
Climate Dynamics (Summer Semester 2018)
J. Mülmenstädt

Today’s Lecture (Lecture 3): Atmosphere

Reference
Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5; skip discussion of
oceans until one week later



2.2 – Atmosphere: fundamental equations

Description of the state of the atmosphere

I Constituents – dry air, reactive gases, absorbing gases, aerosols, water vapor, liquid water, ice
I Thermodynamic state – pressure, temperature, mixing ratios
I Dynamic state – velocity field
I Circulation



Some features of the atmospheric circulation

I Circulation cells

I Eddies
I Boundary layer
I Clouds

Figure: NOAA
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Some features of the atmospheric circulation

I Circulation cells
I Eddies

I Boundary layer
I Clouds

Figure: Barnes et al., 2012



Some features of the atmospheric circulation
I Circulation cells
I Eddies
I Boundary layer

I Clouds

Figure: Hartmann, 1994



Some features of the atmospheric circulation

I Circulation cells
I Eddies
I Boundary layer
I Clouds

Figure: Bellon, 2013



Equations of state
To good approximation, atmospheric gases are ideal

Dry air pd = ρdRdT

Water vapor e = ρvRvT (e is water vapor pressure)

Combination of dry air and water vapor p = ρRdTv with virtual temperature Tv , derivation below:

The ratio of gas constants is reciprocal to the ratio of molecular weights of water vapor and dry air,

Rd

Rv
=

mw

md
= 0.622 (2.12)

The total pressure and density are additive:

p = pd + e (2.13)

ρ = ρd + ρv =
p− e
RdT

+
e

RvT
=

p− e
RdT

+ 0.622
e

RdT
=

p
RdT

(
1− 0.378

e
p

)
(2.14)

(2.14) has the form of an ideal-gas equation of state with

Tv =
T

1− 0.378 e
p
≈ T

(
1 + 0.378

e
p

)
= T (1 + 0.61q) , where (2.15)

q =
Mv

M
=
ρv

ρ
= 0.622

e
(p− 0.378e)

≈ 0.622
e
p

(the water vapor mixing ratio) (2.16)



Atmosphere: fundamental equations

Physical principles

Conservation of mass applies to each constituent (dry air, water) individually→ continuity equation

Conservation of momentum → equation of motion

Conservation of energy → thermodynamic heat equation

Conservation of angular momentum → vorticity equation



Coordinate systems
All the coordinate systems we use in this course are non-inertial (co-moving with the Earth)

Rectangular local coordinates: x eastward, y northward, z upward

Pressure coordinates: replace z (upward-pointing) with p (downward-pointing); any other vertical coordinate that is
locally monotonic also works; δp = −ρg δz (hydrostatic equilibrium)

Spherical coordinates: λ (longitude), φ (latitude), p; δx = RE cosφ δλ, δy = RE δφ

Associated differential operators

Total derivative d/dt

d
dt

=
∂

∂t
+~c · ∇, with ~c =

 u
v
w


Gradient ∇

∇ =

 ∂/∂x
∂/∂y
∂/∂z

 , [∇] = m−1

“Horizontal” ∇p

∇p =

 ∂/∂x
∂/∂y

0


p

, (p means on isobars)



Continuity equation

Conservation of mass (of a dry air parcel):

1
δm

d(δm)

dt
=

1
ρ δV

d(ρ δV)

dt
=

1
ρ

dρ
dt

+
1
δV

d(δV)

dt
= 0 (2.17)

Recognizing the relative rate of expansion of the air parcel as the divergence of the wind field,

−
1
ρ

dρ
dt

= ∇ ·~c (2.18)

In pressure coordinates δm = δx δy ρ δz = δx δy δp/g (in hydrostatic equilibrium), and thus the wind field is
non-divergent (meaning we can treat the atmosphere as incompressible):

1
δm

d(δm)

dt
=

1
δx δy

d(δx δy)

dt
+

1
δp

d(δp)

dt
= ∇p ·~v +

∂ω

∂p
= 0, with ~v =

(
u
v

)
, ω =

dp
dt

(2.19)

In spherical coordinates:
1

RE cosφ
∂u
∂λ

+
1

RE cosφ
∂(v cosφ)

∂φ
+
∂ω

∂p
= 0 (2.20)



Equation of motion
In an inertial frame (designated by A), the forces acting on an air parcel are the pressure gradient force − 1

ρ
∇p,

gravitational acceleration −∇ΦN and friction ~F:

dA~cA

dt
= −

1
ρ
∇p−∇ΦN +~F (2.21)

Consider a point with position vector~rr in a rotating frame; the transformation to position in the inertial frame includes
motion of the point due to rotation of the frame:

dA~rA
dt

=
d~rr
dt

+ ~Ω×~rr or
dA

dt
=

d
dt

+ ~Ω× (2.22)

or
~cA = ~c + ~Ω×~rr . (2.23)

Applying the transformation (2.22) to ~cA gives the acceleration in the inertial reference frame:

dA~cA

dt
=

d~cA

dt
+ ~Ω×~cA =

d
dt

(~c + ~Ω×~rr) + ~Ω× (~c + ~Ω×~rr) =
d~c
dt

+ 2~Ω×~c + ~Ω× (~Ω×~rr) (2.24)

By a vector identity, the last term can be written as

~Ω× (~Ω×~rr) =
1
2
∇(~Ω×~rr)2 =

1
2
∇(ΩRE cosφ)2 (2.25)



