Active Matter Physics

Prepare the solutions for the seminar on 2024.5.15

Exercise Sheet 3

3.1

The position $x(t)$ of a particle executing a uniform random walk is the solution of the stochastic differential equation

$$
\begin{equation*}
\mathrm{d} x(t)=\mu \mathrm{d} t+\sigma \mathrm{d} W(t), \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

where μ and σ are constants. Find the probability density $f(t, x(t))$ of $x(t)$ at time $t>0$. You may use the following hints:

1. Set up the corresponding Fokker-Planck equation for $f(t, x(t))$. What is the respective initial condition?
2. Apply the method of Fourier transformation as well as its properties to solve this partial differential equation.

3.2

Consider a biased random walk on a discrete lattice with $L+1$ sites and for all $1 \leq i \leq L-1$ the transition probabilities:

$$
\pi(i \rightarrow j)=\left\{\begin{array}{ll}
p & \text { if } j=i+1 \tag{2}\\
q & \text { if } j=i-1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

For the boundaries, it holds that

$$
\pi(0 \rightarrow j)=\left\{\begin{array}{ll}
p & \text { if } j=1 \tag{3}\\
q & \text { if } j=0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \pi(L \rightarrow j)= \begin{cases}p & \text { if } j=L \\
q & \text { if } j=L-1 \\
0 & \text { otherwise }\end{cases}\right.
$$

i.e., the random walker stays where it is if tries to move below 0 or above L (reflecting boundary conditions).

- Calculate the stationary probability $P(0)$ using the detailed balance condition.
- Consider the explicit case of $L=2$ and $p=1-q=1 / 3$. Write down the transition matrix and the transition graph of this process (cf., for example, Markov chains). Calculate the stationary probability distribution $P=(P(0), P(1), P(2))$ for this case. Is the process reversible (i.e., is the detailed balance condition fulfilled)?
- In another setting a random walker obtains the following transition matrix:

$$
\Pi=(\pi(i \rightarrow j))_{i, j \in\{0,1,2\}}=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \tag{4}\\
1 / 3 & 0 & 2 / 3 \\
2 / 3 & 1 / 3 & 0
\end{array}\right)
$$

Write down its transition graph. Calculate the stationary probability distribution via the ansatz $P \cdot \Pi \stackrel{!}{=} P$. Is this random walker in detailed balance?

3.3

We consider a micro-particle that is able to move on a discrete lattice with L lattice sites such that the site $L+1$ corresponds to the site 1 (periodic boundary conditions, see Figure 1). The particle is able to move to an ascending lattice site in clockwise direction at a rate p, whereas it moves to a lattice site in anti-clockwise direction at a rate q with $p+q=1$ (Figure 1). Such a rate refers to a probability per time entailing in a time-continuous frame, that the term "rate p " refers to the probability $p \Delta t$ of a hopping in clockwise direction within a time interval Δt. The probability to find such an asymmetric random walker at site $\sigma \in\{1,2, \ldots, L\}$ (given by the Boltzmann distribution for equilibrium systems) in its stationary state is given by $P(\sigma)=1 / L$. Calculate for which values p and q the asymmetric random walker is a non-equilibrium system in the stationary state.

Figure 1: Asymmetric random walk with periodic boundary conditions.

