Active Matter Physics

Prepare the solutions for the seminar on 2024.4.24

Exercise Sheet 2

2.1

For each of the following spherical particles suspended in water at T = 20 °C:

- 1. a grain of sand, 100 μ m in diameter, density of 2200 kg \cdot m⁻³,
- 2. a polymer particle, 1 μ m in diameter, density of 1050 kg \cdot m⁻³,
- 3. a virus, 100 nm in diameter, density of 1020 kg \cdot m⁻³,
- calculate the sedimentation velocity,
- calculate the diffusion coefficient,
- estimate the time the particle takes to diffuse a distance equal to its own diameter.

(Additional data: The viscosity of water is $1.002 \cdot 10^{-3}$ Pa · s and the density of water is $1000 \text{ kg} \cdot \text{m}^{-3}$).

2.2

Consider N indistinguishable ideal particles that are moving in a gravitational field with potential energy $E_{\text{pot}} = mgz$, where m is the mass of a particle and g is the gravitational constant. Using the Boltzmann distributed particle density $n(\mathbf{r}, \mathbf{p})$ derive the barometric height formula describing the number of particles N(z) dz with z-coordinate between z and z + dz.

$\mathbf{2.3}$

A four-residue protein can take on the four different conformations shown in Figure 1. Three conformations are open and have the energy ϵ ($\epsilon > 0$), and one is compact and has the energy zero.

- At temperature T, calculate the probability p_0 of finding the molecule in an open conformation. Calculate the probability p_c that it is compact.
- Determine what happens to the probability p_c calculated in the previous bullet point in the limit of very large and very low temperatures.
- Calculate the average energy of the molecule at temperature T.

Figure 1: Toy model of protein folding showing four configurations.