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1. Charge neutrality and zero momentum component 4 Punkte

In the Jellium model, the negative charge of the electrons is compensated by a positively charged
background of ions, which is assumed to be spatially homogeneous. Show that this positive
background is responsible for the absence of the zero momentum component in the interaction
term, i.e. show that

1

2

∫
ddr ddr′ [ρ̂(r)V (r − r′)ρ̂(r′)− ρ̂(r)V (r − r′)ρ̄] =

1

2Ld

∑
q ̸=0

ρ̂−qV (q)ρ̂q.

Here, ρ̄ = ⟨ρ̂(r)⟩ is the average charge density of electrons, and the Fourier transform of the
density operator and interaction potential are defined as ρ̂q =

∫
ddr ρ̂(r)e−iq·r and V (q) =∫

ddr V (r)e−iq·r, respectively. All spatial integrals are over a hypercube of volume Ld, and you
may assume periodic boundary conditions.

Hint: You may use that 1
Ld

∫
ddr ρ̂(r) ≈ ρ̄.

2. Interaction in frequency space 4 Punkte

Starting from the interaction

V̂el =
1

2

∑
σ,σ′

∫
d3r

∫
d3r′Ψ†

σ(r)Ψ
†
σ′(r

′)
e2

4πϵ|r − r′|
Ψσ′(r′)Ψσ(r),

show that the interaction part of the action, in frequency space, is given by

Sel[Ψ̄,Ψ] =
1

2
T
∑
ϵl,ϵ

′
l

ωn

∑
σ,σ′

1

L3

∑
k,k′

q ̸=0

Ψ̄k+q,σ(ϵl + ωn)Ψ̄k′−q,σ′(ϵ′l − ωn)
e2

ϵq2
Ψk′,σ′(ϵ′l)Ψk,σ(ϵl),

where the field operators in Matsubara space are given by

Ψ(ωn) =
1√
β

∫ β

0
dτ Ψ(τ)eiωnτ ,

Ψ̄(ωn) =
1√
β

∫ β

0
dτ Ψ̄(τ)e−iωnτ .
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3. Fermi liquid quasiparticle lifetime 2+2+2+3+3 Punkte

Fermi liquid theory provides the standard model of simple
metals. In it, the low-energy properties of a metallic state
can be described in terms of a fermionic liquid of quasi-
particles. These quasiparticles are assumed to be adiabat-
ically connected to the states of a non-interacting Fermi
gas, and can be labeled by the corresponding quantum
numbers. Note, however, that they are not exact eigen-
states of the interacting system. Instead, they obtain a
finite lifetime. Under certain conditions, the lifetime τqp
of a quasiparticle state is given by the inverse scattering
rate which can be determined from Fermi’s Golden Rule.
To leading order in the interaction V we have

1

τqp
= W =

2π

ℏ
∑
out

|⟨in|V |out⟩|2δ(Ein − Eout).

k1

k′1 k2

k′2

kF

The decay of the quasiparticle state is thus described by the probability per unit time W to
have a transition from an in-state to one of the out-states, induced by the interaction V with
the constraint of energy conservation.

(a) How long does the lifetime of a quasiparticle with energy ϵ above the Fermi surface have
to be in order to have a well-defined quantum state?

(b) We will consider the interaction of a quasiparticle with wave vector k1 above the Fermi sea,
|k1| > kF , with a quasiparticle at k2, below the Fermi energy, |k2| < kF (there are many
of these, see the figure.). The two states after scattering will have wave vector k′

1 and k′
2.

Formulate energy and momentum conservation and express
∑

out in terms of independent
momentum integrations. Where are the out-states located relative to the Fermi surface?
Why?

(c) For sufficiently short-ranged interactions one finds W ∝
∑

out δ(Ein − Eout). Show that
energy and momentum conservation constrain the angular momentum-integrations, such
that only the radial momentum-integrations remain.

(d) Provide an argument that a quasiparticle in-state with momentum close to the Fermi
momentum kF gives |k1| ≃ |k′

1|+ |k′
2| − |k2|.

(e) From the properties of the in- and out-states specified above and the approximate relation
derived in (b), find appropriate bounds for the radial momentum-integrations. Further,
assume

∫
dk kd−1 ≃ kd−1

F

∫
dϵk. Perform the radial integrations and discuss the behavior

of 1/τqp upon letting the energy of the initially excited quasiparticle approach the Fermi
surface. Using ϵ ∝ kBT , estimate the temperature dependence of the quasiparticle lifetime
in a Fermi liquid at temperature T .
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