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We explore the intuitive lensing picture of laser-heated nanoparticles occurring in single particle photothermal
(PT) microscopy. The effective focal length of the thermal lens (TL) is derived from a ray-optics treatment and used
to transform the probing focused Gaussian beam with ABCD Gaussian matrix optics. The relative PT signal is
obtained from the relative beam-waist change far from the TL. The analytical expression is semiquantitative,
capable of describing the entire phenomenology of single particle PT microscopy, and shows that the signal is the
product of the point-spread functions of the involved lasers times a linear function of the axial coordinate. The
presented particularly simple and intuitive Gaussian beam lensing picture compares favorably to the experimental
results for 60 nm gold nanoparticles and provides the prescription for optimum setup calibration. © 2012 Optical
Society of America

OCIS codes: 070.2590, 190.4870, 110.6820.

1. INTRODUCTION
Absorbing nanoparticles too small to be detected by scatter-
ing or direct absorption may be imaged by photothermal (PT)
microscopy. The method’s superior sensitivity rests on the
fact that it uses the absorption of light, which decreases only
with the volume of the particles in contrast to light scattering,
which decreases with the volume squared for small particles
[1]. As an ever more popular tool, this technique has been used
to study nanocrystals [2], carbon nanotubes [3], and single
molecules [4] through their absorption. Thereby, absorption
cross sections of fixed particles were extracted [5] or mobi-
lities of (heated) solute particles [6,7] were attained through
PT correlation spectroscopy [8,9]. An early developed theory
in a scattering framework [10] was incomplete and did not
account for the axial shape and magnitude of the signal. In
fact, the PT signal in single particle microscopy is dual lobed
and thereby comprehensible as a lensing phenomenon. While
this complex generalized Mie scattering framework quantita-
tively described the situation [11], the physics of the lensing
action remained hidden in the laborious computations of the
scattering and beam shape coefficients. Similar to the thin
sample slab PT spectroscopy [12] ABCD framework by Mor-
eau and Loriette [13], we hereby present a minimal semiquan-
titative and intuitive Gaussian beam transformation model of
single particle PT microscopy.

PT single particle microscopy is a sample-scanning method
that uses two coaxial focused laser beams: a resonant heating
beam to generate the medium’s refractive index perturbation
through the nanoparticle’s absorption of electromagnetic en-
ergy and a nonresonant detection laser, which is transmitted
through the sample. The modulation amplitude of the detected
power induced by a modulation of the heating laser is de-
tected by a photodiode. Normalization to the transmitted
power P0 when the heating laser is off defines the relative
PT signal,

Φ � �Pth − P0�∕P0: (1)

To describe the action of a local refractive index perturbation
generated by a heated nanoparticle on the propagation of the
probing Gaussian beam in the framework of ABCD matrix
optics [14], one first needs to derive a ray-optics transfer ma-
trix for the system. We have recently shown that the signal in
PT single particle microscopy can be understood in terms of
the action of a nanolens. We therefore expect that this lensing
action can be represented by a transfer matrixMf correspond-
ing to a (thermal) lens. Section 2 will derive the effective focal
length of this thermal lens (TL). Subsequently, the quantitative
relative PT signal is computed in the ABCD framework. The
found analytical expression will then be compared to mea-
surements on a single gold nanoparticle (AuNP).

2. THEORY
A. Focal Length of the TL
The focal length of the continuous refractive index perturba-
tion around a heated nanoparticle can be obtained by consid-
ering Fermat’s principle. In geometrical optics, Fermat’s
variation principle describes the path of an optical ray of light
in an inhomogeneous refractive index field n�r� and reads in
its differential form [15]:

r00 � ∇

�
1
2
n2�r�

�
; jr0j � n�r�; (2)

where the prime0 � d∕ds denotes a derivative with respect to
the path coordinate s. In the case of interest here, a spherically
symmetric refractive index profile n�r� will originate from
the release of heat from an absorbing nanoparticle. It is
specified by its contrast Δn and the particle radius R charac-
terizing the distance from the particle at which the perturba-
tion is decreased to half: n�r� � n0 �ΔnR∕r with Δn �
ΔT �dn∕dT �. The induced particle temperature increment ΔT

is determined by the power Pabs absorbed by the nanoparticle
and the materials’ thermal conductivity κ through ΔT �
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Pabs∕�4πκR�. Therefore, the refractive index contrast Δn cor-
responds to

Δn �
�
dn

dT

�
Pabs

4πκR
: (3)

The amount of power Pabs absorbed by the particle depends
on its absorption cross section σabs at the heating laser wave-
length λh and the heating beam’s intensity Ih at the nanopar-
ticle position via Pabs � σabsIh.

