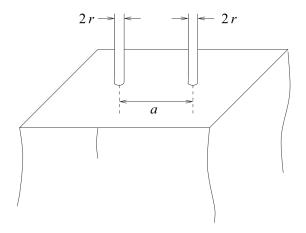
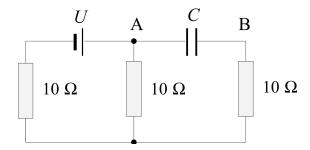

Experimentalphysik II Abzugeben am 10.06.2014


9. Übung

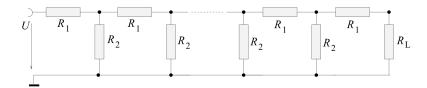
9.1

a) An eine sehr dünne leitende Folie der Dicke d mit der Leitfähigkeit σ werden zwei zylindrische Drähte mit dem Radius $r\gg d$ im Abstand $a\gg r$ angelegt. Wie groß ist der zwischen den beiden Kontaktstellen gemessene Widerstand der Folie?



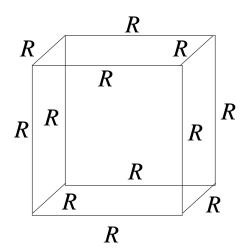
b) An einen leitenden Block mit der Leitfähigkeit σ werden auf seiner ebenen Oberfläche zwei zylindrische Drähte mit dem Radius r im Abstand $a\gg r$ angelegt. Die Abmessungen des Blockes seien groß gegen den Abstand der Drähte. Wie groß ist der zwischen den beiden Kontaktstellen gemessene Widerstand?

9.2


Gegeben sind die Batteriespannung $U=120\,\mathrm{V}$, die Kapazität $C=4\,\mu\mathrm{F}$ des Kondensators und die Widerstände mit $R=10\,\Omega$ in der dargestellten Schaltung.

- a) Wie groß ist im stationären Zustand die Spannung zwischen den Punkten A und B?
- b) Die Klemmen eines Voltmeters mit dem Innenwiderstand $R_i = 5 \,\mathrm{k}\Omega$ werden an die Punkte A und B angeschlossen. Welche Spannung wird angezeigt?

9.3


Wie groß müssen die Widerstände R_1 und R_2 gewählt werden, damit hinter jedem folgenden Widerstand R_1 das Potential 10 mal kleiner als am vorhergehenden ist?

9.4

Ein Widerstandsnetzwerk bestehe aus 12 Widerständen R, die entlang der Kanten eines Würfels angeordnet sind und an den Eckpunkten des Würfels leitend verbunden sind (Widerstandswürfel). Wie groß ist der Widerstand

- a) zwischen zwei diagonal gegenüberliegenden Ecken einer Fläche,
- b) zwischen zwei benachbarten Eckpunkten,
- c) zwischen zwei in der Raumdiagonale entgegengesetzten Eckpunkten?

