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Climate Dynamics (Summer Semester 2017)
J. Milmenstadt

Today'’s Lecture (Lecture 9): Land, biosphere, cryosphere

Reference
» UNEP Global Outlook for Ice and Snow (2007)
> [PCC AR5
» NSIDC

> (all linked from course web page)



2.6 - Land, biosphere

> Land is a sink of atmospheric momentum

» Orography shapes circulation (stationary Rossby waves)

> Land-sea temperature contrast shapes circulation

> Land and ocean are a source/sink of sensible and latent heat
> Land and ocean are a source of aerosol

> Land and ocean are a source/sink of trace gases



2.6 - Land, biosphere

Carbon cycle and carbon reservoirs
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Carbon reservoirs are large, but cycling is slow

Anthropogenic carbon fluxes are small compared to the
natural fluxes

But the flux imbalance is large compared to the natural
flux imbalance

Only about 50% of emitted anthropogenic carbon
remains in the atmosphere in the short term



The fast carbon cycle - seasonal cycle of biological primary productivity

Monthly Change in Carbon Dioxide, 1959-2010
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Figures: Scripps CO, program, NASA, NOAA ESRL



The slow carbon cycle: weathering, biogeochemical pump, metamorphism, volcanoes

Figure: Kasting 1995




2.7 — Cryosphere

The cryosphere acts as a reservoir for water, which is released on short (annual) and long (> millennial) time scales
Freezing and melting are strong local influences on ocean salinity

Albedo of ice affects shortwave flux info ocean
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Low thermal conductivity insulates ocean from atmosphere

Components of the cryosphere

> Sea ice
Ice Sheet

Sea Ice Ice Shelf ’

Frozen Ground \\
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> Ice sheets

> Ice shelves

> Glaciers

Which of these (directly)
influence the sea level2

Figure: IPCC AR5



Sea ice

v

Annual cycle of freezing and melting
» Firstyear and multi-year ice; ice thickness, persistence through melt season
>

Ice albedo (depends on snow cover)

v

Polynyas as source of sensible and latent heat



Annual cycle of sea ice extent

Figure: NSIDC

Avrctic sea ice occupies the Arctic Ocean, including the
pole; partly persists for multiple years

Antarctic sea ice forms equatorward of the Antarctic
continent and consists mostly of firstyear ice

Freezing of the Arctic Ocean restricts moisture flux —
Arctic sea ice is polar desert with low snow cover (bare

ice albedo: 0.5)

Southern Ocean provides moisture source for snowfall
on Antarctic sea ice (snow-covered ice albedo: 0.9)



Annual cycle of arctic sea ice extent

Arctic Sea Ice Extent
(Area of Ocean with at least 15% sea ice)
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> Annual cycle is much larger than
interannual variability

> Interannual variability is also
large compared to the trend

> The trend is very large compared
to zero (anomaly sign is the same
year after year)

Northern Hemisphere Extent Anomalies Sep 201

Extent (Millions of square kilometers)

8 2 .
0
5 — 2007
e & ]
-20
--2012 r 1
4 — 2013
— 3o “401"4981.2010 mean = 6.5 million s km |
Show all 1970 1980 1990 2000 2010 2020
Hide all slope = -13.3(+/-2.8) % per decade

BETA-N Ice Data Center, Boulder, ¢

O 1 Jan 1feb  1Mar  1Apr  1May  1Jun 1jul lAug  1Sep  10ct  1Nov  1Dec  31Dec
Date

Figures: NSIDC



Annual cycle of arctic sea ice extent

Arctic Sea Ice Extent
(Area of Ocean with at least 15% sea ice)
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> Annual cycle is much larger than
interannual variability

> Interannual variability is also
large compared to the trend

> The trend is very large compared
to zero (anomaly sign is the same
year after year)

Northern Hemisphere Extent Anomalies Sep 2014

Extent (Millions of square kilometers)

2014 “401"4981.2010 mean = 6.5 million s km

Show all 1970 1980 1990 2000 2010 2020
Hide all slope = -13.3(+/-2.8) % per decade

BETA - National Snow and Ice Data Center, Boulder, CO

©1jan 1Feb  1Mar  1Apr  1May  1lun 1jul lAug  1Sep  10ct  1Nov  1Dec  31Dec
Date

Figures: NSIDC



Annual cycle of antarctic sea ice extent
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Ice thickness
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Figure: IPCC AR5




Continental ice sheets and ice shelves
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Figure 6A.1: Ice sheets.

Source: based on material provided by K. Steffen, CIRES/Univ. of Colorado

Figure: UNEP Global Outlook for Ice and Snow (2007)



Continental ice sheets and ice shelves

Greenland Antarctica

Melting on the lower Ice shelves, with > Ice sheets are accumulations of permanent (i.e.,
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and Antarctica

> Whether their mass increases or decreases (the mass
balance) depends on snow accumulation rate (mass
source) and melting and iceberg calving (mass sinks).

» Depending on temperature, warming can result in mass
gain (due fo increased snow fall) or mass loss (melting,
cavimg faster ice flow, reduced back pressure from collapsed
v, = ice shelves)
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Figure 6A.1: Ice sheets.

Source: based on material provided by K. Steffen, CIRES/Univ. of Colorado

Figure: UNEP Global Outlook for Ice and Snow (2007)



Continental ice sheets and ice shelves

Greenland Antarctica . .
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» Equivalent sea level rise is 60 m (Antarctica) and 7 m
(Greenland); crucial to know whether, when, and how
much of the ice sheets will melt

Subglacial  Qcean
melting

Bedrock
» Dynamics depend on basal lubrication (difficult of
observe), but satellite gravimetry and altimetry provide

Figure 6A.1: Ice sheets.

Source: based on material provided by K. Steffen, CIRES/Univ. of Colorado the flow field (since ca 2000[ with gqps)

Figure: UNEP Global Outlook for Ice and Snow (2007)



Observed mass balance of Greenland
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Observed mass balance of Antarctica
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Figures: IPCC ARS




Ice shelf collapse (Larsen B, 2002)

March 7 2002

Figure: UNEP Global Outlook for Ice and Snow (2007)



Glaciers
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Sea level equivalent is small (< 1 m)

But the are an important water source in tropics and subtropics
Universally in decline, with very few exceptions
Glacier response lags warming, so further decline is committed

Figures: Gardner et al. (2008), IPCC (2013)
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2) Before ciimate change

Valley Glacier

Mountain Glacier

b) After climate change but before glacier readjustment

©) After readjustment to ciimate change

‘Smal Glacier




Importance of the subtropical and tropical snow pack for water supply

(a) 13 Oct 2008 p.m. composite ] 375

» Seasonal variation of precipitation — water storage
required

> Example: atmospheric rivers and the importance of
snow pack for water supplies in California

WV (cm)