In the rotating reference frame, the equation of motion then becomes

d~c
dt

= −2~Ω×~c −
1
ρ
∇p−∇Φ +~F, (2.26)

where the term ∇Φ has subsumed the centrifugal term ~Ω× (~Ω×~rr) by (2.25) into the “apparent geopotential”

Φ = ΦN −
1
2

Ω2R2
E cos2 φ. (2.27)

In component form, the equation of motion is

du
dt
−

uv tanφ
RE

+
uw
RE

= −
1
ρ

1
RE cosφ

∂p
∂λ

+ 2Ωv sinφ− 2Ωw cosφ+ Frλ (2.28)

dv
dt

+
u2 tanφ

RE
+

vw
RE

= −
1
ρ

1
RE

∂p
∂φ
− 2Ωu sinφ+ Frφ (2.29)

dw
dt
−

u2 + v2

RE
= −

1
ρ

∂p
∂z
− g + 2Ωu cosφ+ Frz (2.30)



Simplifying approximations
Hydrostatic approximation
Neglecting all but the highest-order terms in the vertical equation of motion yields a diagnostic relationship between the
vertical pressure gradient and density:

∂p
∂z

= −ρg (2.31)

The equation of motion in pressure coordinates then simplifies with the following substitutions (note that there is no vertical
acceleration under the hydrostatic approximation):

ω =
dp
dt

=
∂p
∂t

+~v · ∇p + w
∂p
∂z
≈ w

∂p
∂z
≈ −ρgw (2.32)

∂p
∂λ

∣∣∣∣
z

=
∂p
∂z

∣∣∣∣
λ

∂z
∂λ

∣∣∣∣
p
≈ −ρ

∂Φ

∂λ

∣∣∣∣
p

(2.33)

Geostrophic approximation
Proceeding similarly in the horizontal yields a diagnostic relationship between the horizontal wind and pressure gradients
(in the height coordinate system) or geopotential gradients (in the pressure coordinate system):

fvg =
1
ρ

1
RE cosφ

∂p
∂λ

=
1

RE cosφ
∂Φ

∂λ
and fug = −

1
ρ

1
RE

∂p
∂φ

= −
1
RE

∂Φ

∂φ
(2.34)

The quality of the geostrophic approximation depends on Ro = U/fL� 1; not the case in the tropics (f � 1) or for
small-scale phenomena (fL� U). f = 2Ω sinφ is the Coriolis parameter.



Thermodynamic energy equation

Combined first and second laws of thermodynamics for a reversible process (all variables are state functions):

dU = T dS − p dV (2.35)

Since U is a state function, so is the sum (or difference) of U and other state functions:

H = U + pV enthalpy (2.36)

dH = T dS + V dp (2.37)

G = H − TS Gibbs function (2.38)

dG = −S dT + V dp (2.39)

Which differential is most convenient depends on the process under consideration:

isentropic S = const⇒ T dS = 0

isobaric p = const⇒ V dp = 0

isothermal T = const⇒ S dT = 0

For our (atmospheric) purposes, the extensive variables are replaced by their intensive counterparts. For example, (2.35)
becomes

du = T ds− p dα (2.40)



Heat capacities
For an ideal gas, U is a function only of T . The same is true of H = U + pV , since pV can be related to T by the equation
of state. At constant volume, any heat added to the system leads directly to an increase in internal energy, since the
second term in (2.35) vanishes; we therefore define the heat capacity at constant volume

CV =
dU
dT

∣∣∣∣
V

or cV =
du
dT

∣∣∣∣
V

(2.41)

At constant pressure, any heat added to the system leads directly to an increase in enthalpy, since the second term in
(2.37) vanishes; we therefore define the heat capacity at constant pressure

Cp =
dH
dT

∣∣∣∣
p

or cp =
dh
dT

∣∣∣∣
p

(2.42)

(Note that the notation d
dT

∣∣∣
V

and d
dT

∣∣∣
p

is not necessary since the differentials are total differentials.)

Differentiating the definition of (specific) enthalpy with respect to temperature yields

cp =
dh
dT

=
d
dT

(u + pα) =
d
dT

(u + RdT) = cV + Rd (2.43)

Furthermore, for dry air at atmospheric temperatures, u ≈ 5
2 RdT (see Section 2.5), so

cV =
5
2

Rd and cV =
7
2

Rd (2.44)



Thermodynamic energy equation for atmospheric dynamics
The most convenient expression of the thermodynamic energy balance for atmospheric dynamics is derived as follows.
Recall the differentials form of the first and second laws of thermodynamics in enthalpy form:

dh = T ds + α dp (2.45)

Taking the time derivative and substituting from (2.42), we find

cp
dT
dt

= T
ds
dt

+ α
dp
dt

= Q + αω, (2.46)

where Q is the diabatic heating rate by clouds and radiation, and αω is the heating due to adiabatic compression.

Potential temperature
For an adiabatic process, divide (2.46) by T and substitute for α/T from the equation of state:

cp
d ln T

dt
= Rd

d ln p
dt

(2.47)

which implies conservation of the potential temperature θ,

θ = T
(

p0

p

)κ
, κ =

Rd

cp
≈

2
7

(2.48)

From (2.46) and (2.48) it can be shown that θ is related to entropy (up to additive constants) by

s = cp ln θ (2.49)


