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Advanced Quantum Mechanics - Problem Set 10

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on Friday,
10.01.2020, 09:15. The problem set will be discussed in the tutorials on Wednes-
day, 15.01.2020, and Friday, 17.01.2020.

27. Addition of three angular momenta 4+4+2 Points

Figure 1: Table of Clebsch-Gordan coefficients (from B. H. Bransden and C. J. Joachain). The
table should be understood as a matrix, as discussed in lectures.

Consider three angular momenta with l1 = l2 = l3 = 1.

(a) First, consider adding two angular momenta l1 = l2 = 1 with m1,m2 to a total angular
momentum l with m. Using the table, show that

|l = 1,m = 1〉 =
−1√

2

(
− |m1 = 1;m2 = 0〉+ |m1 = 0;m2 = 1〉

)
|l = 1,m = −1〉 =

−1√
2

(
− |m1 = 0;m2 = −1〉+ |m1 = −1;m2 = 0〉

)
|l = 1,m = 0〉 =

−1√
2

(
+ |m1 = 1;m2 = −1〉 − |m1 = −1;m2 = 1〉

)
|l = 0,m = 0〉 =

−1√
3

(
|m1 = 1;m2 = −1〉 − |m1 = 0;m2 = 0〉+ |m1 = −1;m2 = 1〉

)
where |m1;m2〉 ≡ |l1 = 1,m1; l2 = 1,m2〉. Compare this to your results from problem 24.

(b) Add the three angular momenta to get a state with total angular momentum l = 0.

Hint: First add L1 and L2 and then add the resulting angular momentum with L3. Use
the same basis as in problem 24, but don’t keep all 27 basis functions. Instead keep only
the ones that can result to l = 0. The result from (a) might be helpful.

(c) Show that this state can be written as a 3 × 3 determinant and that it therefore is anti-
symmetric.

Hint: You can write |m1;m2;m3〉 = |m1〉 ⊗ |m2〉 ⊗ |m3〉 = |m1〉|m2〉|m3〉.
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*28. Quantisation of the Radiation Field 2+3+3 Points

In the absence of charges, and in the Coulomb gauge ∇ · A = 0, the electromagnetic field is
described by the Lagrangian

L(t) =
1

2

∫
Ω
d3x

[
ε0 (∂tA)2 +

1

µ0
A · ∇2A

]
.

Here ε0 denotes the vacuum dielectric constant, µ0 is the vacuum permeability, and Ω is a cuboid
with extensions Lx, Ly, and Lz. Note that the speed of light is c = 1/

√
ε0µ0.

(a) Write down the Lagrange equation for A.

(b) Find eigenfunctions Ak and eigenvalues ω2
k of the equation

−∇2A(x) =
ω2
k

c2
A(x),

by using periodic boundary conditions. It may be useful to introduce, for each k, a set of
orthonormal vectors {ξ̂k,1, ξ̂k,2} which are both perpendicular to k. The time-dependent
solution then has a series expansion

A(x, t) =
1√
Ω

∑
k,j

αk,j(t)e
ik·xξ̂k,j .

Insert this series expansion in the Lagrangian, and find the momenta

πk,i =
∂L

∂α̇k,i
,

canonically conjugate to the coordinates αk,i. Use the Legendre transformH =
∑

k,i πk,iα̇k,i−
L(πk,i, αk,i) to obtain the Hamiltonian.

Hint: The first equation can be obtained from the Euler-Lagrange equation in (a) by using
that A(x, t) = e−iωktA(x). Here, assume that A(x) is real. Using this it can be shown

that α−k,j = α†k,j.

(c) The classical Hamiltonian H({πk,i, αk,i}) can be quantised by imposing canonical commu-
tation relations

[αk,i, αq,j ] = 0, [πk,i, πq,j ] = 0, [αk,i, πq,j ] = i~δk,qδi,j ,

on the coordinates αk,i and their canonically conjugate momenta πk,j . In analogy to the
one-dimensional harmonic oscillator, we define photon creation and annihilation operators

a†k,j =

√
ε0ωk

2~

(
α−k,j −

i

ε0ωk
πk,j

)
, ak,j =

√
ε0ωk

2~

(
αk,j +

i

ε0ωk
π−k,j

)
.

Show that ak,j and a†k,j obey the commutation relations of harmonic oscillator ladder

operators, and express the Hamiltonian in terms of ak,j and a†k,j .
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