Experimental Physics III

Submission due: January 26, 2023, before the lecture starts

Exercise Sheet 12

12.1

As we measured in the lecture, the projector without IR filter emits a spectrum similar to a black body.

- Calculate an expression that correlates the wavelength λ_{m} at which the spectral energy density $\omega_{\lambda}(\lambda, T)$ peaks and compare this relation to Wien's displacement law. Hint: Substitute $\lambda \cdot T=: \Lambda$ and use the root as graphically determined in Figure 1 (left).
- During the lecture we also measured the values of the peak wavelength of the radiation for three different values of voltages and thus for three different temperatures. These values are $3.620 \mu \mathrm{~m}, 2.900 \mu \mathrm{~m}$, and $2.070 \mu \mathrm{~m}$ (Figure 1 (right)). Calculate the corresponding values of the temperature of the detector lamp's filament.

Figure 1: (left) Graphically determined root of the function as stated on the y-axis. (right) Spectral radiance as measured during the lecture and indicated peaks of the curves.

12.2

An X-ray quantum with a wavelength of $\lambda=1 \AA$ interacts with a weakly bound electron of an atom and is deflected by an angle of $\theta=90^{\circ}$. Calculate the energy absorbed by the electron during this process and the moving direction of the electron afterwards.

12.3

- A sphere with a mass of 40 g flies with a speed of $1000 \mathrm{~m} / \mathrm{s}$. Although the sphere is obviously too large to be described as a matter wave, calculate its de Broglie wavelength.
- Imagine you are playing soccer in another universe where Planck's constant has the value 0.60 Js . Calculate the uncertainty the 0.50 kg soccer ball would have if its speed had been $20 \mathrm{~m} / \mathrm{s}$ with an uncertainty of $1.0 \mathrm{~m} / \mathrm{s}$ (flying along a fixed axis).
- During the transition from the first excited state of a hydrogen atom into the ground state, photons with a wavelength of 121.5 nm are emitted. The life time of the excited state is 10 ns . Calculate the natural line broadening of the excited state using the energy uncertainty.

12.4

Calculate the reflection probability of a particle with a kinetic energy of $E_{\text {kin }}=4 \mathrm{eV}$ at a negative potential step of height $E_{0}=-12 \mathrm{eV}$ starting from the time-independent Schrödinger equation.

12.5

A bound electron-positron pair is known as positronium. The positron is the antiparticle of the electron with charge $+e$ and the same rest mass as the electron. By considering that e^{-}and e^{+} are orbiting the mutual center of mass, derive and calculate the following quantities:

- the formula and the value of the corresponding Bohr radius with $n=1$,
- the binding energy of the system,
- the energy and the wavelength of a photon which is emitted if the electron returns from state $n=2$ back to the ground state.

