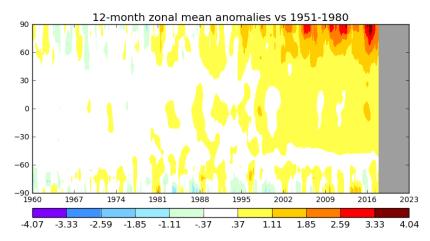
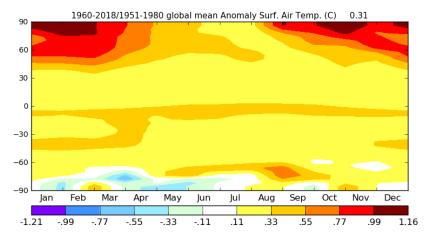
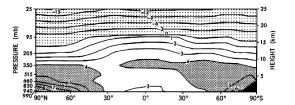
Arctic Amplification

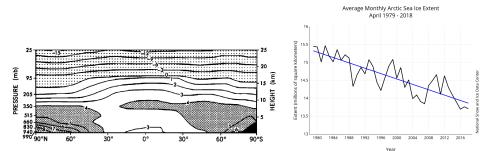
Climate Dynamics


27.06.2018

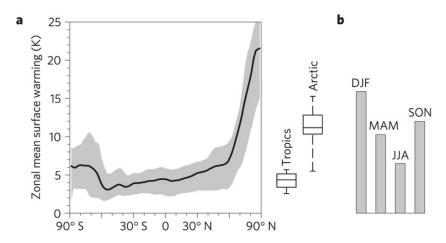


"The" Arctic Amplification Plot


Recent warming twice as strong in the Arctic as globally \Rightarrow Arctic Amplification

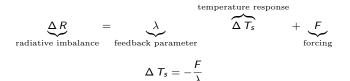

Strongest in winter and spring

- Svante Arrhenius (1896) hypothesized that changes in the concentration of carbon dioxide in Earth's atmosphere could alter surface temperatures
 → He suggested that changes would be especially large at high latitudes due to melting of seaice
- Even the first climate models show (Arctic) Polar Amplification (Manabe and Stouffer, 1980)
- Reduction in sea ice extend in recent decades



- Svante Arrhenius (1896) hypothesized that changes in the concentration of carbon dioxide in Earth's atmosphere could alter surface temperatures
 → He suggested that changes would be especially large at high latitudes due to melting of seaice
- Even the first climate models show (Arctic) Polar Amplification (Manabe and Stouffer, 1980)
- Reduction in sea ice extend in recent decades

Arctic Amplification in climate models


Multi model mean of $4 \times CO_2$ simulations (Pithan and Mauritsen, 2013):

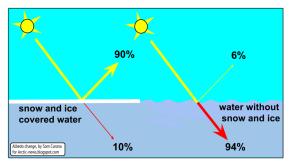
5

Why is warming strongest in the Arctic?

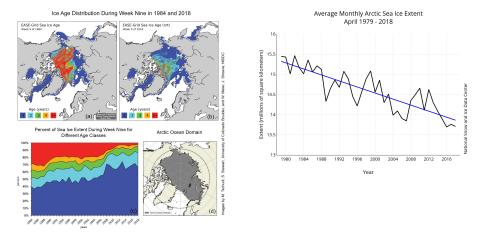
Feedback mechanism in the climate system control the strength of warming/cooling due to a radiative forcing

Why is warming strongest in the Arctic?

Feedback mechanism in the climate system control the strength of warming/cooling due to a radiative forcing

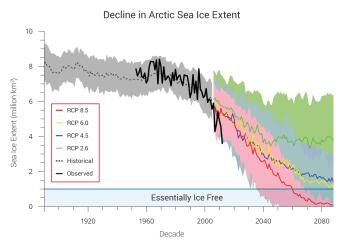

Feedbacks acting on the climate system:

- Cloud feedback
- Lapse rate feedback
- Planck Feedback
- Surface albedo feedback
- Water vapor feedback

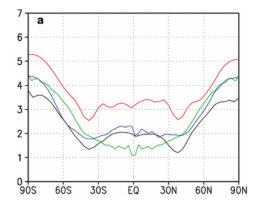

Which of those feedbacks contributes most to Arctic Amplification?

