Active Matter Physics

Prepare the solutions for the seminar on 2024.4.24

Exercise Sheet 2

2.1

For each of the following spherical particles suspended in water at $T=20^{\circ} \mathrm{C}$:

1. a grain of sand, $100 \mu \mathrm{~m}$ in diameter, density of $2200 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$,
2. a polymer particle, $1 \mu \mathrm{~m}$ in diameter, density of $1050 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$,
3. a virus, 100 nm in diameter, density of $1020 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$,

- calculate the sedimentation velocity,
- calculate the diffusion coefficient,
- estimate the time the particle takes to diffuse a distance equal to its own diameter.
(Additional data: The viscosity of water is $1.002 \cdot 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$ and the density of water is $1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$).

2.2

Consider N indistinguishable ideal particles that are moving in a gravitational field with potential energy $E_{\text {pot }}=m g z$, where m is the mass of a particle and g is the gravitational constant. Using the Boltzmann distributed particle density $n(\mathbf{r}, \mathbf{p})$ derive the barometric height formula describing the number of particles $N(z) \mathrm{d} z$ with z-coordinate between z and $z+\mathrm{d} z$.

2.3

A four-residue protein can take on the four different conformations shown in Figure 1. Three conformations are open and have the energy $\epsilon(\epsilon>0)$, and one is compact and has the energy zero.

- At temperature T, calculate the probability p_{o} of finding the molecule in an open conformation. Calculate the probability p_{c} that it is compact.
- Determine what happens to the probability p_{c} calculated in the previous bullet point in the limit of very large and very low temperatures.
- Calculate the average energy of the molecule at temperature T.

Figure 1: Toy model of protein folding showing four configurations.

