Active Matter Physics

Prepare the solutions for the seminar on 2024.4.17

Exercise Sheet 1

1.1

Consider a system of N ideal particles that are distinguishable and which are distributed on m energy levels such that the total energy is fixed by E. The amount of energy levels m for $N \gg 1$ is chosen such that the number of particles, n_{i}, that can be found on the i th level $(i=1, \cdots, m)$ fulfills $1 \ll n_{i} \ll N$. In this task, we assume that the energy differences between two adjacent energy levels are all equal. An example for $N=6, m=3$, and $E=4 a$ with a the energy difference between two adjacent energy levels is shown in Figure 1.

Figure 1: Possible distributions of $N=6$ particles on $m=3$ energy levels such that the total energy is $E=4 a$. The number of possible arrangements of these six particles for the setup I is $\omega_{\mathrm{I}}=15$. For the setups II and III the number of such arrangements is $\omega_{\text {II }}=60$ and $\omega_{\text {III }}=15$, respectively.

- Back to the general case, calculate the number of possibilities ω to distribute these N particles on the m energy levels for a fixed arrangement (cf. Figure 1).

A single realization of this distribution is called a configuration. The total number of these configurations Ω is related to the probability to find the system in a particular configuration via

$$
\begin{equation*}
P_{j}=1 / \Omega \quad(j=1, \cdots, \Omega) \tag{1}
\end{equation*}
$$

according to the principle of equal a priori probability. Hence, ω / Ω is the probability to find the system in a given distribution.

- Calculate the probability distribution $n_{i}\left(\epsilon_{i}\right)$ that maximizes ω by means of a variational approach, i.e., by infinitesimally increasing the number of particles n_{i} that can be found in the i th energy level and by calculating how ω changes then:

$$
\begin{equation*}
n_{i} \rightarrow n_{i}+\mathrm{d} n_{i} \Rightarrow \ln (\omega) \rightarrow \ln (\omega)+\mathrm{d}(\ln (\omega)) \tag{2}
\end{equation*}
$$

The variable ϵ_{i} is hereby the energy of a particle in the i th energy level. The natural logarithm of ω is maximized and not ω directly as this unveils technical benefits. Such an approach is valid for large values of ω. For the calculation you may use the following recipe:

- State the two side conditions that hold for this system and calculate their variation with respect to n_{i}.
- Expand the total differential $\mathrm{d}(\ln (\omega))=\mathrm{d}\left(\ln \left(\omega\left(\left\{n_{i}\right\}_{i=1}^{m}\right)\right)\right)$ in general terms of $\left\{\mathrm{d} n_{i}\right\}_{i=1}^{m}$. Which general condition holds for $\mathrm{d}(\ln (\omega))$ in this maximization task?
- Add to the previous function of $\mathrm{d}(\ln (\omega))$ the variations of the two side conditions with Lagrange multipliers α and $-\beta$.
- As these two Lagrange multipliers can be chosen freely, they will be chosen such that those terms are set to zero in $\mathrm{d}(\ln (\omega))$ that belong to $i=1,2$. What does this then mean for those terms in $\mathrm{d}(\ln (\omega))$ that belong to $i \geq 3$?
- Use the result for ω from the first bullet point as well as Strinling's formula:

$$
\begin{equation*}
\ln (n!) \approx n \ln (n)-n \tag{3}
\end{equation*}
$$

to calculate the probability distribution $n_{i}\left(\epsilon_{i}\right)$.

- For the determination of the Lagrange multipliers, you can make the following assumptions:

$$
\begin{align*}
\sum_{i=1}^{m} \mathrm{e}^{-\beta \epsilon_{i}} & \rightarrow \int_{0}^{\infty} \mathrm{e}^{-\beta \epsilon} \mathrm{d} \epsilon \tag{4}\\
\sum_{i=1}^{m} \epsilon_{i} \mathrm{e}^{-\beta \epsilon_{i}} & \rightarrow \int_{0}^{\infty} \epsilon \mathrm{e}^{-\beta \epsilon} \mathrm{d} \epsilon \tag{5}
\end{align*}
$$

which hold, since we considered equidistant energy differences.

1.2

Consider an agent that can switch between two states 1 and 2 as, for example, a person being healthy (state 1) or sick (state 2) or a chemical reaction taking place such as an atom of sodium that is not bound (state 1) or bound to a chlorine atom (state 2). Furthermore, assume the rates at which the agent changes its state, i.e., $\pi(1 \rightarrow 2)$ and $\pi(2 \rightarrow 1)$ to be constant. Starting at some initial time t_{0}, the probabilities of finding the agent in state 1 or 2 at time t are $P_{1}(t)$ and $P_{2}(t)$, respectively.

- Determine which processes contribute to the probability $P_{1}(t+\mathrm{d} t)$ of finding the agent in state 1 at time $t+\mathrm{d} t$.
- Derive the master equations for the given system.
- Solve the system of master equations using the initial conditions $P_{1}\left(t=t_{0}\right)=P_{1}\left(t_{0}\right)$ and $P_{2}\left(t=t_{0}\right)=P_{2}\left(t_{0}\right)$.
- Verify that the stationary distributions satisfy the detailed balance condition.

1.3

Consider N indistinguishable ideal particles that are freely moving in a box of volume V, i.e., their energy is given by

$$
\epsilon(\mathbf{r}, \mathbf{p})= \begin{cases}\frac{\mathbf{p}^{2}}{2 m} & \mathbf{r} \in V \tag{6}\\ \infty & \text { else }\end{cases}
$$

where m is the mass of a particle.

- Calculate the canonical partition function of a single particle and express it in terms of the thermal de-Broglie wavelength λ_{β} given via

$$
\begin{equation*}
\lambda_{\beta}=\sqrt{\frac{\beta h^{2}}{2 \pi m}} \tag{7}
\end{equation*}
$$

(Hint: Do not forget the unit "volume" h^{3} in this continuous situation.)

- Using the Boltzmann distributed particle density $n(\mathbf{r}, \mathbf{p})$ calculate the number of particles $N(p)$ with momentum in the range of p and $p+\mathrm{d} p$.
- Employing the previous result calculate the number of particles $N(v)$ with velocities in the range of v and $v+\mathrm{d} v$ which is the familiar Maxwell-Boltzmann velocity distribution.