Arctic Feedbacks - Ice-Albedo Feedback

Change in the area of ice caps, glaciers, and sea ice alters the albedo

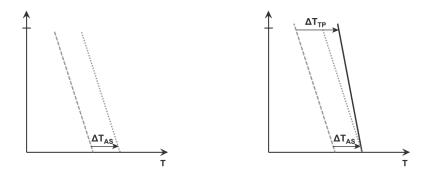


- Decreased albedo cause an increase in absorption of incoming solar radiation during summer
- Increased heat flux into the ocean during summer
- Excess heat and the missing insulation effect of the sea ice lead to warmer temperature in fall and winter
- \Rightarrow The ice-albedo is a positive feedback and acts to reinforce the initial alteration in ice area

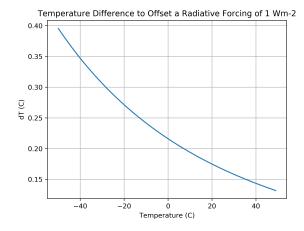

 \Rightarrow Younger and less thicker ice is more prone to melting in summer which causes a further decrease in albedo of the Arctic ocean

Projections of Arctic sea ice extend

 \Rightarrow Essentially ice-free in late summer by the end of the century in almost all emission scenarios


Aqua planet simulations \rightarrow planet completely ocean covered, no sea ice

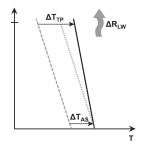
 \Rightarrow Arctic amplification does occur in models without surface albedo feedback


The total temperature feedback can be decomposed into Planck feedback and lapse-rate feedback:

- Planck feedback (λ_P) corresponds to the increase in outgoing longwave radiation caused by a vertically uniform warming (due to a ΔT_s)
- Lapse-rate feedbacks (λ_{LR}) corresponds to a warming that deviates from this vertically uniform profile

Arctic Feedbacks - Planck Feedback

Planck feedback (λ_P) corresponds to the increase in outgoing longwave radiation caused by a vertically uniform warming (due to a ΔT_s)

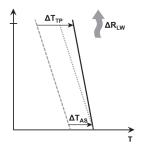


As the Arctic is colder than the tropics, the Planck feedback in itself contributes to Arctic Amplification

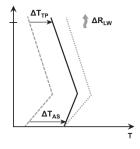
Arctic Feedbacks - Lapse rate Feedback

Lapse-rate feedbacks (λ_{LR}) corresponds to a warming that deviates from vertically uniform profile (due to a ΔT_s)

Tropics:



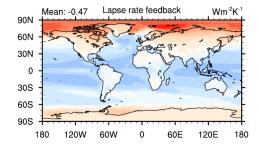
- Stronger warming aloft due to release of latent heat by convection
- Smaller increase in surface temperatures is required to offset a given TOA imbalance
- $\lambda_{LR} < 0$


Arctic Feedbacks - Lapse rate Feedback

Lapse-rate feedbacks (λ_{LR}) corresponds to a warming that deviates from vertically uniform profile (due to a ΔT_s)

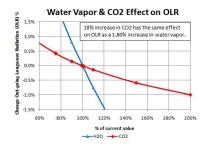
Tropics:

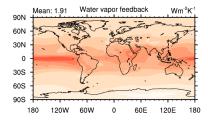
Arctic:

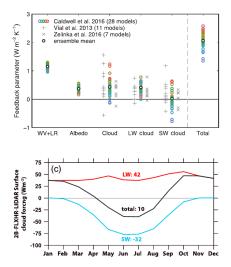


- Stronger warming aloft due to release of latent heat by convection
- Smaller increase in surface temperatures is required to offset a given TOA imbalance
- $\lambda_{LR} < 0$

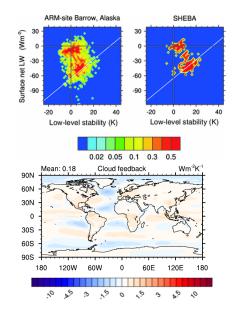
- Stronger surface warming due to stably stratified that prevents mixing
- Larger increase in surface temperatures is required to offset a given TOA imbalance
- λ_{LR} > 0


Arctic Feedbacks - Lapse rate Feedback

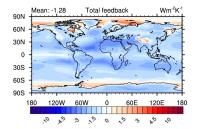

Lapse-rate feedbacks (λ_{LR}) corresponds to a warming that deviates from vertically uniform profile (due to a ΔT_s)


 \Rightarrow Positive in the Arctic (high latitudes) negative in the Tropics (low latitudes) which enhances warming in the Arctic

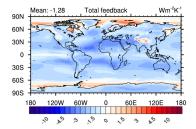
- Water vapor is a greenhouse gas \rightarrow change in opacity of the clear-sky atmosphere
- Much more potent the CO₂
- Saturation water vapor pressure/content is an exponential function of T (Clausius-Clapeyron relation), so the absolute humidity of the atmosphere changes strong at warmer temperature
- Water vapor feedback stronger in the Tropics than in the Arctic due to this exponential increase
- Water vapor feedback counteracts Arctic Amplification

