Prof. Dr. B. Rosenow<br>M. Thamm

Universität Leipzig

# Advanced Quantum Mechanics - Problem Set 3 

Winter Term 2019/20
Due Date: Hand in solutions to problems marked with * before the lecture on Friday,
08.11.2019, 09:15. The problem set will be discussed in the tutorials on Wednesday, 13.11.2019, and Friday, 15.11.2019

## 7. Eigenspinors

Consider a spin $1 / 2$ system in the presence of an external magnetic field $\boldsymbol{B}=B \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is a unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

$$
\hat{H}=-\frac{e}{m c} \hat{\boldsymbol{S}} \cdot \boldsymbol{B}
$$

where $e<0$ is the electron charge, $m$ the electron mass, $c$ the speed of light, and $\hat{\boldsymbol{S}}$ the vector of $\operatorname{spin} 1 / 2$ operators.
(a) Calculate the eigenvalues and normalized eigenspinors of the Hamiltonian.
(b) Why does the direction of the eigenspinors only depend on $\hat{\boldsymbol{n}}$ ?

## 8. Time- and spin-reversal

(a) Denote the wave function of a spinless particle corresponding to a plane wave in three dimensions by $\psi(\boldsymbol{x}, t)$. Show that $\psi^{*}(\boldsymbol{x},-t)$ is the wave function for the plane wave if the momentum direction is reversed.
(b) Let $\chi(\hat{\boldsymbol{n}})$ be the eigenspinor you calculated in the previous problem, with eigenvalue +1 . Using the explicit form of $\chi(\hat{\boldsymbol{n}})$ in terms of the polar and azimuthal angles which define $\hat{\boldsymbol{n}}$, verify that the eigenspinor with spin direction reversed is given by $-i \sigma_{y} \chi^{*}(\hat{\boldsymbol{n}})$.

## *9. Nearly free electron model

Often it is sufficient to treat the periodic potential on a lattice as a small perturbation. For such problems it is useful to expand the periodic potential in a plane wave expansion which only contains waves with the periodicity of the reciprocal lattice, such that

$$
U(\boldsymbol{x})=\sum_{\boldsymbol{G}} U_{\boldsymbol{G}} e^{i \boldsymbol{G} \cdot \boldsymbol{x}},
$$

where $\boldsymbol{G}$ is a reciprocal lattice vector which satisfies $e^{i \boldsymbol{G} \cdot \boldsymbol{R}}=1$, with $\boldsymbol{R}$ denoting a point on the lattice. We moreover expand the wave functions in terms of a set of plane waves which satisfy the periodic boundary conditions of the problem

$$
\psi(\boldsymbol{x})=\sum_{\boldsymbol{k}} c_{\boldsymbol{k}} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

(a) Using the expansions above, show that the Schrödinger equation

$$
\left[\frac{-\hbar^{2} \nabla^{2}}{2 m}+U(\boldsymbol{x})\right] \psi(\boldsymbol{x})=E \psi(\boldsymbol{x}),
$$

can be written as

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-E\right) c_{\boldsymbol{k}}+\sum_{\boldsymbol{G}} U_{\boldsymbol{G}} c_{\boldsymbol{k}-\boldsymbol{G}}=0
$$

(b) Perform the shift $\boldsymbol{q}=\boldsymbol{k}+\boldsymbol{K}$, where $\boldsymbol{K}$ is a reciprocal lattice vector which ensures that we can always find a $\boldsymbol{q}$ which lies in the first Brillouin zone ${ }^{1}$, and show that the Schrödinger equation now gives

$$
\left(\frac{\hbar^{2}}{2 m}(\boldsymbol{q}-\boldsymbol{K})^{2}-E\right) c_{\boldsymbol{q}-\boldsymbol{K}}+\sum_{\boldsymbol{G}} U_{\boldsymbol{G}-\boldsymbol{K}} c_{\boldsymbol{q}-\boldsymbol{G}}=0 .
$$

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the leading Fourier component contributes to the potential

$$
U(x)=2 U_{0} \cos \frac{2 \pi x}{a} .
$$

Explain how your result in (b) can be used to calculate the energy of the system.
(d) Suppose now that $U_{0}$ is very small. Near $q=\pi / a$ the Schrödinger equation reduces to

$$
\left(\begin{array}{cc}
\frac{\hbar^{2}}{2 m}\left(q-\frac{2 \pi}{a}\right)^{2}-E & U_{0} \\
U_{0} & \frac{\hbar^{2} q^{2}}{2 m}-E
\end{array}\right)\binom{c_{1}}{c_{0}}=0
$$

Calculate and plot the energy eigenvalues. What happens at $q=\pi / a$ ?

[^0]
[^0]:    ${ }^{1}$ As an example of a Brillouin zone consider the simple cubic lattice with sides of length $a$. Any point on the lattice can be written in terms of $\boldsymbol{a}_{1}=a \hat{\boldsymbol{x}}, \boldsymbol{a}_{2}=a \hat{\boldsymbol{y}}$, and $\boldsymbol{a}_{\boldsymbol{3}}=a \hat{\boldsymbol{z}}$. In reciprocal space the basis vectors become $\boldsymbol{b}_{\mathbf{1}}=\frac{2 \pi}{a} \hat{\boldsymbol{x}}, \boldsymbol{b}_{\mathbf{2}}=\frac{2 \pi}{a} \hat{\boldsymbol{y}}$, and $\boldsymbol{b}_{\mathbf{3}}=\frac{2 \pi}{a} \hat{\boldsymbol{z}}$. The boundaries of the first Brillouin zone are then the planes normal to the six vectors $\pm \boldsymbol{b}_{\mathbf{1}}, \pm \boldsymbol{b}_{\mathbf{2}}$, and $\pm \boldsymbol{b}_{\mathbf{3}}$. The length of each side is $2 \pi / a$.

