Prof. Dr. B. Rosenow
M. Thamm

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 5

Winter Term 2019/20
Due Date: Hand in solutions to problems marked with * before the lecture on Friday, 22.11.2019, 09:15. The problem set will be discussed in the tutorials on Wednesday, 27.11.2019, and Friday, 29.11.2019

*12. Time-reversal and rotations

Consider $\hat{D}(\boldsymbol{l})=e^{-i l \cdot \hat{\boldsymbol{J}} / \hbar}$ and let $\hat{\theta}$ denote the time-reversal operator. Here $\hat{\boldsymbol{J}}$ is the angular momentum operator and l is the rotation axis.
(a) What is the time-reversed state corresponding to $\hat{D}(l)|j, m\rangle$?
(b) Using the properties of time reversal and rotations, prove for matrix elements of \hat{D} that

$$
\left(\hat{D}_{m^{\prime}, m}^{(j)}(\boldsymbol{l})\right)^{*}=(-1)^{m-m^{\prime}} \hat{D}_{-m^{\prime},-m}^{(j)}(\boldsymbol{l}) .
$$

(c) Show that $\hat{\theta}|j, m\rangle=i^{2 m}|j,-m\rangle$.

13. Rashba wire

In this problem we consider a quantum wire in the presence of a magnetic field. The Hamiltonian is given by

$$
\hat{H}=\frac{p^{2}}{2 m}+\alpha p \sigma_{y}+B_{z} \sigma_{z},
$$

where α is a constant, B_{z} denotes the magnetic field in the z-direction, and σ_{i} are the usual Pauli matrices.
(a) First consider the case where $B_{z}=0$. Calculate the eigenvalues and eigenstates of the Hamiltonian. Plot the eigenvalues as a function of momentum and indicate the Kramers pairs in your plot. What is the total degeneracy?
(b) Repeat the calculation in (a) but with $B_{z} \neq 0$.
(c) Let now \hat{V} denote an operator which is even under time-reversal, that is $\hat{\theta} \hat{V} \hat{\theta}^{-1}=\hat{V}$. Let also $|k, \sigma\rangle$ denote an eigenstate of the Hamiltonian. Show that $\langle-k,-\sigma| \hat{V}|k, \sigma\rangle=0$.

Remark: A matrix element like the one in part (c) appears, for example, when trying to calculate the rate of back-scattering of electrons. The life-time τ of the electrons is then given by Fermi's golden rule as

$$
\left.\frac{1}{\tau}=\frac{2 \pi}{\hbar} \rho_{F}|\langle-k,-\sigma| \hat{V}| k, \sigma\right\rangle\left.\right|^{2},
$$

with ρ_{F} denoting the density of states at the Fermi level.

