Experimental Physics III

Submission due: November 24, 2022, before the lecture starts
Note: Homework that is submitted too late will not be graded.

Exercise Sheet 6

6.1

In a Michelson interferometer an optical path difference of 127 times the value of the wavelength emerges for sodium light $(\lambda=589.3 \mathrm{~nm})$ if one of two equally-sized measurement chambers $(l=50$ cm) is filled with a particular gas. Calculate the refractive index of this gas if the second (reference) chamber is filled with air ($n=1.000292$).
Hint: If both chambers are empty or filled with the same medium, there is no path difference.

6.2

During a lens grinding process a concave lens L is tested in an inspection procedure (see Figure 1): The lens (radius of curvature r_{1}) is positioned on a spherical comparison surface S with $r_{2}=25$ cm . As r_{1} and r_{2} are not completely equal the first Newton ring for green light $(\lambda=550 \mathrm{~nm})$ has a radius of $a=12 \mathrm{~mm}$ (in reflection with illumination from above). Calculate the radius of curvature r_{1}.

Figure 1: Inspection procedure for a concave lens during lens grinding.

6.3

A Fabry-Pérot interferometer (Figure 2) consists of two parallel mirrors that are coated with silver from one side and which are separated by a distance a. Both mirrors transmit 50% of the light while the remaining light is reflected. Show that light that has an incident angle of θ on the interferometer has a maximal transmission if

$$
\begin{equation*}
2 a \cos (\theta)=m \lambda \tag{1}
\end{equation*}
$$

with $m \in \mathbb{N}$.

Figure 2: Simplified sketch of a Fabry-Pérot interferometer.

6.4

A collimated laser beam with a wavelength of $\lambda=650 \mathrm{~nm}$ shines on a blend with two circular holes of the same size. At a distance of $L=4 \mathrm{~m}$ behind the blend the interference pattern appears as alternating bright and dark concentric rings. The first dark ring (from the center) has a radius of $R_{1}=4 \mathrm{~cm}$. The bright rings in turn consist of fine, equidistant bright and dark rings, from which 20 fine, bright rings span over 5 cm

- Calculate the diameter of the holes.
- Calculate how far these holes are apart from each other.

6.5

The resolution $y_{\text {min }}$ of an optical microscope shall be compared to the one of an electron microscope. Initially it is assumed that both microscopes have an opening angle of $2 \alpha=120^{\circ}$. The light microscope is operated with light of a He-Ne laser (i.e., $\lambda_{\mathrm{L}}=632.8 \mathrm{~nm}$), the electrons have a kinetic energy of 100 keV (kilo electronvolt).

- Calculate the resolution $y_{\text {min,L }}$ of the optical microscope if no immersion liquid is used.
- Using the ansatz of the relativistic total energy calculate the momentum p and the matter wavelength (de Broglie wavelength) λ_{E} of the electrons. Compare quantitatively how much better the resolution of the electron microscope is compared to the optical microscope assuming both setups utilizing the same opening angle.
- Due to imaging errors of the electron optics solely much smaller opening angles are realizable for the electron microscope. Calculate the resolution $y_{\text {min,E }}$ for the case that the opening angle is $2 \alpha=1^{\circ}$.

