
Active Matter Physics
Prepare the solutions for the seminar on 2024.4.17

Exercise Sheet 1
1.1
Consider a system of N ideal particles that are distinguishable and which are distributed on m
energy levels such that the total energy is fixed by E. The amount of energy levels m for N ≫ 1
is chosen such that the number of particles, ni, that can be found on the ith level (i = 1, · · ·, m)
fulfills 1 ≪ ni ≪ N . In this task, we assume that the energy differences between two adjacent
energy levels are all equal. An example for N = 6, m = 3, and E = 4a with a the energy difference
between two adjacent energy levels is shown in Figure 1.
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Figure 1: Possible distributions of N = 6 particles on m = 3 energy levels such that the total
energy is E = 4a. The number of possible arrangements of these six particles for the setup I is
ωI = 15. For the setups II and III the number of such arrangements is ωII = 60 and ωIII = 15,
respectively.

• Back to the general case, calculate the number of possibilities ω to distribute these N particles
on the m energy levels for a fixed arrangement (cf. Figure 1).

A single realization of this distribution is called a configuration. The total number of these con-
figurations Ω is related to the probability to find the system in a particular configuration via

Pj = 1/Ω (j = 1, · · ·, Ω) (1)

according to the principle of equal a priori probability. Hence, ω/Ω is the probability to find the
system in a given distribution.

• Calculate the probability distribution ni(ϵi) that maximizes ω by means of a variational
approach, i.e., by infinitesimally increasing the number of particles ni that can be found in
the ith energy level and by calculating how ω changes then:

ni → ni + dni ⇒ ln(ω) → ln(ω) + d(ln(ω)). (2)

The variable ϵi is hereby the energy of a particle in the ith energy level. The natural logarithm
of ω is maximized and not ω directly as this unveils technical benefits. Such an approach is
valid for large values of ω. For the calculation you may use the following recipe:

– State the two side conditions that hold for this system and calculate their variation with
respect to ni.

– Expand the total differential d(ln(ω)) = d(ln(ω({ni}m
i=1))) in general terms of {dni}m

i=1.
Which general condition holds for d(ln(ω)) in this maximization task?

– Add to the previous function of d(ln(ω)) the variations of the two side conditions with
Lagrange multipliers α and −β.
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– As these two Lagrange multipliers can be chosen freely, they will be chosen such that
those terms are set to zero in d(ln(ω)) that belong to i = 1, 2. What does this then
mean for those terms in d(ln(ω)) that belong to i ≥ 3?

– Use the result for ω from the first bullet point as well as Strinling’s formula:

ln(n!) ≈ n ln(n) − n (3)

to calculate the probability distribution ni(ϵi).
– For the determination of the Lagrange multipliers, you can make the following assump-

tions:
m∑

i=1
e−βϵi →

∫ ∞

0
e−βϵdϵ, (4)

m∑
i=1

ϵie−βϵi →
∫ ∞

0
ϵe−βϵdϵ (5)

which hold, since we considered equidistant energy differences.

1.2
Consider an agent that can switch between two states 1 and 2 as, for example, a person being
healthy (state 1) or sick (state 2) or a chemical reaction taking place such as an atom of sodium
that is not bound (state 1) or bound to a chlorine atom (state 2). Furthermore, assume the rates
at which the agent changes its state, i.e., π(1 → 2) and π(2 → 1) to be constant. Starting at some
initial time t0, the probabilities of finding the agent in state 1 or 2 at time t are P1(t) and P2(t),
respectively.

• Determine which processes contribute to the probability P1(t + dt) of finding the agent in
state 1 at time t + dt.

• Derive the master equations for the given system.

• Solve the system of master equations using the initial conditions P1(t = t0) = P1(t0) and
P2(t = t0) = P2(t0).

• Verify that the stationary distributions satisfy the detailed balance condition.

1.3
Consider N indistinguishable ideal particles that are freely moving in a box of volume V , i.e., their
energy is given by

ϵ(r, p) =
{

p2

2m r ∈ V,

∞ else,
(6)

where m is the mass of a particle.

• Calculate the canonical partition function of a single particle and express it in terms of the
thermal de-Broglie wavelength λβ given via

λβ =
√

βh2

2πm
. (7)

(Hint: Do not forget the unit “volume” h3 in this continuous situation.)

• Using the Boltzmann distributed particle density n(r, p) calculate the number of particles
N(p) with momentum in the range of p and p + dp.

• Employing the previous result calculate the number of particles N(v) with velocities in the
range of v and v + dv which is the familiar Maxwell–Boltzmann velocity distribution.
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