Advanced Quantum Mechanics - Problem Set 7

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on Friday, 06.12.2019, 09:15. The problem set will be discussed in the tutorials on Wednesday, 11.12.2019, and Friday, 13.12.2019.

*17. Continuity equation for the Dirac equation

Prove the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0
$$

with

$$
\boldsymbol{j}=\Psi^{\dagger}\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right) \Psi
$$

and $\rho=\Psi^{\dagger} \Psi$ for all solutions Ψ of the Dirac equation.

*18. Free particle solutions of the Dirac equation

Calculate the eigenvalues of the free-particle Dirac equation

$$
\left(\begin{array}{cccc}
m & 0 & p & 0 \\
0 & m & 0 & -p \\
p & 0 & -m & 0 \\
0 & -p & 0 & -m
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)=E\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)
$$

Figure 1: Left: Schematic drawing of a Dirac electron incident on a potential barrier. Right: Definition of the angles used in the problem. Assume that the sample is infinite in the y-direction.

Consider a Dirac electron with energy E incident on a potential barrier of size V as shown in the figure.
(a) Why is it sufficient to only require continuity of the wave-function and not its derivative?
(b) Assume the electron is incident at some angle ϕ in regions I and III and θ in region II, such that $k_{x}=k \cos \phi, k_{y}=k \sin \phi$ in regions I and III, while $\theta=\arctan \left(k_{y} / q_{x}\right)$ with $q_{x}=\sqrt{(V-E)^{2} / v^{2}-k_{y}^{2}}$ and $v=|\boldsymbol{k}| / m$ in region II. Explain why the wave-functions in the different regions can be written as

$$
\begin{aligned}
\psi_{\mathrm{I}}(x) & =\frac{1}{\sqrt{2}}\binom{1}{s e^{i \phi}} e^{i\left(k_{x} x+k_{y} y\right)}+\frac{r}{\sqrt{2}}\binom{1}{s e^{i(\pi-\phi)}} e^{i\left(k_{y} y-k_{x} x\right)} \\
\psi_{\mathrm{II}}(x) & =\frac{a}{\sqrt{2}}\binom{1}{s^{\prime} e^{i \theta}} e^{i\left(q_{x} x+k_{y} y\right)}+\frac{b}{\sqrt{2}}\binom{1}{s^{\prime} e^{i(\pi-\theta)}} e^{i\left(k_{y} y-q_{x} x\right)} \\
\psi_{\mathrm{III}}(x) & =\frac{t}{\sqrt{2}}\binom{1}{s e^{i \phi}} e^{i\left(k_{x} x+k_{y} y\right)} .
\end{aligned}
$$

Here $s=\operatorname{sgn}(E)$ and $s^{\prime}=\operatorname{sgn}(E-V)$. What is the physical significance of r, a, b, and t ?
(c) Use the continuity of the wave-function to calculate the transmission through the barrier $T\left(\theta, \phi, D q_{x}\right)=|t|^{2}$. What do you get for $D q_{x}=n \pi$ with n integer? For general values of $D q_{x}$, investigate what happens when $\phi, \theta \rightarrow 0$.

Hint: You might want to use a computer algebra system to solve the resulting linear equation system for t, and to compute $|t|^{2}$.

