Advanced Quantum Mechanics - Problem Set 8

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on **Friday**, **13.12.2019**, **09:15**. The problem set will be discussed in the tutorials on Wednesday, 18.12.2019, and Friday, 20.12.2019.

*20. Commutators of Dirac matrices

2+2 Points

Consider the Dirac matrices

$$\boldsymbol{\alpha} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & 0 \end{pmatrix},$$
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix},$$

where σ is the vector of Pauli matrices and $\mathbb{1}_2$ is the 2-dimensional unit matrix. Define also

$$\Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}.$$

Show that (i) $\beta \Sigma_i = \Sigma_i \beta$, and that (ii) $[\alpha_i, \Sigma_j] = 2i\epsilon_{ijk}\alpha_k$.

21. Four-current for the free particle solutions of the Dirac equation 1+4 Points

The free particle solutions of the Dirac equation can be written using

$$\boldsymbol{u}_{R}^{(+)}(p) = \begin{pmatrix} 1\\0\\\frac{p}{E_{p}+m}\\0 \end{pmatrix}, \qquad \boldsymbol{u}_{L}^{(+)}(p) = \begin{pmatrix} 0\\1\\0\\\frac{-p}{E_{p}+m} \end{pmatrix},$$

for solutions with positive energy $E = E_p$, and

$$\boldsymbol{u}_{R}^{(-)}(p) = \begin{pmatrix} \frac{-p}{E_{p}+m} \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \boldsymbol{u}_{L}^{(-)}(p) = \begin{pmatrix} 0 \\ \frac{p}{E_{p}+m} \\ 0 \\ 1 \end{pmatrix},$$

for solutions with negative energy $E = -E_p$.

- (a) What are the free-particle wave-functions?
- (b) Calculate the four-current $j^{\mu} = \bar{\Psi}\gamma^{\mu}\Psi$, where $\bar{\Psi} = \Psi^{\dagger}\beta$. Interpret your result.

22. Klein-Gordon equation in an electromagnetic field

2 Points

The Klein-Gordon equation is given by

$$(\partial_{\mu}\partial^{\mu} + m^2) \Psi(\boldsymbol{x}, t) = 0.$$

Show that, in an electromagnetic field with four-potential $A^{\mu}=(\Phi, \mathbf{A})$, the Klein-Gordon equation becomes

$$(D_{\mu}D^{\mu} + m^2)\Psi(\boldsymbol{x}, t) = 0,$$

with $D_{\mu} = \partial_{\mu} + ieA_{\mu}$.

*23. Chiral Symmetry

1+1+1+1+2+3 Points

Define the fifth γ -matrix as $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ and consider the Dirac Hamiltonian

$$H_D = \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta m,$$

with

$$\boldsymbol{\alpha} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & 0 \end{pmatrix},$$
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}.$$

- (a) Show that $\{\gamma^{\mu}\partial_{\mu}, \gamma^{5}\}=0$. The first term in the anti-commutator is known as the Dirac operator. Since the Dirac Hamiltonian can be constructed using $\gamma^{0}\gamma^{i}=\alpha^{i}$ and $\gamma^{0}=\beta$, the Hamiltonian anti-commutes with the operator $i\gamma^{1}\gamma^{2}\gamma^{3}$.
- (b) Consider now an operator \hat{C} with the property that $\hat{C}^2 = 1$ and $\{\hat{H}, \hat{C}\} = 0$. Show that if $|E_n\rangle$ is an eigenstate of the Hamiltonian H with eigenvalue E_n , then $|-E_n\rangle = C|E_n\rangle$ is also an eigenstate of the Hamiltonian with eigenvalue $-E_n$.
- (c) Using that $\sigma^l \sigma^m = i\varepsilon_{lmk} \sigma^k + \delta_{lm} \mathbb{1}_2$ show that $\gamma^l \gamma^m = -i\varepsilon_{lmk} \Sigma^k \delta_{lm} \mathbb{1}_4$ for l, m = 1, 2, 3. Here $\Sigma^k = \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}$.
- (d) Show that $(\gamma^5)^2 = \mathbb{1}_4$.
- (e) Consider now a two-level system with energy eigenvalues $\pm E_n$. Write down the matrix representations of \hat{C} and \hat{H} , and show that H is off-diagonal in the basis where C is diagonal.
- (f) Generalize your result in (e) to N non-degenerate levels. That is show that it is possible to diagonalize C in such a way that H becomes off-diagonal. What happens qualitatively when there are degenerate eigenstates?

Hint: Diagonalize C (you know its eigenvalues!). You can construct H using your result in (e). Write down a suitable basis. Think about how to rearrange the rows and columns of your matrices such that the diagonal elements in C are sorted with the positive eigenvalues coming before the negative eigenvalues.