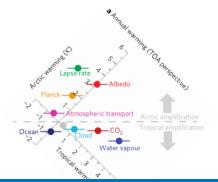


- In general, the cloud feedback is highly uncertain as many cloud processes are only insufficiently parametrized in climate models
- Sign and strength of cloud feedback depend on changes in cloud cover and cloud composition (liquid-, ice-, mixed-phase clouds)
- Globally, clouds mainly have a cooling effect as they efficiently reflect solar radiation

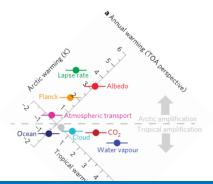

Arctic Feedbacks - Cloud Feedback

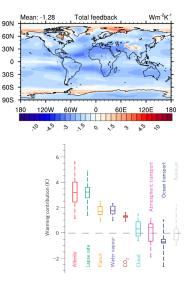
- Clouds warm the Arctic almost the whole year (due to the high surface albedo and the low solar zenith angle), except a short period in summer
- Two preferred radiative states in the Arctic: cloudy- and clear-state
- Quantification of the cloud feedback is especially complicated in the Arctic as climate models struggle to simulate low-level mixed phase cloud and therefore also the two radiative states
- Climate models suggest that it might not contribute the Arctic amplification, but this is uncertain


Arctic Feedbacks - Conclusion


- Main contributors to Arctic Amplfication are Lapse rate, Planck and Albedo feedback
- Effects of transports (atmospheric/oceanic) and clouds are rather uncertain
- Total feedback positive in the Arctic

Arctic Feedbacks - Conclusion


- Main contributors to Arctic Amplfication are Lapse rate, Planck and Albedo feedback
- Effects of transports (atmospheric/oceanic) and clouds are rather uncertain
- Total feedback positive in the Arctic



Arctic Feedbacks - Conclusion

- Main contributors to Arctic Amplfication are Lapse rate, Planck and Albedo feedback
- Effects of transports (atmospheric/oceanic) and clouds are rather uncertain
- Total feedback positive in the Arctic

Effects of Arctic Warming

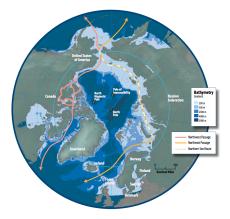
Locally (changes in cryosphere)

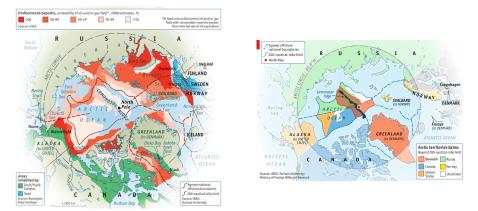
- Reduced sea ice (shipping, resources)
- Melting of the Greenland ice sheet (sea-level rise)
- Thawing of permafrost (release of methane)

Remote (changes in weather patterns)

Climate change is altering global air currents – increasing droughts, heatwaves and floods

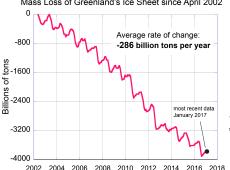
Massive loops in the Arctic jetstream that have a major impact on our weather show a 'clear fingerprint of human activity'


an Johnston Environment Correspondent | @montaskian | Honday 27 March 2017 08:54 BST| (2)440 comme

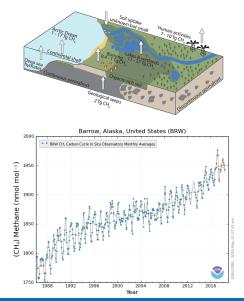


• Modification of atmospheric circulation

Effects of Arctic Warming - Reduced sea ice

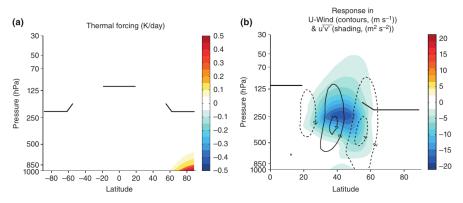

- Reduction in summer sea ice up to 90% until the end of 21. century
- Opened up water will cause enhanced human activity in the Arctic
- North-West/East Passage will reduce distance to East Asia by approx. 3000 nm (5000 km) which results in a time gain of 7 days (depending on the ice conditions)
- Nevertheless, it is unclear as to whether the North-West/East Passage can be operated efficiently and economically (remoteness, weather, ice conditions, territorial claims, etc.)