The solution to the differential Eq. (2) with the given type of
refractive index profile is the ray equation. In polar coordi-
nates, we obtain, in analogy to the perturbed Kepler problem
[16], Eq. (4),

r�ϕ; b� � p

ϵ cos �γ�ϕ − ϕ0�� − 1
: (4)

This equation describes trajectories for rays that approach
parallel and at a distance b > 0 to the optical axis, as illu-
strated in Fig. 1 for Δn < 0. The angle of closest approach
ϕ0, the perturbation parameter γ, the eccentricity ϵ, and the
normalized semilatus rectum p∕b depend on the inverse
strength ξ and the incident height b through the dimensionless
quantity bξ; see Eq. (5). Thus, the trajectories are completely
determined by the value of ξ−1, as defined in Eq. (5). Mathe-
matically, they represent weakly perturbed hyperbolic trajec-
tories with the particle being the exterior (ξ > 0) or interior
(ξ < 0) focus [17]:

ξ � −n0∕RΔn

p � �b2ξ2 − 1�∕ξ
γ2 � 1 − b−2ξ−2

ϵ � bξ
ϕ0 � π − γ−1 arccos �1∕ϵ�

≈ π∕2� b−1ξ−1 �O�b−2ξ−2�

9>>>>>>>=
>>>>>>>;
: �5�

The quantity jbξj > jn0∕Δnj ≫ 1 is a large number, since
the impact parameter b is bound to be larger than the particle

radius R, and the induced refractive index contrast Δn �
O�10−3� is always much smaller than the unperturbed refrac-
tive index n0, which is of the order of unity. While the
asymptote to the ray solution Eq. (4) for ϕ → π is a horizontal
line at height b describing an undeflected straight ray, the
other asymptote at ϕ → 2 ϕ0 − π permits the extraction of a
focal length (white lines in Fig. 1). The calculation yields
f ξ � −bξ∕ sin �2 arccos �b−1ξ−1�∕γ�, such that f ξ ≈ −b2ξ2∕2,
where smaller terms of order O�bξ� have been omitted. The
focal length of the TL, Eq. (6),

f �b� ≈ b2n0∕�2ΔnR�; �6�

is thus seen to vary quadratically with the impact parameter b
and even to diverge as b grows large. It exhibits spherical
aberrations. However, as a focused probing laser beam of fi-
nite extent is incident onto the lens, large impact parameters
will not be realized. For a Gaussian beam with waist ω0 and
spreading length 2zR � 2πn0ω

2
0∕λ [14] located at a distance zp

relative to the position of the TL, an effective focal length f eff
is expected. It will involve an effective squared impact para-
meter b2eff , which depends on the profile of the beam at the
lens. A weighting of b2 by the Gaussian intensity profile
Id�b; zp� of the probing Gaussian beam defines such a
weighted quantity. The result, b2eff�zp� � ω2

0�z2p∕z2R � 1�∕2, is
half the square of the beam waist size at the position of the
lens. The focal length, Eq. (6), of the TL for such an offset
Gaussian beam then becomes

f eff�zp� ≈
n0

Δn

ω2
0

4R

�
z2p

z2R
� 1

�
: (7)

The strength of the TL as experienced by the probing beam
is inversely proportional to the focal length and thus directly
proportional to the refractive index contrastΔn. In an experi-
ment the absorbed power Pabs�zp� provided by the focused
heating beam will induce this contrast [see Eq. (3)] and
may thus also depend on the axial position. A negative focal
length is obtained for a negative thermorefractive coefficient
and signifies a divergent lens. A convergent lens will be
obtained for materials that show a positive change in their re-
fractive index with temperature. This is the case, for example,
for some liquid crystals. Equation (7) now also includes the
circumstance that, for large offsets zp, the average impact
parameter seen becomes large and the lens acting on the
whole beam thereby becomes weak. In the ray-optics treat-
ment of thin lenses, one finds that the incident ray height
above the optical axis remains unaffected by the lens and
only the ray angle is changed. Similarly, here we find for
the intersection height y0 of the asymptote with the vertical
axis y0∕b ≈ 1� 2b−2ξ−2 �O�b−3ξ−3�, such that typically y0 ≈ b,
which is the thin lens assumption. We may therefore proceed
with a matrix optics formalism describing the modification
of the propagation of the probing laser beam as induced by
a thin lens of focal length f eff .

