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1. The Cooper Problem 3+3+2 Punkte

Consider a pair of electrons in a singlet state, described by the symmetric spatial wave function

ϕ(r − r′) =

∫
d3k

(2π)3
χ(k)eik·(r−r′). (1)

In the momentum representation the Schrödinger equation has the form(
E − 2

ℏ2k2

2m

)
χ(k) =

∫
d3k

(2π)3
V (k,k′)χ(k′). (2)

We assume that the two electrons interact in the presence of a degenerate free electron gas,
whose existence is felt only via the exclusion principle: electron levels with k < kF are forbidden
to each of the two electrons, which gives the constraint:

χ(k) = 0, k < kF . (3)

We take the interaction of the pair to have the simple attractive form

V (k1,k2) =

{
−g, ϵF ≤ ℏ2k2i

2m ≤ ϵF + ℏωD,
0, otherwise

, (4)

with i = 1, 2, and look for a bound-state solution to the Schrödinger equation (2) consistent
with the constraint (3). Since we are considering only one-electron levels which in the absence
of the attraction have energies in the excess of 2ϵF , a bound state will be one with energy less
than 2ϵF , and the binding energy will be

∆ = 2ϵF − E. (5)

(a) Show that a bound state of energy E exists provided that

1 = g

∫ ϵF+ℏωD

ϵF

dϵ
ρ(ϵ)

2ϵ− E
, (6)

where ρ(ϵ) is the density of one-electron levels per unit volume for a given spin.

(b) Show that Eq. (6) has a solution with E < 2ϵF for arbitrarily weak g, provided that
ρ(ϵF ) ̸= 0 and that ρ(ϵ) is continuous. (Note the crucial role played by the exclusion
principle: If the lower cutoff was not ϵF , but 0, then since ρ(0) = 0, there would not be a
solution for arbitrarily weak couplings.)
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(c) Assuming that ρ(ϵ) differs negligibly from ρ(ϵF ) = ρF in the range ϵF < ϵ < ϵF + ℏωD,
show that the binding energy is given by

∆ = 2ℏωD
e
− 2

gρF

1− e
− 2

gρF

, (7)

or, in the weak coupling limit:

∆ = 2ℏωDe
− 2

gρF . (8)

2. BCS as a mean-field theory 4+2+4 Punkte

In this problem we will consider electrons interacting through the same type of interaction as in
the previous problem. That is we consider the following Hamiltonian

H =
∑
kσ

ξkc
†
kσckσ +

∑
k1,k2

V (k1,k2)c
†
k1↑c

†
−k1↓c−k2↓ck2↑,

where

V (k1,k2) =

{
−g, ϵF ≤ ℏ2k2i

2m ≤ ϵF + ℏωD,
0, otherwise

.

(a) Proceeding analoguously to the Hartree-Fock mean-field theory in problem 15 convince
yourself that a mean-field decoupling of the Hamiltonian yields

H =
∑
kσ

ξkc
†
kσckσ −

∑
k

∆kc
†
k↑c

†
−k↓ −

∑
k

∆∗
kck↓c−k↑ +

∑
k1,k2

V (k1,k2)⟨c†k1↑c
†
−k1↓⟩⟨ck2↓c−k2↑⟩,

with

∆k1 = −
∑
k2

V (k1,k2)⟨c−k2↓ck2↑⟩. (9)

(b) Show that the Hamiltonian can be diagonalised by the following unitary transformation(
α†
k↑

α−k↓

)
=

(
cos θk sin θk
sin θk − cos θk

)(
c†k↑
c−k↓

)
,

such that

H =
∑
kσ

Ekα
†
kσαkσ + constant.

Derive an expression for Ek.

(c) By writing the original fermionic operators in terms of their transformed counterparts, use
Equation (9) to derive a self-consistency equation for ∆k. The expectation value is with
respect to the ground state

|BCS⟩ =
∏
k

α−k↓αk↑|0⟩ ∼
∏
k

(
cos θk − sin θkc

†
k↑c

†
−k↓

)
|0⟩,

where |0⟩ denotes the vacuum.
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