UNIVERSITAT LEIPZIG

Climate Dynamics (Summer Semester 2017)

J. Mülmenstädt

Today's Lecture (Lecture 9): Land, biosphere, cryosphere Reference

- UNEP Global Outlook for Ice and Snow (2007)
- IPCC AR5
- NSIDC
- (all linked from course web page)

2.6 - Land, biosphere

- Land is a sink of atmospheric momentum
- Orography shapes circulation (stationary Rossby waves)
- Land-sea temperature contrast shapes circulation
- Land and ocean are a source/sink of sensible and latent heat
- Land and ocean are a source of aerosol
- Land and ocean are a source/sink of trace gases

2.6 - Land, biosphere

Carbon cycle and carbon reservoirs

- Carbon reservoirs are large, but cycling is slow
- Anthropogenic carbon fluxes are small compared to the natural fluxes
- But the flux imbalance is large compared to the natural flux imbalance
- Only about 50\% of emitted anthropogenic carbon remains in the atmosphere in the short term

The fast carbon cycle - seasonal cycle of biological primary productivity

Latest CO_{2} reading May 02, 2016

407.73 ppm

Carbon dioxide concentration at Mauna Loa Observatory

The slow carbon cycle: weathering, biogeochemical pump, metamorphism, volcanoes

2.7 - Cryosphere

- The cryosphere acts as a reservoir for water, which is released on short (annual) and long (> millennial) time scales
- Freezing and melting are strong local influences on ocean salinity
- Albedo of ice affects shortwave flux into ocean
- Low thermal conductivity insulates ocean from atmosphere

Components of the cryosphere

- Sea ice
- Ice sheets
- Ice shelves
- Glaciers

Which of these (directly) influence the sea level?

Sea ice

- Annual cycle of freezing and melting
- First-year and multi-year ice; ice thickness, persistence through melt season
- Ice albedo (depends on snow cover)
- Polynyas as source of sensible and latent heat

Annual cycle of sea ice extent

- Arctic sea ice occupies the Arctic Ocean, including the pole; partly persists for multiple years
- Antarctic sea ice forms equatorward of the Antarctic continent and consists mostly of first-year ice
- Freezing of the Arctic Ocean restricts moisture flux \rightarrow Arctic sea ice is polar desert with low snow cover (bare ice albedo: 0.5)
- Southern Ocean provides moisture source for snowfall on Antarctic sea ice (snow-covered ice albedo: 0.9)

Annual cycle of arctic sea ice extent

- Annual cycle is much larger than interannual variability
- Interannual variability is also large compared to the trend
- The trend is very large compared to zero (anomaly sign is the same year after year)
Northern Hemisphere Extent Anomalies Sep 2014

$$
\begin{array}{llllllllllll}
01 \text { BeTA - National Snow and Ice Data Center, Boulder, co } \\
1 \text { Jan } & 1 \text { Feb } & 1 \text { Mar } & 1 \text { Apr } & 1 \text { May } & 1 \text { Jun } & \begin{array}{l}
1 \text { Jul } \\
\text { Date }
\end{array} & 1 \text { Aug } & 1 \text { Sep } & 1 \text { Oct } & 1 \text { Nov } & 1 \text { Dec }
\end{array} \quad 31 \text { Dec }
$$

Annual cycle of arctic sea ice extent

Arctic Sea Ice Extent

(Area of Ocean with at least 15% sea ice)
\qquad

- Annual cycle is much larger than interannual variability
- Interannual variability is also large compared to the trend
- The trend is very large compared to zero (anomaly sign is the same year after year)
Northern Hemisphere Extent Anomalies Sep 2014

Annual cycle of antarctic sea ice extent

Antarctic Sea Ice Extent
畏
(Area of Ocean with at least 15% sea ice)

- Annual cycle is much larger than interannual variability
- Interannual variability is also large compared to the trend
- The trend is small (anomaly sign is often different between years) and positive

Ice thickness

Continental ice sheets and ice shelves

Greenland
Melting on the lower parts of the surface, parts calve off from ice sheet edges into ice

Figure 6A.1: Ice sheets.
Source: based on material provided by K. Steffen, CIRES/Univ. of Colorado

- Ice sheets are accumulations of permanent (i.e., non-seasonal) ice of continental size
- In the present-day climate, there are two: Greenland and Antarctica

Continental ice sheets and ice shelves

- Ice sheets are accumulations of permanent (i.e., non-seasonal) ice of continental size
- In the present-day climate, there are two: Greenland and Antarctica
- Whether their mass increases or decreases (the mass balance) depends on snow accumulation rate (mass source) and melting and iceberg calving (mass sinks).
- Depending on temperature, warming can result in mass gain (due to increased snow fall) or mass loss (melting, faster ice flow, reduced back pressure from collapsed ice shelves) -

Continental ice sheets and ice shelves

- Ice sheets are accumulations of permanent (i.e., non-seasonal) ice of continental size
- In the present-day climate, there are two: Greenland and Antarctica
- Whether their mass increases or decreases (the mass balance) depends on snow accumulation rate (mass source) and melting and iceberg calving (mass sinks).
- Depending on temperature, warming can result in mass gain (due to increased snow fall) or mass loss (melting, faster ice flow, reduced back pressure from collapsed ice shelves)
- Equivalent sea level rise is 60 m (Antarctica) and 7 m (Greenland); crucial to know whether, when, and how much of the ice sheets will melt
- Dynamics depend on basal lubrication (difficult of observe), but satellite gravimetry and altimetry provide the flow field (since ca 2000, with gaps)

Observed mass balance of Greenland

$\left(\mathrm{m} \mathrm{yr}^{-1}\right)$

a Model-derived accumulation
b Flow speed (satellite)
c Elevation change (satellite)
d Ice loss (cm water yr^{-1}, gravimetry), 2003-2012
e Ice loss (cm water yr^{-1}, gravimetry), 2003-2006
f Ice loss (cm water yr^{-1}, gravimetry), 2006-2012

Observed mass balance of Antarctica

Figures: IPCC AR5

Ice shelf collapse (Larsen B, 2002)

Figure: UNEP Global Outlook for Ice and Snow (2007)

- Sea level equivalent is small ($<1 \mathrm{~m}$)
- But the are an important water source in tropics and subtropics
- Universally in decline, with very few exceptions
- Glacier response lags warming, so further decline is committed

Importance of the subtropical and tropical snow pack for water supply

- Seasonal variation of precipitation \rightarrow water storage required
- Example: atmospheric rivers and the importance of snow pack for water supplies in California