B. ABCD Gaussian Matrix Optics
The transformation of a Gaussian beam by an optical element
can be described by a matrix [14] acting on a vector fqin; 1gT.
The parameter q describes the Gaussian beam at a certain
position along the optical axis and is a function of the radius
of curvature RC and the beam waist ω, as defined in Eq. (8).

Fig. 1. (Color online) Heated nanoparticle creates a refractive index
profile n�r�, which constitutes the thermal lens. A ray-optics treatment
delivers a focal length when probed by a confined Gaussian beam (see
text). For typical material parameters, the focal lengths are large as
compared to the particle dimension, i.e., f ≫ R.
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The beam transfer matrices characterize the optical elements
that the beam passes and may be concatenated if the beam
passes a series of elements. The matrices are 2 × 2 ray-transfer
matrices M � fA;B;C;Dg, and the ABCD law for Gaussian
beams transforms an input beam described by qin to and
output beam characterized by qout:

q−1in � 1
RC�zp�

− i
λ∕n

πω2�zp�
; qout �

Aqin � B

Cqin � D
: (8)

In PT single particle microscopy, the TL is periodically
switched on and off. Thus, the probe beam is either influenced
by the TL or not. Consequently, two sets of ray transfer ma-
trices are required to describe the PT signal. Both include the
sample interface and free space propagation for a distance d

as depicted in Fig. 2. According to this scheme, we use M th �
MdMiMf in the case where the TL is present and M0 � MdMi

in the case when it is switched off. The individual transfer ma-
trices [14] areMd � f1; d; 0; 1g for free space propagation by a
distance d,Mf � f1; 0;−1∕f ; 1g for a thin lens of focal length f ,
and Mi � f1; 0; 1; n0∕n1g for the refraction by a flat dielectric
interface from n0 to n1. The output beam parameter qout then
encodes the transformed beam shape in its real and imaginary
part. For instance, the beam waist is related to the imaginary
part via ω2 � −λ∕�nπIm�q−1out��.

C. Relative PT Signal
As mentioned earlier, the relative PT signal is the ratio of the
detected power change due to the TL to the detected power
without a TL [Eq. (1)]. On the optical axes, this translates into
a ratio of intensities, Φ � �Ith − I0�∕I0. For a Gaussian beam,
the intensity is proportional to its inverse beam waist squared,
I ∝ ω−2. The ABCD matrix optics law provides the necessary
beam waists behind the sample. Then, the relative PT signal
simplifies in the far field and weak lens limit, where d ≫
ff ; zRg and f ≫ zR, respectively, to

Φ�zp� � 2zp∕f : �9�

As signified by the signal’s proportionality to zp, the probing
beam offset with respect to the lens determines whether the
beam is collimated or further diverged, yielding a positive or
negative relative PT signal, respectively. The behavior is
reversed if the sign of the focal length changes. The relative

PT signal is also inversely proportional to the focal length.
This simply means that weak lenses, which have a large
focal length, modify the probing beam to a smaller extent. The
interface parameters fn0; n1g do not appear in Eq. (9) as the
sample/air interface affects both the nonlensed as well as
the lensed beam in an equivalent manner. Substitution of
f → f eff Eq. (7) into Eq. (9) yields the axial relative PT signal
dependence. However, as the absorbed power Pabs�zp� �
σabsIh�zp� controls the strength Δn�zp� of the lens [see
Eq. (3)], one needs to include the axial intensity profile of the
heating beam in the considerations. For a Gaussian heating
beam, the axial intensity profile Ih�zp� is a Lorentzian with a
maximum intensity I0 � 2Ph∕πω2

0;h [14] determined by its
beam waist ω0;h and its total power Ph. This maximum is
typically shifted with respect to the detection beam by some
axial offsetΔzf ; see Fig. 3 (top). Combining the expression for
the absorbed power, Eqs. (3), (7), and (9), the relative PT sig-
nal as a function of the particle to probe beam offset zp reads