- Large oil and gas deposits in Arctic that can be exploited as sea ice retreats
- Increasing geopolitical interest in the Arctic, but disputed territorial situation
- Pollution of Arctic ecosystem due to human activity

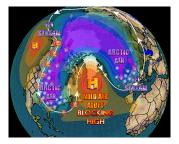

- Mass loss of Greenland ice sheet due to Arctic warming
- Increased snow fall in central Greenland due to greater moisture content of the atmosphere at warmer
- Mass gain through enhanced precipitation is more than offset by the higher velocity of glaciers
- Mass loss of approx. 4000 billion tons since 2000 which is equivalent to an sea level rise of about 12 mm (approx. 0.8 mm/y
- If the entire 2850000 km³ of ice were to melt, global sea levels would rise 7.2 m
- How fast this melt would eventually occur is a matter of discussion (at leat an order of multiple centuries)

Mass Loss of Greenland's Ice Sheet since April 2002

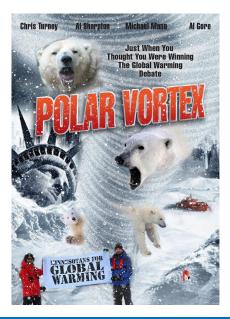
Effects of Arctic Warming - Thawing of permafrost


- Soil in large areas of the Arctic perennially frozen (permafrost)
- Warming will thaw permafrost and accelerates methane release, due to both release of methane from existing stores (frozen biomass, methane-hydrates), and from methanogenesis in rotting biomass
- Methane is an extremely efficient Greenhouse gas (24 time more potent than CO₂) which will further enhance global warming (positive feedback)

Thermal wind relationship (zonal component):

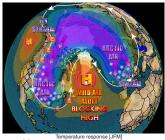

$$u_T = \frac{R}{f} \ln \left(\frac{p_0}{p_1}\right) \left(\frac{\partial T}{\partial y}\right)_p$$

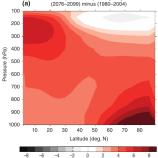
Simple atmospheric model, with thermal forcing in the Arctic:



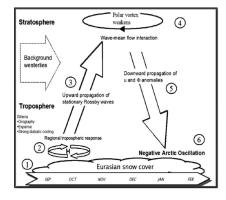
 \Rightarrow Equatorward shift and weakening (reduced eddy momentum flux) of polar jetstream

- Weakening and equatorward shift of Polar Jet-Stream
- Increase of undulations (wavier), amplification of wave amplitude → Flag in the wind
- More blocking situations
- Intensification of meridional transports
- More extreme winters in mid-latitudes/warm air intrusions in the Arctic

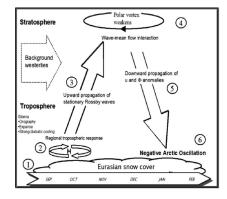

- Weakening and equatorward shift of Polar Jet-Stream
- Increase of undulations (wavier), amplification of wave amplitude → Flag in the wind
- More blocking situations
- Intensification of meridional transports
- More extreme winters in mid-latitudes/warm air intrusions in the Arctic

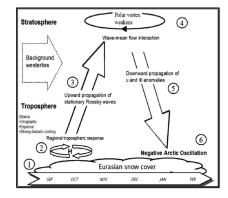


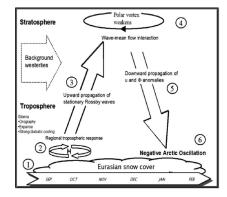
- Weakening and equatorward shift of Polar Jet-Stream
- Increase of undulations (wavier), amplification of wave amplitude → Flag in the wind
- More blocking situations
- Intensification of meridional transports
- More extreme winters in mid-latitudes/warm air intrusions in the Arctic

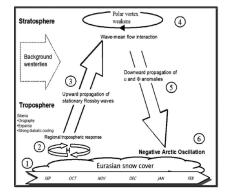

Tug-of-War (Tauziehen) in Climate Models:

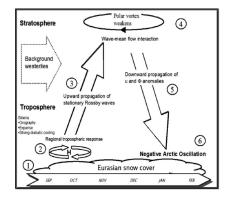
- Arctic warming
 → weaker westerlies
- Tropical warming through enhanced latent heat release aloft (due to enhanced convection)
 - \rightarrow stronger westerlies

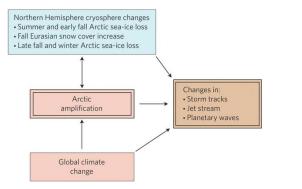



Increased Eurasian snow cover (in autumn)

