Advanced Quantum Mechanics - Problem Set 10

Winter Term 2019/20
Due Date: Hand in solutions to problems marked with * before the lecture on Friday, 10.01.2020, 09:15. The problem set will be discussed in the tutorials on Wednesday, 15.01.2020, and Friday, 17.01.2020.
27. Addition of three angular momenta
$4+4+2$ Points
j
$m_{2}=1$
$m_{2}=0$

$$
m_{2}=-1
$$

$j_{1}+1\left[\frac{\left(j_{1}+m\right)\left(j_{1}+m+1\right)}{\left(2 j_{1}+1\right)\left(2 j_{1}+2\right)}\right]^{1 / 2}\left[\frac{\left(j_{1}-m+1\right)\left(j_{1}+m+1\right)}{\left(2 j_{1}+1\right)\left(j_{1}+1\right)}\right]^{1 / 2}\left[\frac{\left(j_{1}-m\right)\left(j_{1}-m+1\right)}{\left(2 j_{1}+1\right)\left(2 j_{1}+2\right)}\right]^{1 / 2}$
$j_{1} \quad-\left[\frac{\left(j_{1}+m\right)\left(j_{1}-m+1\right)}{2 j_{1}\left(j_{1}+1\right)}\right]^{1 / 2}\left[\frac{m^{2}}{j_{1}\left(j_{1}+1\right)}\right]^{1 / 2} \quad\left[\frac{\left(j_{1}-m\right)\left(j_{1}+m+1\right)}{2 j_{1}\left(j_{1}+1\right)}\right]^{1 / 2}$
$j_{1}-1\left[\frac{\left(j_{1}-m\right)\left(j_{1}-m+1\right)}{2 j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2}-\left[\frac{\left(j_{1}-m\right)\left(j_{1}+m\right)}{j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2} \quad\left[\frac{\left(j_{1}+m+1\right)\left(j_{1}+m\right)}{2 j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2}$

Figure 1: Table of Clebsch-Gordan coefficients (from B. H. Bransden and C. J. Joachain). The table should be understood as a matrix, as discussed in lectures.

Consider three angular momenta with $l_{1}=l_{2}=l_{3}=1$.
(a) First, consider adding two angular momenta $l_{1}=l_{2}=1$ with m_{1}, m_{2} to a total angular momentum l with m. Using the table, show that

$$
\begin{aligned}
& |l=1, m=1\rangle=\frac{-1}{\sqrt{2}}\left(-\left|m_{1}=1 ; m_{2}=0\right\rangle+\left|m_{1}=0 ; m_{2}=1\right\rangle\right) \\
& |l=1, m=-1\rangle=\frac{-1}{\sqrt{2}}\left(-\left|m_{1}=0 ; m_{2}=-1\right\rangle+\left|m_{1}=-1 ; m_{2}=0\right\rangle\right) \\
& |l=1, m=0\rangle=\frac{-1}{\sqrt{2}}\left(+\left|m_{1}=1 ; m_{2}=-1\right\rangle-\left|m_{1}=-1 ; m_{2}=1\right\rangle\right) \\
& |l=0, m=0\rangle=\frac{-1}{\sqrt{3}}\left(\left|m_{1}=1 ; m_{2}=-1\right\rangle-\left|m_{1}=0 ; m_{2}=0\right\rangle+\left|m_{1}=-1 ; m_{2}=1\right\rangle\right)
\end{aligned}
$$

where $\left|m_{1} ; m_{2}\right\rangle \equiv\left|l_{1}=1, m_{1} ; l_{2}=1, m_{2}\right\rangle$. Compare this to your results from problem 24 .
(b) Add the three angular momenta to get a state with total angular momentum $l=0$.

Hint: First add L_{1} and L_{2} and then add the resulting angular momentum with L_{3}. Use the same basis as in problem 24, but don't keep all 27 basis functions. Instead keep only the ones that can result to $l=0$. The result from (a) might be helpful.
(c) Show that this state can be written as a 3×3 determinant and that it therefore is antisymmetric.
Hint: You can write $\left|m_{1} ; m_{2} ; m_{3}\right\rangle=\left|m_{1}\right\rangle \otimes\left|m_{2}\right\rangle \otimes\left|m_{3}\right\rangle=\left|m_{1}\right\rangle\left|m_{2}\right\rangle\left|m_{3}\right\rangle$.