Φ �
4Phσabs

h
dn
dT

i
π2κn0ω

2
0;hω

2
0

��zp −Δzf �2
z2R;h

� 1
�
−1

zp

�
z2p

z2R
� 1

�
−1

: (10)

The relative PT signal according to this formula is depicted
in Fig. 3 as a function of zp at various defocusing Δzf . The
signal correctly accounts for the experimentally observed
control of the two oppositely signed peaks. While the lensing,
and thereby the sign of the signal, is always determined by the
probing beam position zp relative to the lens [Eq. (9)], the mag-
nitude of the signal is also controllable by the axial position of
the heating beam. This result is formally very similar toMoreau
and Loriette’s result [13] for thin films. The PT signals’ propor-
tionality to dn∕dT and the absorbers volume is immediately
recovered [10], considering that, for small particles, σabs ∝
R3 [1]. Also, the functional form reveals that the signal is
proportional to the product of the point-spread functions and
a linear function for the Gaussian beam case, i.e.,Φ ∝ IhIdzp.
For highly focused beams, we have experimentally shown

Fig. 2. (Color online) Probing Gaussian beam is focused at a dis-
tance zp to the lens (first optical element). An interface from a med-
ium with refractive index n0 to air with n1 and free space propagation
by a distance d follow. (Top) Beam transformation through the optical
system with a lens present. (Bottom) Beam transformation without
the lens.
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Fig. 3. (Color online) (Top) Lorentzian profile of the power Pabs�zp�
absorbed by the particle for an axial laser offset Δzf � −2.1zR. (Bot-
tom) Axial scans of the relative PT signal, Eq. (10) (×F), forΔzf ∕zR �
f−2.1;−1.4;−0.7; 0.7; 1.4; 2.1g (blue to red). Parameters: R � 30 nm,
ΔT � 200 K corresponding to the experimental parameters ω0;h �
0.380 μm, ω0 � 0.315 μm, σabs�λh� � 1.16× 10−14m2, and Ph � 225 μW.
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[11,18] Φ�zp� ∝ exp �−2z2∕ω2
z��z − z0� with an axial signal

widthωz to be a good approximation to the signal. This approx-
imation, too, is of the form of a product of two offset point-
spread functions (PSFs, axial Gaussians in this case) times
zp if the axial beamwaists of the individual beams are assumed
equal. Numerically, it follows from Eq. (10) that, in order to
obtain the maximum signal from the TL, the lasers should
be offset by about one Rayleigh range, i.e.,Δzf ≈ �zR. Already
from the previous discussion, it is clear that both positive and
negative signals will be experimentally observable as in early
PT correlation spectroscopy experiments [9]. The new founda-
tion given above now opens theway to control the shape of the
PT signal for new applications such as twin-focus PT correla-
tion spectroscopy (Twin-PhoCS), which will be detailed in a
forthcoming paper [18]. Since we have used the beam waist
to define an intensity, the current model only describes the re-
lative PT signal on axis at zero numerical detection aperture.
However, as we have shown recently [11,19], the relative PT
signal depends on the collection angle domain. As all experi-
ments are carried out with a finite collection angle domain,
one needs to include a correction factor F � Φ�θ�∕Φ�0� to the
above-described PT signal, where Φ�θ� is the PT signal for a
certain detection angle θ. This factor can be simply obtained
from the extrapolation of an aperture-diameter-dependent PT
signal measurement or from more elaborate models [11,19]
[see Fig. 5(d) below, markers and solid line, respectively].
The aperture-dependent measurement reveals a factor of
F � 0.1 in Eq. (10) to account for the used finite numerical
aperture of NA � 0.8 (see Section 3).

