Institut für Theoretische Physik

Prof. Dr. B. Rosenow

Universität Leipzig

M. Thamm

Advanced Quantum Mechanics - Problem Set 0

Winter Term 2019/20

Due Date: This problem set is discussed in the seminars on Wednesday, October 23, and Friday, October 25.

Internet: Advanced Quantum Mechanics exercises

The aim of the problem set is to get familiar with the Dirac notation.

1. Two-level system

Consider the Hamiltonian of a two-level system

$$
\hat{H}=a(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 1|),
$$

where $a>0$ has dimensions of an energy. Calculate the energy eigenvalues and eigenstates with respect to the orthonormal basis $\{|1\rangle,|2\rangle\}$.

2. Unitary transformation

Consider the unitary transformation $\left|\psi^{\prime}\right\rangle=\hat{U}|\psi\rangle$.
(a) Show that the operator \hat{A} has to be transformed as $\hat{A}^{\prime}=\hat{U} \hat{A} \hat{U}^{\dagger}$
(b) Show that with these definitions the following properties of the operators are conserved in the transformation:
(i) linearity and hermiticity
(ii) commutation relations
(iii) the eigenvalue spectrum
(iv) the algebraic relations $\hat{F}=\hat{K}+\hat{M}$ and $\hat{F}=\hat{K} \hat{M}$

Let $|\alpha\rangle$ and $|\beta\rangle$ be arbitrary ket-vectors. Use the normalization $\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right)$ and completeness relation $\int d x|x\rangle\langle x|=\hat{\mathbb{1}}$ to obtain an expression for $\langle x \mid p\rangle$. Show then explicitly
(a) $\langle p| \hat{x}|\alpha\rangle=i \hbar \frac{\partial}{\partial p} \psi_{\alpha}(p)$,
(b) $\langle\beta| \hat{x}|\alpha\rangle=\int d p \psi_{\beta}^{*}(p) i \hbar \frac{\partial}{\partial p} \psi_{\alpha}(p)$.

Here $\psi_{\alpha}(p) \equiv\langle p \mid \alpha\rangle$ and $\psi_{\beta}(p) \equiv\langle p \mid \beta\rangle$ are one dimensional wave functions in momentum representation and \hat{x} is the position operator.

4. Change of representation

Let's denote the eigenstate of the position operator \hat{x} with eigenvalue x as $|x\rangle$, the eigenstate of the momentum operator \hat{p} with eigenvalue p as $|p\rangle$ and the eigenstate of the Hamilton operator $\hat{H}=\frac{\hat{p}^{2}}{2 m}$ with energy E as $|E\rangle$. Assume that the state $|\Psi\rangle$ in the momentum representation is given as $\langle p \mid \Psi\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(-i x_{0} \frac{p}{\hbar}\right)$.
(a) Calculate $\langle x \mid \Psi\rangle$. How can the state $|\Psi\rangle$ therefore be described?
(b) Use the eigenvalue equation for \hat{H} and the matrix elements $\langle x| \hat{H}\left|x^{\prime}\right\rangle=-\frac{d^{2}}{d x^{2}} \delta\left(x-x^{\prime}\right) \frac{\hbar^{2}}{2 m}$ to derive a differential equation for $\Psi_{E}(x)=\langle x \mid E\rangle$ and solve $\Psi_{E}(x)$.
(c) Calculate the matrix elements $\langle E| \hat{H}\left|E^{\prime}\right\rangle$.

