Experimentalphysik IV Abzugeben am 20.04.2015

2. Übung

2.1

- a) Skizzieren Sie die potentielle Energie des Elektrons des H_2^+ Moleküls entlang der Geraden, die beide Protonen verbindet. Der Abstand dieser soll hier mit $0.106\,\mathrm{nm}$ als fixiert angenommen werden.
- b) Skizzieren Sie die elektronischen Wellenfunktionen der beiden niedrigsten Energieniveaus des H₂⁺ Moleküls. Welche der beiden Wellenfunktionen gehört zum Grundzustand und wieso? Erläutern Sie den Zusammenhang dieser Wellenfunktionen zu den Wellenfunktionen atomaren Wasserstoffs.
- c) Wie ändern sich die beiden niedrigsten Energieniveaus und die zugehörigen Wellenfunktionen des ${\rm H}_2^+$ Moleküls, wenn die Entfernung der beiden Protonen groß wird?

2.2

- a) Berechnen Sie die potenzielle Energie der Anziehung zwischen den Ionen Na $^+$ und Cl $^-$ bei ihrem Gleichgewichtsabstand $r_0=0.236\,\mathrm{nm}$. Vergleichen Sie Ihr Ergebnis mit der Dissoziationsenergie.
- b) Wie groß ist die Abstoßungsenergie der Ionen bei ihrem Gleichgewichtsabstand?

2.3

Warum absorbiert ein Atom elektromagnetische Strahlung bei Raumtemperatur normalerweise nur im Grundzustand, während zweiatomige Moleküle gewöhnlich Strahlung absorbieren können, wenn sie sich in verschiedenen Rotationszuständen befinden?

2.4

Die Rotationskonstante B des N₂-Moleküls beträgt $2.48 \cdot 10^{-4}\,\mathrm{eV}$. Berechnen Sie damit das Trägheitsmoment und daraus den Abstand der Stickstoffatomkerne im Molekül.