3. EXPERIMENTAL REALIZATION
To validate the theoretical predictions, we have performed PT
measurements on single AuNPs of radius R � 30 nm with
focused Gaussian heating and detection beams. Therefore, the
particles were embedded in a polymer film (PDMS) of about
d � 30 μm thickness and the sample axially moved through
the foci with an AuNP on the optical axis. To experimentally
realize focused Gaussian heating and probing beams, we have
underfilled the back aperture of the illuminating microscope
objective (oil immersion, 100x, NA � 1.4). The homebuilt
sample-scanning microscope is described in detail in [11].
The two lasers focused on the sample are collected with a
NA � 0.8 dry objective behind the sample and imaged onto
two photodiodes after passing appropriate filters. We have
modeled the recorded transmitted powers within the general-
ized Lorenz–Mie theory (GLMT) [20] using Gaussian beam
shape coefficients [21] and our finite collection angle exten-
sion [11]. The agreement seen in Fig. 4 between experiment
and calculation validates the assumption of Gaussian beams
and yields zR � 0.717 μm, ω0 � 0.315 μm. Further, the offset
of the scatter-image dips Δzsca may be translated into the
Gaussian beam offset with the calculation (Fig. 4, graphs)
via Δzf � Δzsca � 0.387 μm. The rather large radius of the
AuNPs, R � 30 nm, has been chosen to still allow for this
parameter extraction. Alternatively, the weak fluorescence
of AuNPs may be used to extract Δzf by measuring the fluor-
escence peak offset relative to the zero crossing of the PT sig-
nal [22]. Figure 5 displays the obtained axial relative PT signal
scans. Depending on the offset Δzf of the heating beam rela-
tive to the detection beam, either the positive signal lobe or
the negative lobe is enhanced. Equation (10) predicts this

effect nicely as shown by the solid lines in the bottom row
plots. Since the particle used is still scattering and since its
scattering cross section σsca senses its embedding refractive
index, the PT signal does not vanish at Δzf � 0 [11]. To ac-
count for this additional effect, the Δzf axis has been shifted
by the offset of the particle to the signal zero crossing, i.e., by
0.17 μm. Now, experiment (markers) and theory (lines) match
nicely, demonstrating the possibility to even extract induced
particle temperatures or absorption cross sections σabs
quantitatively. We attribute the remaining discrepancy at large
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Fig. 4. (Color online) (Top) The left two images show theoretical
R � 30 nm AuNP xz scans of transmitted powers computed within
GLMT (probing, λ � 0.635 μm, ω0 � 0.315 μm; heating beam,
λh � 0.532 μm, ω0;h � 0.330 μm; both in PDMS n0 � 1.46). The left
and right contours show incident intensities Id and Ih, respectively.
The right two images show the corresponding scans recorded with
a photodiode. (Bottom) Theoretical axial scans (black, along white
dashed lines) and Φ�zp� for Δzf � 0 (blue; gray solid in print). Also
shown are the axial Lorentzian heating beam profiles (in
arbitrary units, solid-dashed, colored).
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Fig. 5. (Color online) (a) Experimental axial signal scans Φ�zp�.
(b) Extrema positions versus axial displacement of heating and detec-
tion foci. (c) Extrema values of relative PT signal. (d) Dependence of
the finite angle correction factor F � Φ�θ�∕Φ�0� on the numerical
aperture NA � n0 sin�θ� at zp � −0.5 μm. Parameters as in Fig. 3.
Top axes for axial coordinates have been scaled by zR.
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relative laser offsets Δzf ∕zR > 1 [see Figs. 5(b) and 5(c)] to
the fact that the heating beam was in fact weakly aberrated,
which can be also seen by the small additional lobe at zp ≈

2.0 μm in Fig. 5(a). Remaining aberration peaks in the PSF
explain the deviating PT signal shape for negative zp and large
negative laser offsetsΔzf . Further, sinceΔzf was adjusted by
changing the heating beam divergence in front of the focusing
microscope objective, the overfilling and thereby the beam
waist in the focal region changed slightly for the heating
beam: ω0;h � 0.321 μm − 0.045Δzf . The maximum signal was
obtained when the lasers were offset by about one Rayleigh
range, i.e., Δzf ≈ �zR [see Fig. 5(c), top axis], which was
already predicted by Eq. (10).

4. CONCLUSIONS
We have shown that the relative PT signal shape can be mod-
eled by the action of a TL in the framework of ABCD Gaussian
transformation optics. The resulting expression reveals that it
is the product of the involved laser’s PSFs times the axial
coordinate. This means that, quite universally, for any focused
beam probing the TL, both positive and negative signals are to
be expected [9] and their relative amplitude is adjustable by
the two laser’s offset. The analytical expression derived here,
Eq. (10), is validated experimentally for Gaussian beams. Our
results may be used to conveniently extract absorption cross
sections from PT measurements and provide a guideline for
the relative focus adjustment of the probing and heating laser
beams.
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