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \boldsymbol{A}=0$, the electromagnetic field is described by the Lagrangian

$$
L(t)=\frac{1}{2} \int_{\Omega} d^{3} x\left[\epsilon_{0}\left(\partial_{t} \boldsymbol{A}\right)^{2}+\frac{1}{\mu_{0}} \boldsymbol{A} \cdot \nabla^{2} \boldsymbol{A}\right] .
$$

Here ϵ_{0} denotes the vacuum dielectric constant, μ_{0} is the vacuum permeability, and Ω is a cuboid with extensions L_{x}, L_{y}, and L_{z}. Note that the speed of light is $c=1 / \sqrt{\epsilon_{0} \mu_{0}}$.
(a) Write down the Lagrange equation for \boldsymbol{A}.
(b) Find eigenfunctions $\boldsymbol{A}_{\boldsymbol{k}}$ and eigenvalues $\omega_{\boldsymbol{k}}^{2}$ of the equation

$$
-\nabla^{2} \boldsymbol{A}(\boldsymbol{x})=\frac{\omega_{\boldsymbol{k}}^{2}}{c^{2}} \boldsymbol{A}(\boldsymbol{x})
$$

by using periodic boundary conditions. It may be useful to introduce, for each \boldsymbol{k}, a set of orthonormal vectors $\left\{\hat{\boldsymbol{\xi}}_{\boldsymbol{k}, 1}, \hat{\boldsymbol{\xi}}_{\boldsymbol{k}, 2}\right\}$ which are both perpendicular to \boldsymbol{k}. The time-dependent solution then has a series expansion

$$
\boldsymbol{A}(\boldsymbol{x}, t)=\frac{1}{\sqrt{\Omega}} \sum_{\boldsymbol{k}, j} \alpha_{\boldsymbol{k}, j}(t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \hat{\boldsymbol{\xi}}_{\boldsymbol{k}, j}
$$

Insert this series expansion in the Lagrangian, and find the momenta

$$
\pi_{\boldsymbol{k}, i}=\frac{\partial L}{\partial \dot{\alpha}_{\boldsymbol{k}, i}},
$$

canonically conjugate to the coordinates $\alpha_{\boldsymbol{k}, i}$. Use the Legendre transform $H=\sum_{\boldsymbol{k}, i} \pi_{\boldsymbol{k}, i} \dot{\alpha}_{\boldsymbol{k}, i}-$ $L\left(\pi_{k, i}, \alpha_{\boldsymbol{k}, i}\right)$ to obtain the Hamiltonian.

Hint: The first equation can be obtained from the Euler-Lagrange equation in (a) by using that $\boldsymbol{A}(\boldsymbol{x}, t)=\mathrm{e}^{-i \omega_{k} t} \boldsymbol{A}(\boldsymbol{x})$. Here, assume that $\boldsymbol{A}(\boldsymbol{x})$ is real. Using this it can be shown that $\alpha_{-\boldsymbol{k}, j}=\alpha_{\boldsymbol{k}, j}^{\dagger}$.
(c) The classical Hamiltonian $H\left(\left\{\pi_{\boldsymbol{k}, i}, \alpha_{\boldsymbol{k}, i}\right\}\right)$ can be quantised by imposing canonical commutation relations

$$
\left[\alpha_{\boldsymbol{k}, i}, \alpha_{\boldsymbol{q}, j}\right]=0, \quad\left[\pi_{\boldsymbol{k}, i}, \pi_{\boldsymbol{q}, j}\right]=0, \quad\left[\alpha_{\boldsymbol{k}, i}, \pi_{\boldsymbol{q}, j}\right]=i \hbar \delta_{\boldsymbol{k}, \boldsymbol{q}} \delta_{i, j},
$$

on the coordinates $\alpha_{\boldsymbol{k}, i}$ and their canonically conjugate momenta $\pi_{\boldsymbol{k}, j}$. In analogy to the one-dimensional harmonic oscillator, we define photon creation and annihilation operators

$$
a_{\boldsymbol{k}, j}^{\dagger}=\sqrt{\frac{\epsilon_{0} \omega_{\boldsymbol{k}}}{2 \hbar}}\left(\alpha_{-\boldsymbol{k}, j}-\frac{i}{\epsilon_{0} \omega_{\boldsymbol{k}}} \pi_{\boldsymbol{k}, j}\right), \quad a_{\boldsymbol{k}, j}=\sqrt{\frac{\epsilon_{0} \omega_{\boldsymbol{k}}}{2 \hbar}}\left(\alpha_{\boldsymbol{k}, j}+\frac{i}{\epsilon_{0} \omega_{\boldsymbol{k}}} \pi_{-\boldsymbol{k}, j}\right) .
$$

Show that $a_{\boldsymbol{k}, j}$ and $a_{\boldsymbol{k}, j}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of $a_{\boldsymbol{k}, j}$ and $a_{\boldsymbol{k}, j}^{\dagger}$.

