisfying $\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}$, and h.c. stands for hermitian conjugate.
(a) Show that the state

$$
|k\rangle=\frac{1}{\sqrt{N}} \sum_{j} e^{i k j} c_{j}^{\dagger}|0\rangle
$$

with $|0\rangle$ denoting a state with no particles, is an eigenstate of the Hamiltonian.
(b) Define now

$$
c_{k}=\frac{1}{\sqrt{N}} \sum_{j} e^{-i k j} c_{j}
$$

Show that $\left\{c_{k}, c_{k^{\prime}}^{\dagger}\right\}=\delta_{k k^{\prime}}$.
(c) Show that the inverse transformation is

$$
c_{j}=\frac{1}{\sqrt{N}} \sum_{k} e^{i k j} c_{k}
$$

(d) Show that the Hamiltonian can be written in terms of the new operators as

$$
H=\sum_{k} \epsilon(k) c_{k}^{\dagger} c_{k},
$$

where $\epsilon(k)$ is the spectrum.

33. Berry phase and the Aharonov-Bohm effect $2+2+1+3$ Points

Figure 1: An electron in a box moves around a magnetic flux line. The path of the electron encloses a flux Φ_{B}.

Consider an electron in a small box moving along a closed loop \mathcal{C}, which encloses a magnetic flux Φ_{B} as shown in Fig. 1. Let \boldsymbol{R} denote the position vector of a point on the box and \boldsymbol{r} the position vector of the electron itself.
(a) Show that if the wave function of the electron in the absence of a magnetic field is $\psi_{n}(\boldsymbol{r}-\boldsymbol{R})$, then the wave function of the electron in the box at position \boldsymbol{r} is

$$
\langle\boldsymbol{r} \mid n(\boldsymbol{R})\rangle=\exp \left[\frac{i e}{\hbar} \int_{\boldsymbol{R}}^{\boldsymbol{r}} \boldsymbol{A}\left(\boldsymbol{r}^{\prime}\right) \cdot d \boldsymbol{r}^{\prime}\right] \psi_{n}(\boldsymbol{r}-\boldsymbol{R}) .
$$

Here \boldsymbol{A} denotes the vector potential. Note that this is only true if the magnetic field inside the box is zero. Why?
(b) Show that

$$
\langle n(\boldsymbol{R})| \nabla_{\boldsymbol{R}}|n(\boldsymbol{R})\rangle=-\frac{i e}{\hbar} \boldsymbol{A}(\boldsymbol{R}) .
$$

(c) Calculate the geometric phase

$$
\gamma_{n}(\mathcal{C})=i \oint_{\mathcal{C}}\langle n(\boldsymbol{R})| \nabla_{\boldsymbol{R}}|n(\boldsymbol{R})\rangle \cdot d \boldsymbol{R}
$$

and comment on your result.
(d) Suppose now an electron moves above or below a very long impenetrable cylinder as shown in the Fig. 2. Inside the cylinder there is a magnetic field parallel to the cylinder axis, taken to be normal to the plane of the figure. Outside the cylinder there is no magnetic field but the particle paths enclose a magnetic flux. Calculate the interference due to the presence of the magnetic flux.

Figure 2: An electron moves either above or below an impenetrable cylinder enclosing a magnetic field parallel to its axis.