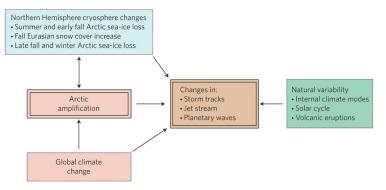

- Increased Eurasian snow cover (in autumn)
- Enhanced Siberian High, larger amplitudes/undulations of planetary Rossby waves


- Increased Eurasian snow cover (in autumn)
- Enhanced Siberian High, larger amplitudes/undulations of planetary Rossby waves
- Increased vertical propagation of wave energy into stratosphere, wave breaking

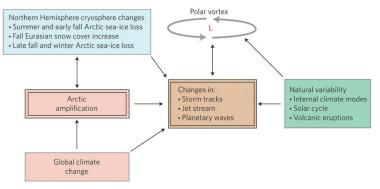

- Increased Eurasian snow cover (in autumn)
- Enhanced Siberian High, larger amplitudes/undulations of planetary Rossby waves
- Increased vertical propagation of wave energy into stratosphere, wave breaking
- Slowing/weakening of the stratospheric polar vortex (in early winter), this can trigger stratospheric warming events.


- Increased Eurasian snow cover (in autumn)
- Enhanced Siberian High, larger amplitudes/undulations of planetary Rossby waves
- Increased vertical propagation of wave energy into stratosphere, wave breaking
- Slowing/weakening of the stratospheric polar vortex (in early winter), this can trigger stratospheric warming events.
- This causes circulation anomalies (usual westwind, may turn to East), which vertically propagate back down to the troposphere

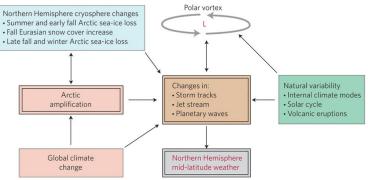
- Increased Eurasian snow cover (in autumn)
- Enhanced Siberian High, larger amplitudes/undulations of planetary Rossby waves
- Increased vertical propagation of wave energy into stratosphere, wave breaking
- Slowing/weakening of the stratospheric polar vortex (in early winter), this can trigger stratospheric warming events.
- This causes circulation anomalies (usual westwind, may turn to East), which vertically propagate back down to the troposphere
- High pressure pauses down, stronger undulation and slowing of Polar Jet-Stream, persistent negative NAO/AO (in late winter).



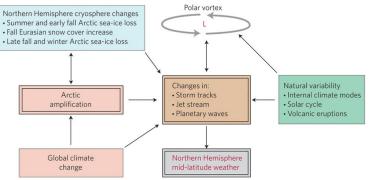
Both theories are highly disputed!


• Mid-latitude variability is always the sum of internal variability + external influences

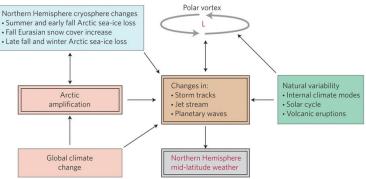
Both theories are highly disputed!


• Mid-latitude variability is always the sum of internal variability + external influences

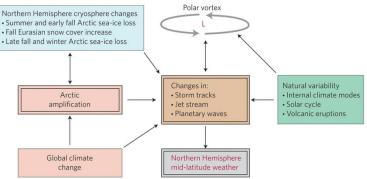
Both theories are highly disputed!


• Mid-latitude variability is always the sum of internal variability + external influences

Both theories are highly disputed!


 $\bullet\,$ Mid-latitude variability is always the sum of internal variability $+\,$ external influences

Both theories are highly disputed!


- Mid-latitude variability is always the sum of internal variability + external influences
- No consensus on whether significant effects in mid-latitude jet stream have actually been detected or not (it is nearly impossible to distinguish forced signal from background variability)

Both theories are highly disputed!

- Mid-latitude variability is always the sum of internal variability + external influences
- No consensus on whether significant effects in mid-latitude jet stream have actually been detected or not (it is nearly impossible to distinguish forced signal from background variability)
- Natural variability, observational limitations, and model shortcomings make this judgement a difficult problem

Both theories are highly disputed!

- $\bullet\,$ Mid-latitude variability is always the sum of internal variability + external influences
- No consensus on whether significant effects in mid-latitude jet stream have actually been detected or not (it is nearly impossible to distinguish forced signal from background variability)
- Natural variability, observational limitations, and model shortcomings make this judgement a difficult problem
- It might also be that mid-latitudes drive the Arctic warming through oceanic/atmospheric transport (Hen or Egg?)

Conclusion

- Warming in the Arctic is twice as strong as on global average
- Several feedback mechanism are the reason for this enhanced warming
- Temperature and surface albedo feedback are the main contributors to Arctic warming
- Local and remote effects of Arctic warming