Active Matter Physics

Prepare the solutions for the seminar on 2024.4.17

Exercise Sheet 1

1.1

Consider a system of N ideal particles that are distinguishable and which are distributed on m energy levels such that the total energy is fixed by E. The amount of energy levels m for $N \gg 1$ is chosen such that the number of particles, n_i , that can be found on the *i*th level $(i = 1, \dots, m)$ fulfills $1 \ll n_i \ll N$. In this task, we assume that the energy differences between two adjacent energy levels are all equal. An example for N = 6, m = 3, and E = 4a with a the energy differences between two adjacent energy levels is shown in Figure 1.

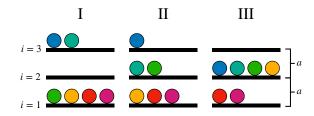


Figure 1: Possible distributions of N = 6 particles on m = 3 energy levels such that the total energy is E = 4a. The number of possible arrangements of these six particles for the setup I is $\omega_{\rm I} = 15$. For the setups II and III the number of such arrangements is $\omega_{\rm II} = 60$ and $\omega_{\rm III} = 15$, respectively.

• Back to the general case, calculate the number of possibilities ω to distribute these N particles on the m energy levels for a fixed arrangement (cf. Figure 1).

A single realization of this distribution is called a configuration. The total number of these configurations Ω is related to the probability to find the system in a particular configuration via

$$P_j = 1/\Omega \qquad (j = 1, \cdots, \Omega) \tag{1}$$

according to the principle of equal *a priori* probability. Hence, ω/Ω is the probability to find the system in a given distribution.

• Calculate the probability distribution $n_i(\epsilon_i)$ that maximizes ω by means of a variational approach, i.e., by infinitesimally increasing the number of particles n_i that can be found in the *i*th energy level and by calculating how ω changes then:

$$n_i \to n_i + \mathrm{d}n_i \Rightarrow \ln(\omega) \to \ln(\omega) + \mathrm{d}(\ln(\omega)).$$
 (2)

The variable ϵ_i is hereby the energy of a particle in the *i*th energy level. The natural logarithm of ω is maximized and not ω directly as this unveils technical benefits. Such an approach is valid for large values of ω . For the calculation you may use the following recipe:

- State the two side conditions that hold for this system and calculate their variation with respect to n_i .
- Expand the total differential $d(\ln(\omega)) = d(\ln(\omega(\{n_i\}_{i=1}^m)))$ in general terms of $\{dn_i\}_{i=1}^m$. Which general condition holds for $d(\ln(\omega))$ in this maximization task?
- Add to the previous function of $d(\ln(\omega))$ the variations of the two side conditions with Lagrange multipliers α and $-\beta$.

- As these two Lagrange multipliers can be chosen freely, they will be chosen such that those terms are set to zero in $d(\ln(\omega))$ that belong to i = 1, 2. What does this then mean for those terms in $d(\ln(\omega))$ that belong to $i \ge 3$?
- Use the result for ω from the first bullet point as well as Strinling's formula:

$$\ln(n!) \approx n \ln(n) - n \tag{3}$$

to calculate the probability distribution $n_i(\epsilon_i)$.

For the determination of the Lagrange multipliers, you can make the following assumptions:

$$\sum_{i=1}^{m} e^{-\beta\epsilon_i} \to \int_0^\infty e^{-\beta\epsilon} d\epsilon, \qquad (4)$$

$$\sum_{i=1}^{m} \epsilon_i \mathrm{e}^{-\beta \epsilon_i} \to \int_0^\infty \epsilon \mathrm{e}^{-\beta \epsilon} \mathrm{d}\epsilon \tag{5}$$

which hold, since we considered equidistant energy differences.

1.2

Consider an agent that can switch between two states 1 and 2 as, for example, a person being healthy (state 1) or sick (state 2) or a chemical reaction taking place such as an atom of sodium that is not bound (state 1) or bound to a chlorine atom (state 2). Furthermore, assume the rates at which the agent changes its state, i.e., $\pi(1 \rightarrow 2)$ and $\pi(2 \rightarrow 1)$ to be constant. Starting at some initial time t_0 , the probabilities of finding the agent in state 1 or 2 at time t are $P_1(t)$ and $P_2(t)$, respectively.

- Determine which processes contribute to the probability $P_1(t + dt)$ of finding the agent in state 1 at time t + dt.
- Derive the master equations for the given system.
- Solve the system of master equations using the initial conditions $P_1(t = t_0) = P_1(t_0)$ and $P_2(t = t_0) = P_2(t_0)$.
- Verify that the stationary distributions satisfy the detailed balance condition.

1.3

Consider N indistinguishable ideal particles that are freely moving in a box of volume V, i.e., their energy is given by

$$\epsilon(\mathbf{r}, \mathbf{p}) = \begin{cases} \frac{\mathbf{p}^2}{2m} & \mathbf{r} \in V, \\ \infty & \text{else,} \end{cases}$$
(6)

where m is the mass of a particle.

• Calculate the canonical partition function of a single particle and express it in terms of the thermal de-Broglie wavelength λ_{β} given via

$$\lambda_{\beta} = \sqrt{\frac{\beta h^2}{2\pi m}}.$$
(7)

(Hint: Do not forget the unit "volume" h^3 in this continuous situation.)

- Using the Boltzmann distributed particle density $n(\mathbf{r}, \mathbf{p})$ calculate the number of particles N(p) with momentum in the range of p and p + dp.
- Employing the previous result calculate the number of particles N(v) with velocities in the range of v and v + dv which is the familiar Maxwell–Boltzmann velocity distribution.